I have a large amount of one-dimensional nonlinear fixed point problems to solve, what is the most efficient numerical solver? I'm currently using scipy.optimize.fixed_point, it takes around 17s to run 1000 of my tasks. Thanks for any suggestions.
If these are all 1D, you can take the fixed_point source,
https://github.com/scipy/scipy/blob/v1.5.2/scipy/optimize/minpack.py#L876
simplify it (can decide once on the acceleration strategy, no need for _lazywhere etc) and compile it with either cython or numba.
Related
EDIT: Original post too vague. I am looking for an algorithm to solve a large-system, solvable, linear IVP that can handle very small floating point values. Solving for the eigenvectors and eigenvalues is impossible with numpy.linalg.eig() as the returned values are complex and should not be, it does not support numpy.float128 either, and the matrix is not symmetric so numpy.linalg.eigh() won't work. Sympy could do it given an infinite amount of time, but after running it for 5 hours I gave up. scipy.integrate.solve_ivp() works with implicit methods (have tried Radau and BDF), but the output is wildly wrong. Are there any libraries, methods, algorithms, or solutions for working with this many, very small numbers?
Feel free to ignore the rest of this.
I have a 150x150 sparse (~500 nonzero entries of 22500) matrix representing a system of first order, linear differential equations. I'm attempting to find the eigenvalues and eigenvectors of this matrix to construct a function that serves as the analytical solution to the system so that I can just give it a time and it will give me values for each variable. I've used this method in the past for similar 40x40 matrices, and it's much (tens, in some cases hundreds of times) faster than scipy.integrate.solve_ivp() and also makes post model analysis much easier as I can find maximum values and maximum rates of change using scipy.optimize.fmin() or evaluate my function at inf to see where things settle if left long enough.
This time around, however, numpy.linalg.eig() doesn't seem to like my matrix and is giving me complex values, which I know are wrong because I'm modeling a physical system that can't have complex rates of growth or decay (or sinusoidal solutions), much less complex values for its variables. I believe this to be a stiffness or floating point rounding problem where the underlying LAPACK algorithm is unable to handle either the very small values (smallest is ~3e-14, and most nonzero values are of similar scale) or disparity between some values (largest is ~4000, but values greater than 1 only show up a handful of times).
I have seen suggestions for similar users' problems to use sympy to solve for the eigenvalues, but when it hadn't solved my matrix after 5 hours I figured it wasn't a viable solution for my large system. I've also seen suggestions to use numpy.real_if_close() to remove the imaginary portions of the complex values, but I'm not sure this is a good solution either; several eigenvalues from numpy.linalg.eig() are 0, which is a sign of error to me, but additionally almost all the real portions are of the same scale as the imaginary portions (exceedingly small), which makes me question their validity as well. My matrix is real, but unfortunately not symmetric, so numpy.linalg.eigh() is not viable either.
I'm at a point where I may just run scipy.integrate.solve_ivp() for an arbitrarily long time (a few thousand hours) which will probably take a long time to compute, and then use scipy.optimize.curve_fit() to approximate the analytical solutions I want, since I have a good idea of their forms. This isn't ideal as it makes my program much slower, and I'm also not even sure it will work with the stiffness and rounding problems I've encountered with numpy.linalg.eig(); I suspect Radau or BDF would be able to navigate the stiffness, but not the rounding.
Anybody have any ideas? Any other algorithms for finding eigenvalues that could handle this? Can numpy.linalg.eig() work with numpy.float128 instead of numpy.float64 or would even that extra precision not help?
I'm happy to provide additional details upon request. I'm open to changing languages if needed.
As mentioned in the comment chain above the best solution for this is to use a Matrix Exponential, which is a lot simpler (and apparently less error prone) than diagonalizing your system with eigenvectors and eigenvalues.
For my case I used scipy.sparse.linalg.expm() since my system is sparse. It's fast, accurate, and simple. My only complaint is the loss of evaluation at infinity, but it's easy enough to work around.
I'm trying to solve a system of equations that is a 1 Million x 1 Million square matrix and one 1 Million solution vector.
To do this, I'm using np.linalg.solve(matrix, answers) but it's taking a very long time.
Is there a way to speed it up?
Thanks #Chris but that doesn't answer the question since I've also tried using the Scipy module and it still takes a very long time to solve. I don't think my computer can hold that much data in RAM
OK for clarity, I've just found out that the name of the matrix that I'm trying to solve is a Hilbert matrix
Please reconsider the need for solving such a HUGE system unless your system is very sparse.
Indeed, this is barely possible to store the input/output on a PC storage device: the input dense matrix takes 8 TB with double-precision values and the output will certainly also takes few TB not to mention a temporary data storage is needed to compute the result (at least 8 TB for a dense matrix). Sparse matrices can help a lot if your input matrix is almost full of zeros but you need the matrix to contain >99.95% of zeros so to store it in your RAM.
Furthermore, the time complexity of solving a system is O(n m min(n,m)) so O(n^3) in your case (see: this post). This means a several billion billions operations. A basic mainstream processor do not exceed 0.5 TFlops. In fact, my relatively good i5-9600KF reach 0.3 TFlops in the LINPACK computationally intensive benchmark. This means the computation will certainly take a month to compute assuming is is bounded only by the speed of a mainstream processor. Actually, solving a large system of equations is known to be memory bound so it will be much slower in practice because modern RAM are a bottleneck in modern computers (see: memory wall). So for a mainstream PC, this should take from from several months to a year assuming the computation can be done in your RAM which is not possible as said before for a dense system. Since high-end SSD are about an order of magnitude slower than the RAM of a good PC, you should expect the computation to take several years. Not to mention a 20 TB high-end SSD is very expensive and it might be a good idea to consider power outages and OS failure for such a long computational time... Again, sparse matrices can help a lot, but note that solving sparse systems is known to be significantly slower than dense one unless the number of zeros is pretty small.
Such systems are solved on supercomputers (or at least large computing clusters), not regular PCs. This requires to use distributed computing and tools likes MPI and distributed linear solvers. A whole field of research is working on this topic to make them efficient on large scale systems.
Note that computing approximations can be faster, but one should solve the space problem in the first place...
This is a very general question -- is there any way to vectorize consequential simulation (where next step depends on previous), or any such iterative algorithm in general?
Obviously, if one need to run M simulations (each N steps) you can use for i in range(N) and calculate M values on each step to get a significant speed-up. But say you only need one or two simulations with a lot of steps, or your simulations don't have a fixed amount of steps (like radiation detection), or you are solving a differential system (again, for a lot of steps). Is there any way to shove upper for-loop under the numpy hood (with a speed gain, I am not talking passing python function object to numpy.vectorize), or cython-ish approaches are the only option? Or maybe this is possible in R or some similar language, but not (currently?) in Python?
Perhaps Multigrid in time methods can give some improvements.
I have a matrix on Z^2 with large dimensions (e.g. 20000 vectors of 200 elements). Each vector contains the same number of ones. I want to find minimal set of the vectors that gives a vector of ones in bitwise OR. This is solved by dynamic programming, but the time complexity of the solution is atrocious. I want to apply some optimization like annealing or genetic algorithm or something else to find less or more good approximation of the answer. But I have no experience in optimizing such functions and just don't know what to try first and what to start with. I want to learn some optimization in Python working on this problem, so some advice on pythonic way of discrete optimization here will be appreciated!
I want to simulate a propagating wave with absorption and reflection on some bodies in three dimensional space. I want to do it with python. Should I use numpy? Are there some special libraries I should use?
How can I simulate the wave? Can I use the wave equation? But what if I have a reflection?
Is there a better method? Should I do it with vectors? But when the ray diverge the intensity gets lower. Difficult.
Thanks in advance.
If you do any computationally intensive numerical simulation in Python, you should definitely use NumPy.
The most general algorithm to simulate an electromagnetic wave in arbitrarily-shaped materials is the finite-difference time domain method (FDTD). It solves the wave equation, one time-step at a time, on a 3-D lattice. It is quite complicated to program yourself, though, and you are probably better off using a dedicated package such as Meep.
There are books on how to write your own FDTD simulations: here's one, here's a document with some code for 1-D FDTD and explanations on more than 1 dimension, and Googling "writing FDTD" will find you more of the same.
You could also approach the problem by assuming all your waves are plane waves, then you could use vectors and the Fresnel equations. Or if you want to model Gaussian beams being transmitted and reflected from flat or curved surfaces, you could use the ABCD matrix formalism (also known as ray transfer matrices). This takes into account the divergence of beams.
If you are solving 3D custom PDEs, I would recommend at least a look at FiPy. It'll save you the trouble of building a lot of your matrix conditioners and solvers from scratch. It uses numpy and/or trilinos. Here are some examples.
I recommend you use my project GarlicSim as the framework in which you build the simulation. You will still need to write your algorithm yourself, probably in Numpy, but GarlicSim may save you a bunch of boilerplate and allow you to explore your simulation results in a flexible way, similar to version control systems.
Don't use Python. I've tried using it for computationally expensive things and it just wasn't made for that.
If you need to simulate a wave in a Python program, write the necessary code in C/C++ and export it to Python.
Here's a link to the C API: http://docs.python.org/c-api/
Be warned, it isn't the easiest API in the world :)