Created New DataFrame Column, Unsigned Mininmum Less Than Zero - python

I'm very new to using Pandas DataFrames and was seeking help on creating a new column which is the unsigned minimum less than zero of an exiting column, something like...
df["B"] = abs(min(0, df["A"]))
...in other words, if A is greater than 0 then B equals 0,
otherwise B equals -A

Use pandas.DataFrame.apply
df['B'] = df.apply(lambda x:x['B'] if x['A'] > 0 else -x['A'], axis=1)

I guess this is how your data looks like
+---+-----+
| | A |
+---+-----+
| 0 | -10 |
| 1 | 20 |
| 2 | 50 |
| 3 | -25 |
| 4 | 8 |
+---+-----+
import numpy as np
df['B'] = np.where(df['A'] > 0, 0,-df['A'])
This will give the following result
+---+-----+----+
| | A | B |
+---+-----+----+
| 0 | -10 | 10 |
| 1 | 20 | 0 |
| 2 | 50 | 0 |
| 3 | -25 | 25 |
| 4 | 8 | 0 |
+---+-----+----+

Related

pandas group by category and assign a bin with pd.cut

I have a dataframe like the following:
+-------+-------+
| Group | Price |
+-------+-------+
| A | 2 |
| B | 3 |
| A | 1 |
| C | 4 |
| B | 2 |
+-------+-------+
I would like to create a column, that would give me the in which range (if I divided each group into 4 intervals) my price value is within each group.
+-------+-------+--------------------------+
| Group | Price | Range |
+-------+-------+--------------------------+
| A | 2 | [1-2] |
| B | 3 | [2-3] |
| A | 1 | [0-1] |
| C | 4 | [0-4] |
| B | 2 | [0-2] |
+-------+-------+--------------------------+
Anyone has any idea by using pandas pd.cut and groupby operations?
Thanks
You can pass pd.cut to groupby():
df['Range'] = df.groupby('Group')['Price'].transform(pd.cut, bins=4)

Transform a Pandas dataframe in a pandas with multicolumns

I have the following pandas dataframe, where the column id is the dataframe index
+----+-----------+------------+-----------+------------+
| | price_A | amount_A | price_B | amount_b |
|----+-----------+------------+-----------+------------|
| 0 | 0.652826 | 0.941421 | 0.823048 | 0.728427 |
| 1 | 0.400078 | 0.600585 | 0.194912 | 0.269842 |
| 2 | 0.223524 | 0.146675 | 0.375459 | 0.177165 |
| 3 | 0.330626 | 0.214981 | 0.389855 | 0.541666 |
| 4 | 0.578132 | 0.30478 | 0.789573 | 0.268851 |
| 5 | 0.0943601 | 0.514878 | 0.419333 | 0.0170096 |
| 6 | 0.279122 | 0.401132 | 0.722363 | 0.337094 |
| 7 | 0.444977 | 0.333254 | 0.643878 | 0.371528 |
| 8 | 0.724673 | 0.0632807 | 0.345225 | 0.935403 |
| 9 | 0.905482 | 0.8465 | 0.585653 | 0.364495 |
+----+-----------+------------+-----------+------------+
And I want to convert this dataframe in to a multi column data frame, that looks like this
+----+-----------+------------+-----------+------------+
| | A | B |
+----+-----------+------------+-----------+------------+
| id | price | amount | price | amount |
|----+-----------+------------+-----------+------------|
| 0 | 0.652826 | 0.941421 | 0.823048 | 0.728427 |
| 1 | 0.400078 | 0.600585 | 0.194912 | 0.269842 |
| 2 | 0.223524 | 0.146675 | 0.375459 | 0.177165 |
| 3 | 0.330626 | 0.214981 | 0.389855 | 0.541666 |
| 4 | 0.578132 | 0.30478 | 0.789573 | 0.268851 |
| 5 | 0.0943601 | 0.514878 | 0.419333 | 0.0170096 |
| 6 | 0.279122 | 0.401132 | 0.722363 | 0.337094 |
| 7 | 0.444977 | 0.333254 | 0.643878 | 0.371528 |
| 8 | 0.724673 | 0.0632807 | 0.345225 | 0.935403 |
| 9 | 0.905482 | 0.8465 | 0.585653 | 0.364495 |
+----+-----------+------------+-----------+------------+
I've tried transforming my old pandas dataframe in to a dict this way:
dict = {"A": df[["price_a","amount_a"]], "B":df[["price_b", "amount_b"]]}
df = pd.DataFrame(dict, index=df.index)
But I had no success, how can I do that?
Try renaming columns manually:
df.columns=pd.MultiIndex.from_tuples([x.split('_')[::-1] for x in df.columns])
df.index.name='id'
Output:
A B b
price amount price amount
id
0 0.652826 0.941421 0.823048 0.728427
1 0.400078 0.600585 0.194912 0.269842
2 0.223524 0.146675 0.375459 0.177165
3 0.330626 0.214981 0.389855 0.541666
4 0.578132 0.304780 0.789573 0.268851
5 0.094360 0.514878 0.419333 0.017010
6 0.279122 0.401132 0.722363 0.337094
7 0.444977 0.333254 0.643878 0.371528
8 0.724673 0.063281 0.345225 0.935403
9 0.905482 0.846500 0.585653 0.364495
You can split the column names on the underscore and convert to a tuple. Once you map each split column name to a tuple, pandas will convert the Index to a MultiIndex for you. From there we just need to call swaplevel to get the letter level to come first and reassign to the dataframe.
note: in my input dataframe I replaced the column name "amount_b" with "amount_B" because it lined up with your expected output so I assumed it was a typo
df.columns = df.columns.str.split("_", expand=True).swaplevel()
print(df)
A B
price amount price amount
0 0.652826 0.941421 0.823048 0.728427
1 0.400078 0.600585 0.194912 0.269842
2 0.223524 0.146675 0.375459 0.177165
3 0.330626 0.214981 0.389855 0.541666
4 0.578132 0.304780 0.789573 0.268851
5 0.094360 0.514878 0.419333 0.017010
6 0.279122 0.401132 0.722363 0.337094
7 0.444977 0.333254 0.643878 0.371528
8 0.724673 0.063281 0.345225 0.935403
9 0.905482 0.846500 0.585653 0.364495

how to find max of a columns with same name

im having some trouble with this data frame where columns having the same name have to be reduced to values with at least one "1" as "1".
+---+---+---+---+---+---+---+---+---+
| a | a | a | b | c | c | c | d | d |
+---+---+---+---+---+---+---+---+---+
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
+---+---+---+---+---+---+---+---+---+
to something like this using "or" condition for every column for a huge dataset could be a time-consuming task so I am having trouble figuring it out. I used max(axis=1, level=0) still couldn't make it.
my desired output :
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 |
+---+---+---+---+
Check with max
df = df.max(level=0, axis=1)

Grouping many columns in one column in Pandas

I have a DataFrame that is similar to this one:
| | id | Group1 | Group2 | Group3 |
|---|----|--------|--------|--------|
| 0 | 22 | A | B | C |
| 1 | 23 | B | C | D |
| 2 | 24 | C | B | A |
| 3 | 25 | D | A | C |
And I want to get something like this:
| | Group | id_count |
|---|-------|----------|
| 0 | A | 3 |
| 1 | B | 3 |
| 2 | C | 3 |
| 3 | D | 2 |
Basically for each group I want to know how many people(id) have chosen it.
I know there is pd.groupby(), but it only gives an appropriate result for one column (if I give it a list, it does not combine group 1,2,3 in one column).
Use DataFrame.melt with GroupBy.size:
df1 = (df.melt('id', value_name='Group')
.groupby('Group')
.size()
.reset_index(name='id_count'))
print (df1)
Group id_count
0 A 3
1 B 3
2 C 4
3 D 2

Use the other columns value if a condition is met Panda

Assuming I have the following table:
+----+---+---+
| A | B | C |
+----+---+---+
| 1 | 1 | 3 |
| 2 | 2 | 7 |
| 6 | 3 | 2 |
| -1 | 9 | 0 |
| 2 | 1 | 3 |
| -8 | 8 | 2 |
| 2 | 1 | 9 |
+----+---+---+
if column A's value is Negative, update column B's value by the value of column C. if not do nothing
This is the desired output:
+----+---+---+
| A | B | C |
+----+---+---+
| 1 | 1 | 3 |
| 2 | 2 | 7 |
| 6 | 3 | 2 |
| -1 | 0 | 0 |
| 2 | 1 | 3 |
| -8 | 2 | 2 |
| 2 | 1 | 9 |
+----+---+---+
I've been trying the following code but it's not working
#not working
result.loc(result["A"] < 0,result['B'] = result['C'].iloc[0])
result.B[result.A < 0] = result.C
Try this:
df.loc[df['A'] < 0, 'B'] = df['C']

Categories