Pipenv is doing nothing - python

System: Win 10 x64
Python: 2.7.18 x64
Pip list:
 appdirs 1.4.4
 astroid 1.6.6
 backports.functools-lru-cache 1.6.1
 bottle 0.12.18
 certifi 2020.6.20
 cffi 1.14.1
 chardet 3.0.4
 colorama 0.4.3
 conan 1.20.5
 configparser 4.0.2
 contextlib2 0.6.0.post1
 deprecation 2.0.7
 distlib 0.3.1
 distro 1.1.0
 enum34 1.1.10
 fasteners 0.15
 filelock 3.0.12
 future 0.18.2
 futures 3.3.0
 idna 2.10
 importlib-metadata 1.7.0
 importlib-resources 3.0.0
 isort 4.3.21
 Jinja2 2.11.2
 lazy-object-proxy 1.5.1
 MarkupSafe 1.1.1
 mccabe 0.6.1
 monotonic 1.5
 node-semver 0.6.1
 packaging 20.4
 patch-ng 1.17.1
 pathlib2 2.3.5
 pep8 1.7.1
 pip 19.2.3
 pipenv 2020.8.13
 pluginbase 0.7
 pycparser 2.20
 pygit2 0.28.2
 Pygments 2.5.2
 PyJWT 1.7.1
 pylint 1.9.5
 pyparsing 2.4.7
 python-dateutil 2.8.1
 PyYAML 5.3.1
 requests 2.24.0
 scandir 1.10.0
 setuptools 41.2.0
 singledispatch 3.4.0.3
 six 1.15.0
 tqdm 4.48.2
 typing 3.7.4.3
 urllib3 1.25.10
 virtualenv 20.0.30
 virtualenv-clone 0.5.4
 wrapt 1.12.1
 zipp 1.2.0
Anytime I try to run pipenv install or pipenv install --dev nothing happens, no crash, no error, no stucking for ever, just a return to the command prompt.
Has anyone an idea ?

Related

Pyodbc pip install issue --

I am trying to pip install dbt-sqlserver and am having issues downloading or building the wheel for pyodbc. I am using python version 3.11 and on a virtual machine. I have not had this issue previously on my local machine.
error: command 'C:\\Program Files (x86)\\Microsoft Visual Studio\\2022\\BuildTools\\VC\\Tools\\MSVC\\14.34.31933\\bin\\HostX86\\x64\\cl.exe' failed with exit code 2
It then details that this is a legacy install failure. I previously downloaded the Microsoft Visual Studio build tools based off a prior error and these are the packages selected.
I am expecting to hopefully download dbt-sqlserver. I have tried multiple different things from stackoverflow to no avail.
Here is my current pip list covering everything within my virtual environment on my VM.
Package Version
------------------------ -----------
agate 1.7.0
aiosqlite 0.18.0
alembic 1.9.2
anyio 3.6.2
apprise 1.2.1
asgi-lifespan 2.0.0
asyncpg 0.27.0
attrs 22.2.0
Babel 2.11.0
betterproto 1.2.5
cachetools 5.3.0
certifi 2022.12.7
cffi 1.15.1
charset-normalizer 3.0.1
click 8.1.3
cloudpickle 2.2.1
colorama 0.4.6
coolname 2.2.0
croniter 1.3.8
cryptography 39.0.0
dateparser 1.1.6
dbt-core 1.4.1
dbt-extractor 0.4.1
docker 6.0.1
fastapi 0.89.1
fsspec 2023.1.0
future 0.18.3
google-auth 2.16.0
graphql-core 3.2.3
greenlet 2.0.2
griffe 0.25.4
grpclib 0.4.3
h11 0.14.0
h2 4.1.0
hologram 0.0.15
hpack 4.0.0
httpcore 0.16.3
httpx 0.23.3
hyperframe 6.0.1
idna 3.4
isodate 0.6.1
Jinja2 3.1.2
jsonpatch 1.32
jsonpointer 2.3
jsonschema 3.2.0
kubernetes 25.3.0
leather 0.3.4
Logbook 1.5.3
Mako 1.2.4
Markdown 3.4.1
markdown-it-py 2.1.0
MarkupSafe 2.1.2
mashumaro 3.3.1
mdurl 0.1.2
minimal-snowplow-tracker 0.0.2
msgpack 1.0.4
multidict 6.0.4
networkx 2.8.8
oauthlib 3.2.2
orjson 3.8.5
packaging 21.3
parsedatetime 2.4
pathspec 0.10.3
pendulum 2.1.2
pip 23.0
prefect 2.7.10
prefect-dbt 0.2.7
prefect-shell 0.1.3
pyasn1 0.4.8
pyasn1-modules 0.2.8
pycparser 2.21
pydantic 1.10.4
Pygments 2.14.0
pyodbc 4.0.35
pyparsing 3.0.9
pyrsistent 0.19.3
python-dateutil 2.8.2
python-slugify 8.0.0
pytimeparse 1.1.8
pytz 2022.7.1
pytz-deprecation-shim 0.1.0.post0
pytzdata 2020.1
pywin32 305
PyYAML 6.0
readchar 4.0.3
regex 2022.10.31
requests 2.28.2
requests-oauthlib 1.3.1
rfc3986 1.5.0
rich 13.3.1
rsa 4.9
setuptools 67.1.0
sgqlc 16.1
six 1.16.0
sniffio 1.3.0
SQLAlchemy 1.4.46
sqlparse 0.4.3
starlette 0.22.0
stringcase 1.2.0
text-unidecode 1.3
toml 0.10.2
typer 0.7.0
typing_extensions 4.4.0
tzdata 2022.7
tzlocal 4.2
urllib3 1.26.14
uvicorn 0.20.0
websocket-client 1.5.0
Werkzeug 2.2.2
wheel 0.38.4

Why is pip not letting me install torch==1.9.1+cu111 in a new conda env when I have another conda env that has exactly that version?

When I run the pip install in the new conda env:
(base) brando9~ $ pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
Looking in links: https://download.pytorch.org/whl/torch_stable.html
ERROR: Could not find a version that satisfies the requirement torch==1.9.1+cu111 (from versions: 1.11.0, 1.11.0+cpu, 1.11.0+cu102, 1.11.0+cu113, 1.11.0+cu115, 1.11.0+rocm4.3.1, 1.11.0+rocm4.5.2, 1.12.0, 1.12.0+cpu, 1.12.0+cu102, 1.12.0+cu113, 1.12.0+cu116, 1.12.0+rocm5.0, 1.12.0+rocm5.1.1, 1.12.1, 1.12.1+cpu, 1.12.1+cu102, 1.12.1+cu113, 1.12.1+cu116, 1.12.1+rocm5.0, 1.12.1+rocm5.1.1, 1.13.0, 1.13.0+cpu, 1.13.0+cu116, 1.13.0+cu117, 1.13.0+cu117.with.pypi.cudnn, 1.13.0+rocm5.1.1, 1.13.0+rocm5.2, 1.13.1, 1.13.1+cpu, 1.13.1+cu116, 1.13.1+cu117, 1.13.1+cu117.with.pypi.cudnn, 1.13.1+rocm5.1.1, 1.13.1+rocm5.2)
ERROR: No matching distribution found for torch==1.9.1+cu111
the other env with that pytorch version:
(metalearning3.9) [pzy2#vision-submit ~]$ pip list
Package Version Location
---------------------------------- -------------------- ------------------
absl-py 1.0.0
aiohttp 3.8.3
aiosignal 1.3.1
alabaster 0.7.12
anaconda-client 1.9.0
anaconda-project 0.10.1
antlr4-python3-runtime 4.8
anyio 2.2.0
appdirs 1.4.4
argcomplete 2.0.0
argh 0.26.2
argon2-cffi 20.1.0
arrow 0.13.1
asn1crypto 1.4.0
astroid 2.6.6
astropy 4.3.1
asttokens 2.0.7
astunparse 1.6.3
async-generator 1.10
async-timeout 4.0.2
atomicwrites 1.4.0
attrs 21.2.0
autopep8 1.5.7
Babel 2.9.1
backcall 0.2.0
backports.shutil-get-terminal-size 1.0.0
beautifulsoup4 4.10.0
binaryornot 0.4.4
bitarray 2.3.0
bkcharts 0.2
black 19.10b0
bleach 4.0.0
bokeh 2.4.1
boto 2.49.0
Bottleneck 1.3.2
brotlipy 0.7.0
cached-property 1.5.2
cachetools 5.0.0
certifi 2021.10.8
cffi 1.14.6
chardet 4.0.0
charset-normalizer 2.0.4
cherry-rl 0.1.4
click 8.0.3
cloudpickle 2.0.0
clyent 1.2.2
colorama 0.4.4
conda 4.12.0
conda-content-trust 0+unknown
conda-pack 0.6.0
conda-package-handling 1.8.0
conda-token 0.3.0
configparser 5.3.0
contextlib2 0.6.0.post1
cookiecutter 1.7.2
crc32c 2.3
crcmod 1.7
cryptography 3.4.8
cycler 0.10.0
Cython 0.29.24
cytoolz 0.11.0
daal4py 2021.3.0
dask 2021.10.0
debugpy 1.4.1
decorator 5.1.0
defusedxml 0.7.1
diff-match-patch 20200713
dill 0.3.4
distributed 2021.10.0
docker-pycreds 0.4.0
docutils 0.17.1
entrypoints 0.3
et-xmlfile 1.1.0
executing 0.9.1
fairseq 0.12.2 /home/pzy2/fairseq
fastcache 1.1.0
fastcluster 1.2.6
fasteners 0.17.3
filelock 3.3.1
flake8 3.9.2
Flask 1.1.2
flatbuffers 2.0.7
fonttools 4.25.0
frozenlist 1.3.0
fsspec 2021.8.1
gast 0.4.0
gcs-oauth2-boto-plugin 3.0
gevent 21.8.0
gitdb 4.0.9
GitPython 3.1.27
glob2 0.7
gmpy2 2.0.8
google-apitools 0.5.32
google-auth 2.6.3
google-auth-oauthlib 0.4.6
google-pasta 0.2.0
google-reauth 0.1.1
gql 0.2.0
graphql-core 1.1
greenlet 1.1.1
grpcio 1.44.0
gsutil 5.9
gym 0.22.0
gym-notices 0.0.6
h5py 3.3.0
HeapDict 1.0.1
higher 0.2.1
html5lib 1.1
httplib2 0.20.4
huggingface-hub 0.5.1
hydra-core 1.0.7
idna 3.2
imagecodecs 2021.8.26
imageio 2.9.0
imagesize 1.2.0
importlib-metadata 4.12.0
inflection 0.5.1
iniconfig 1.1.1
intervaltree 3.1.0
ipykernel 6.4.1
ipython 7.29.0
ipython-genutils 0.2.0
ipywidgets 7.6.5
isort 5.9.3
itsdangerous 2.0.1
jdcal 1.4.1
jedi 0.18.0
jeepney 0.7.1
Jinja2 2.11.3
jinja2-time 0.2.0
joblib 1.1.0
json5 0.9.6
jsonschema 3.2.0
jupyter 1.0.0
jupyter-client 6.1.12
jupyter-console 6.4.0
jupyter-core 4.8.1
jupyter-server 1.4.1
jupyterlab 3.2.1
jupyterlab-pygments 0.1.2
jupyterlab-server 2.8.2
jupyterlab-widgets 1.0.0
keras 2.10.0
Keras-Preprocessing 1.1.2
keyring 23.1.0
kiwisolver 1.3.1
lark-parser 0.12.0
lazy-object-proxy 1.6.0
learn2learn 0.1.7
libarchive-c 2.9
libclang 14.0.6
littleutils 0.2.2
llvmlite 0.37.0
locket 0.2.1
loguru 0.6.0
lxml 4.6.3
Markdown 3.3.6
MarkupSafe 1.1.1
matplotlib 3.4.3
matplotlib-inline 0.1.2
mccabe 0.6.1
mistune 0.8.4
mkl-fft 1.3.1
mkl-random 1.2.2
mkl-service 2.4.0
mock 4.0.3
monotonic 1.6
more-itertools 8.10.0
mpmath 1.2.1
msgpack 1.0.2
multidict 6.0.2
multipledispatch 0.6.0
munkres 1.1.4
mypy-extensions 0.4.3
nbclassic 0.2.6
nbclient 0.5.3
nbconvert 6.1.0
nbformat 5.1.3
nest-asyncio 1.5.1
networkx 2.6.3
nltk 3.6.5
nose 1.3.7
notebook 6.4.5
numba 0.54.1
numexpr 2.7.3
numpy 1.20.3
numpydoc 1.1.0
nvidia-ml-py3 7.352.0
nvidia-smi 0.1.3
oauth2client 4.1.3
oauthlib 3.2.0
olefile 0.46
omegaconf 2.0.6
opencv-python 4.6.0.66
openpyxl 3.0.9
opt-einsum 3.3.0
ordered-set 4.1.0
packaging 21.0
pandas 1.3.4
pandocfilters 1.4.3
parso 0.8.2
partd 1.2.0
path 16.0.0
pathlib2 2.3.6
pathspec 0.7.0
pathtools 0.1.2
patsy 0.5.2
pep8 1.7.1
pexpect 4.8.0
pickleshare 0.7.5
Pillow 8.4.0
pip 22.2.2
pkginfo 1.7.1
plotly 5.7.0
pluggy 0.13.1
ply 3.11
portalocker 2.5.1
poyo 0.5.0
progressbar2 4.0.0
prometheus-client 0.11.0
promise 2.3
prompt-toolkit 3.0.20
protobuf 3.19.6
psutil 5.8.0
ptyprocess 0.7.0
py 1.10.0
pyasn1 0.4.8
pyasn1-modules 0.2.8
pycodestyle 2.7.0
pycosat 0.6.3
pycparser 2.20
pycurl 7.44.1
pydocstyle 6.1.1
pyerfa 2.0.0
pyflakes 2.3.1
Pygments 2.10.0
pylint 2.9.6
pyls-spyder 0.4.0
pyodbc 4.0.0-unsupported
pyOpenSSL 21.0.0
pyparsing 3.0.4
pyrsistent 0.18.0
PySocks 1.7.1
pytest 6.2.4
python-dateutil 2.8.2
python-lsp-black 1.0.0
python-lsp-jsonrpc 1.0.0
python-lsp-server 1.2.4
python-slugify 5.0.2
python-utils 3.1.0
pytz 2021.3
pyu2f 0.1.5
PyWavelets 1.1.1
pyxdg 0.27
PyYAML 6.0
pyzmq 22.2.1
QDarkStyle 3.0.2
qpth 0.0.15
qstylizer 0.1.10
QtAwesome 1.0.2
qtconsole 5.1.1
QtPy 1.10.0
regex 2021.8.3
requests 2.26.0
requests-oauthlib 1.3.1
retry-decorator 1.1.1
rope 0.19.0
rsa 4.7.2
Rtree 0.9.7
ruamel-yaml-conda 0.15.100
sacrebleu 2.2.0
sacremoses 0.0.49
scikit-image 0.18.3
scikit-learn 0.24.2
scikit-learn-intelex 2021.20210714.170444
scipy 1.7.1
seaborn 0.11.2
SecretStorage 3.3.1
Send2Trash 1.8.0
sentry-sdk 1.5.9
setproctitle 1.2.2
setuptools 58.0.4
shortuuid 1.0.8
simplegeneric 0.8.1
singledispatch 3.7.0
sip 4.19.13
six 1.16.0
sklearn 0.0
smmap 5.0.0
sniffio 1.2.0
snowballstemmer 2.1.0
sorcery 0.2.2
sortedcollections 2.1.0
sortedcontainers 2.4.0
soupsieve 2.2.1
Sphinx 4.2.0
sphinxcontrib-applehelp 1.0.2
sphinxcontrib-devhelp 1.0.2
sphinxcontrib-htmlhelp 2.0.0
sphinxcontrib-jsmath 1.0.1
sphinxcontrib-qthelp 1.0.3
sphinxcontrib-serializinghtml 1.1.5
sphinxcontrib-websupport 1.2.4
spyder 5.1.5
spyder-kernels 2.1.3
SQLAlchemy 1.4.22
statsmodels 0.12.2
subprocess32 3.5.4
sympy 1.9
tables 3.6.1
TBB 0.2
tblib 1.7.0
tensorboard 2.10.1
tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.1
tensorflow-estimator 2.10.0
tensorflow-gpu 2.10.1
tensorflow-io-gcs-filesystem 0.27.0
termcolor 2.0.1
terminado 0.9.4
testpath 0.5.0
text-unidecode 1.3
textdistance 4.2.1
tfrecord 1.14.1
threadpoolctl 2.2.0
three-merge 0.1.1
tifffile 2021.7.2
timm 0.6.11
tinycss 0.4
tokenizers 0.11.6
toml 0.10.2
toolz 0.11.1
torch 1.9.1+cu111
torchaudio 0.9.1
torchmeta 1.8.0
torchtext 0.10.1
torchvision 0.10.1+cu111
tornado 6.1
tqdm 4.62.3
traitlets 5.1.0
transformers 4.18.0
typed-ast 1.4.3
typing-extensions 3.10.0.2
ujson 4.0.2
ultimate-anatome 0.1.1
ultimate-aws-cv-task2vec 0.0.1
unicodecsv 0.14.1
Unidecode 1.2.0
urllib3 1.26.7
wandb 0.13.5
watchdog 2.1.3
wcwidth 0.2.5
webencodings 0.5.1
Werkzeug 2.0.2
wheel 0.37.0
whichcraft 0.6.1
widgetsnbextension 3.5.1
wrapt 1.12.1
wurlitzer 2.1.1
xlrd 2.0.1
XlsxWriter 3.0.1
xlwt 1.3.0
yapf 0.31.0
yarl 1.7.2
zict 2.0.0
zipp 3.6.0
zope.event 4.5.0
zope.interface 5.4.0
WARNING: You are using pip version 22.2.2; however, version 22.3.1 is available.
You should consider upgrading via the '/home/pzy2/miniconda3/envs/metalearning3.9/bin/python -m pip install --upgrade pip' command.
(metalearning3.9) [pzy2#vision-submit ~]$
I asked a related question because I can't install pytorch with cuda with conda, see details here: why does conda install the pytorch CPU version despite me putting explicitly to download the cuda toolkit version?
I think this works:
# -- Install PyTorch sometimes requires more careful versioning due to cuda, ref: official install instruction https://pytorch.org/get-started/previous-versions/
# you need python 3.9 for torch version 1.9.1 to work, due to torchmeta==1.8.0 requirement
if ! python -V 2>&1 | grep -q 'Python 3\.9'; then
echo "Error: Python 3.9 is required!"
exit 1
fi
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
From looking at the link you've provided, I can see
cu111/torch-1.9.1%2Bcu111-cp36-cp36m-linux_x86_64.whl
cu111/torch-1.9.1%2Bcu111-cp36-cp36m-win_amd64.whl
cu111/torch-1.9.1%2Bcu111-cp37-cp37m-linux_x86_64.whl
cu111/torch-1.9.1%2Bcu111-cp37-cp37m-win_amd64.whl
cu111/torch-1.9.1%2Bcu111-cp38-cp38-linux_x86_64.whl
cu111/torch-1.9.1%2Bcu111-cp38-cp38-win_amd64.whl
cu111/torch-1.9.1%2Bcu111-cp39-cp39-linux_x86_64.whl
cu111/torch-1.9.1%2Bcu111-cp39-cp39-win_amd64.whl
cp39 means Python version 3.9. Notice there is no support for 3.10 or 3.11. In your new environment, you probably are running a newer version of Python, whereas in the other environment you have Python 3.6, 3.7, 3.8, or 3.9
To install pytorch 1.9.1cu11 you need python 3.9 to be avaiable. Added that to my bash install.sh
# - create conda env
conda create -n metalearning_gpu python=3.9
conda activate metalearning_gpu
## conda remove --name metalearning_gpu --all
# - make sure pip is up to date
which python
pip install --upgrade pip
pip3 install --upgrade pip
which pip
which pip3
# -- Install PyTorch sometimes requires more careful versioning due to cuda, ref: official install instruction https://pytorch.org/get-started/previous-versions/
# you need python 3.9 for torch version 1.9.1 to work, due to torchmeta==1.8.0 requirement
if ! python -V 2>&1 | grep -q 'Python 3\.9'; then
echo "Error: Python 3.9 is required!"
exit 1
fi
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

Getting DLL error when running tensorflow/keras program on python gpu 3.8

I am trying to run my simple AI program but I keep getting this DLL error:
ImportError: Could not find the DLL(s) 'msvcp140_1.dll'. TensorFlow requires that these DLLs be installed in a directory that is named in your %PATH% environment variable.
You may install these DLLs by downloading "Microsoft C++ Redistributable for Visual Studio 2015, 2017 and 2019" for your platform from this URL:
https://support.microsoft.com/help/2977003/the-latest-supported-visual-c-downloads
I went ahead and downloaded that support file and restarted my computer but that didn't work. I also found the specified dll file in my system 32 and made sure it was in my PATH environment for both system and user. Still doesn't work. I am using python3.8 with gpu enabled. Am
I missing something? Is this a version issue because it has never happened on my previous projects.
Here are my libraries:
_tflow_select 2.3.0
absl-py 0.12.0
aggdraw 1.3.12
aiofiles 0.7.0
aiohttp 3.7.4
alembic 1.6.4
argon2-cffi 20.1.0
astor 0.8.1
asttokens 2.0.5
astunparse 1.6.3
async-timeout 3.0.1
async_generator 1.10
attrs 20.3.0
autokeras 1.0.16
backcall 0.2.0
beautifulsoup4 4.9.3
blas 1.0
bleach 3.3.0
blinker 1.4
brotlipy 0.7.0
ca-certificates 2021.7.5
cachetools 4.2.2
certifi 2021.5.30
cffi 1.14.5
chardet 4.0.0
click 7.1.2
cliff 3.8.0
cmaes 0.8.2
cmd2 2.1.2
colorama 0.4.4
colorlog 5.0.1
coverage 5.5
cryptography 3.4.7
cycler 0.10.0
cython 0.29.23
decorator 5.0.9
defusedxml 0.7.1
docopt 0.6.2
entrypoints 0.3
executing 0.6.0
fastapi 0.65.1
flaml 0.6.9
flatbuffers 1.12
freetype 2.10.4
gast 0.4.0
gin-config 0.4.0
google-auth 1.30.0
google-auth-oauthlib 0.4.4
google-pasta 0.2.0
greenlet 1.1.0
grpcio 1.34.1
h11 0.12.0
h5py 3.1.0
hdf5 1.10.5
icc_rt 2019.0.0
icecream 2.1.0
icu 58.2
idna 2.10
importlib-metadata 3.10.0
importlib_metadata 3.10.0
intel-openmp 2021.2.0
ipykernel 5.3.4
ipython 7.25.0
ipython_genutils 0.2.0
ipywidgets 7.6.3
jedi 0.18.0
jinja2 3.0.1
joblib 1.0.1
jpeg 9b
jsonschema 3.2.0
jupyter_client 6.1.12
jupyter_core 4.7.1
jupyterlab_pygments 0.1.2
jupyterlab_widgets 1.0.0
keras 2.7.0
keras-applications 1.0.8
keras-nightly 2.5.0.dev2021032900
keras-preprocessing 1.1.2
keras-tuner 1.0.4
kiwisolver 1.3.1
kt-legacy 1.0.4
libclang 12.0.0
libpng 1.6.37
libprotobuf 3.14.0
libsodium 1.0.18
libtiff 4.1.0
lightgbm 3.3.1
llvmlite 0.37.0
lxml 4.6.3
lz4-c 1.9.3
m2w64-gcc-libgfortran 5.3.0
m2w64-gcc-libs 5.3.0
m2w64-gcc-libs-core 5.3.0
m2w64-gmp 6.1.0
m2w64-libwinpthread-git 5.0.0.4634.697f757
mako 1.1.4
markdown 3.3.4
markupsafe 2.0.1
matplotlib 3.3.4
matplotlib-base 3.3.4
matplotlib-inline 0.1.2
mistune 0.8.4
mkl 2021.2.0
mkl-service 2.3.0
mkl_fft 1.3.0
mkl_random 1.2.1
msys2-conda-epoch 20160418
multidict 5.1.0
nbclient 0.5.3
nbconvert 6.1.0
nbformat 5.1.3
nest-asyncio 1.5.1
notebook 6.4.0
numba 0.54.0
numexpr 2.7.3
numpy 1.19.5
oauthlib 3.1.0
olefile 0.46
opencv-contrib-python 4.5.3.56
opencv-python 4.5.3.56
openssl 1.1.1k
opt-einsum 3.3.0
opt_einsum 3.1.0
optuna 2.8.0
orca 1.6
packaging 20.9
pandas 1.2.4
pandocfilters 1.4.3
parso 0.8.2
pbr 5.6.0
pickleshare 0.7.5
pillow 8.2.0
pip 21.3.1
pipreqs 0.4.10
plotly 4.14.3
plotly-orca 1.3.1
prettytable 2.1.0
prometheus_client 0.11.0
prompt-toolkit 3.0.17
protobuf 3.16.0
psutil 5.8.0
pyasn1 0.4.8
pyasn1-modules 0.2.8
pycparser 2.20
pydantic 1.8.1
pydot 1.4.2
pygments 2.9.0
pyjwt 2.1.0
pyopenssl 20.0.1
pyparsing 2.4.7
pyperclip 1.8.2
pyqt 5.9.2
pyreadline 2.1
pyreadline3 3.3
pyrsistent 0.17.3
pysocks 1.7.1
python 3.8.0
python-dateutil 2.8.1
python-dotenv 0.17.1
python-editor 1.0.4
python-multipart 0.0.5
python_abi 3.8
pytz 2021.1
pywin32 227
pywinpty 0.5.7
pyyaml 5.4.1
pyzmq 20.0.0
qt 5.9.7
requests 2.25.1
requests-oauthlib 1.3.0
retrying 1.3.3
rsa 4.7.2
scikit-learn 0.24.2
scipy 1.6.2
seaborn 0.11.1
send2trash 1.5.0
setuptools 52.0.0
sip 4.19.13
six 1.15.0
soupsieve 2.2.1
sqlalchemy 1.4.22
sqlite 3.35.4
starlette 0.14.2
stevedore 3.3.0
tables 3.6.1
tensorboard 2.7.0
tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.0
tensorflow 2.5.0
tensorflow-addons 0.13.0
tensorflow-base 2.3.0
tensorflow-estimator 2.5.0
tensorflow-gpu 2.4.1
tensorflow-io-gcs-filesystem 0.21.0
termcolor 1.1.0
terminado 0.9.4
testpath 0.5.0
threadpoolctl 2.1.0
tk 8.6.10
toolz 0.11.1
tornado 6.1
tqdm 4.61.2
traitlets 5.0.5
typeguard 2.12.1
typing-extensions 3.7.4.3
typing_extensions 3.7.4.3
urllib3 1.26.4
uvicorn 0.13.4
vc 14.2
visualkeras 0.0.2
vs2015_runtime 14.27.29016
watchgod 0.6
wcwidth 0.2.5
webencodings 0.5.1
websockets 8.1
werkzeug 1.0.1
wheel 0.36.2
widgetsnbextension 3.5.1
win_inet_pton 1.1.0
wincertstore 0.2
winpty 0.4.3
wrapt 1.12.1
xgboost 1.3.3
xz 5.2.5
yaml 0.2.5
yarg 0.1.9
yarl 1.6.3
zeromq 4.3.3
zipp 3.4.1
zlib 1.2.11
zstd 1.4.9
First, check to see if msvcp140.dll (not msvcp140_1.dll) is installed.
Download it here: https://www.microsoft.com/en-us/download/details.aspx?id=53587
Restart your computer and see if it works.
If that doesn't work try copying msvcp140_1.dll into: C:\Users\PCName\AppData\Local\Programs\Python\Python38
If nothing still works, it could be a version issue.
As far as I know, Python 3.8 support requires TensorFlow 2.2 or later.
Run this:
pip install tensorflow ==2.2.0
Look here for system requirements: https://www.tensorflow.org/install/pip#system-requirements
Tensorflow will work only on Windows 7 or later (64-bit) (According to the above link)
Package location: https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.7.0-cp38-cp38-win_amd64.whl
If you are using 32-bit python,
replace your 32-bit python with a 64-bit version. Tensorflow does not support 32-bit architecture.

Python3 Import Error: undefined symbol: aes_hw_encrypt

I am trying to use DialogFlow to make a small talk chatbot on Raspberry Pi 4, and I am getting this error:
ImportError: /usr/local/lib/python3.7/dist-packages/grpc/_cython/cygrpc.cpython-37m-arm-linux-gnueabihf.so: undefined symbol: aes_hw_encrypt
My code is as follows:
"""
Libraries used:
dialogflow 1.1.0 - I did pip3 install dialogflow -U and it upgraded to this
google-api-core 1.29.0
os Latest version - not sure
"""
import os
import dialogflow
from google.api_core.exceptions import InvalidArgument
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = 'secrets.json'
DIALOGFLOW_PROJECT_ID = '[test_id]'
DIALOGFLOW_LANGUAGE_CODE= '[en]'
SESSION_ID = 'me'
text_to_be_analyzed = "Howdy"
session_client = dialogflow.SessionsClient()
session = session_client.session_path(DIALOGFLOW_PROJECT_ID, SESSION_ID)
text_input = dialogflow.types.TextInput(text=text_to_be_analyzed, language_code=DIALOGFLOW_LANGUAGE_CODE)
query_input = dialogflow.types.QueryInput(text=text_input)
try:
response = session_client.detect_intent(session=session, query_input=query_input)
except InvalidArgument:
raise
print("Query text:", response.query_result.query_text)
print("Detected intent:", response.query_result.intent.display_name)
print("Detected intent confidence:", response.query_result.intent_detection_confidence)
print("Fulfillment text:", response.query_result.fulfillment_text)
pip3 list gives me:
-------------------------------- ---------------
Adafruit-BBIO 1.2.0
Adafruit-Blinka 6.10.0
Adafruit-CharLCD 1.1.1
adafruit-circuitpython-busdevice 5.0.6
adafruit-circuitpython-framebuf 1.4.7
adafruit-circuitpython-ssd1306 2.11.4
Adafruit-GPIO 1.0.3
Adafruit-ILI9341 1.5.1
Adafruit-PlatformDetect 3.13.3
Adafruit-PureIO 1.1.8
Adafruit-SSD1306 1.6.2
appdirs 1.4.3
asn1crypto 0.24.0
astroid 2.1.0
asttokens 1.1.13
attrs 21.2.0
automationhat 0.2.0
beautifulsoup4 4.7.1
blinker 1.4
blinkt 0.1.2
bs4 0.0.1
buttonshim 0.0.2
cachetools 4.2.2
Cap1xxx 0.1.3
certifi 2018.8.24
chardet 3.0.4
Click 7.0
colorama 0.3.7
colorzero 1.1
cookies 2.2.1
cryptography 2.6.1
cupshelpers 1.0
cycler 0.10.0
decorator 4.4.2
dialogflow 1.1.0
docutils 0.14
drumhat 0.1.0
entrypoints 0.3
envirophat 1.0.0
ExplorerHAT 0.4.2
flake8 3.9.2
Flask 1.0.2
fourletterphat 0.1.0
fuzzywuzzy 0.18.0
google-api-core 1.29.0
google-auth 1.30.1
googleapis-common-protos 1.53.0
gpiozero 1.5.1
grpcio 1.38.0
guizero 0.6.0
html5lib 1.0.1
idna 2.6
imageio 2.9.0
importlib-metadata 4.0.1
iniconfig 1.1.1
ipykernel 4.9.0
ipython 5.8.0
ipython-genutils 0.2.0
isort 4.3.4
itsdangerous 0.24
jaraco.context 4.0.0
jedi 0.13.2
Jinja2 2.10
jupyter-client 5.2.3
jupyter-core 4.4.0
keyring 17.1.1
keyrings.alt 3.1.1
kiwisolver 1.3.1
lazy-object-proxy 1.3.1
logilab-common 1.4.2
lxml 4.3.2
MarkupSafe 1.1.0
matplotlib 3.4.2
mccabe 0.6.1
microdotphat 0.2.1
mongo-db 0.1
more-itertools 8.8.0
mote 0.0.4
motephat 0.0.3
mypy 0.670
mypy-extensions 0.4.1
networkx 2.5.1
nightly 0.0.1
nudatus 0.0.4
numpy 1.20.3
oauthlib 2.1.0
olefile 0.46
packaging 20.9
pandas 1.2.4
pantilthat 0.0.7
parso 0.3.1
pexpect 4.6.0
pgzero 1.2
phatbeat 0.1.1
pianohat 0.1.0
picamera 1.13
pickleshare 0.7.5
piglow 1.2.5
pigpio 1.78
Pillow 8.2.0
pip 18.1
pluggy 0.13.1
prompt-toolkit 3.0.18
protobuf 3.17.2
psutil 5.5.1
py 1.10.0
pyasn1 0.4.8
pyasn1-modules 0.2.8
pycairo 1.16.2
pycodestyle 2.7.0
pycrypto 2.6.1
pycups 1.9.73
pyflakes 2.3.1
pyftdi 0.53.1
pygame 1.9.4.post1
Pygments 2.3.1
PyGObject 3.30.4
pyinotify 0.9.6
PyJWT 1.7.0
pylint 2.2.2
pymongo 3.4.0
pyOpenSSL 19.0.0
pyparsing 2.4.7
pyserial 3.4
pysmbc 1.0.15.6
pytest 6.2.4
python-apt 1.8.4.3
python-dateutil 2.8.1
python-espeak 0.5
python-Levenshtein 0.12.2
pytz 2021.1
pyusb 1.1.1
PyWavelets 1.1.1
pyxdg 0.25
PyYAML 5.4.1
pyzmq 17.1.2
qtconsole 4.3.1
rainbowhat 0.1.0
reportlab 3.5.13
requests 2.21.0
requests-oauthlib 1.0.0
responses 0.9.0
roman 2.0.0
rpi-ws281x 4.2.6
RPi.GPIO 0.7.0
rsa 4.7.2
RTIMULib 7.2.1
scikit-image 0.18.1
scipy 1.6.3
screen 1.0.1
scrollphat 0.0.7
scrollphathd 1.2.1
SecretStorage 2.3.1
semver 2.0.1
Send2Trash 1.5.0
sense-hat 2.2.0
setuptools 40.8.0
simplegeneric 0.8.1
simplejson 3.16.0
six 1.16.0
skywriter 0.0.7
sn3218 1.2.7
soupsieve 1.8
sox 1.4.1
spidev 3.4
ssh-import-id 5.7
sysv-ipc 1.1.0
thonny 3.3.6
tifffile 2021.4.8
toml 0.10.2
torch 1.0.0a0+8322165
torchvision 0.2.0
tornado 5.1.1
touchphat 0.0.1
traitlets 4.3.2
twython 3.7.0
typed-ast 1.3.1
typing 3.7.4.3
typing-extensions 3.10.0.0
uflash 1.2.4
unicornhathd 0.0.4
urllib3 1.24.1
wcwidth 0.2.5
webencodings 0.5.1
Werkzeug 0.14.1
wheel 0.32.3
wit 6.0.0
wolframalpha 5.0.0
wrapt 1.10.11
xmltodict 0.12.0
zipp 3.4.1
I might have accidentally installed the libraries some other way when I updated, but I don't think so...
I didn't install anything using apt.
I am using Thonny Python. Thanks!
cryptography lib was old. Thanks to everyone who helped!

How is it that torch is not installed by torchvision?

Somehow when I do the install it installs torchvision but not torch. Command I am running as dictated from the main website:
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
then I do conda list but look:
$ conda list
# packages in environment at /home/ubuntu/anaconda3/envs/pytorch_p36:
#
# Name Version Build Channel
alabaster 0.7.10 py36h306e16b_0
anaconda-client 1.6.14 py36_0
anaconda-project 0.8.2 py36h44fb852_0
argparse 1.4.0 <pip>
asn1crypto 0.24.0 py36_0
astroid 1.6.3 py36_0
astropy 3.0.2 py36h3010b51_1
attrs 18.1.0 py36_0
autovizwidget 0.12.7 <pip>
babel 2.5.3 py36_0
backcall 0.1.0 py36_0
backports 1.0 py36hfa02d7e_1
backports.shutil_get_terminal_size 1.0.0 py36hfea85ff_2
bcrypt 3.1.6 <pip>
beautifulsoup4 4.6.0 py36h49b8c8c_1
bitarray 0.8.1 py36h14c3975_1
bkcharts 0.2 py36h735825a_0
blas 1.0 mkl
blaze 0.11.3 py36h4e06776_0
bleach 2.1.3 py36_0
blosc 1.14.3 hdbcaa40_0
bokeh 1.0.4 py36_0
boto 2.48.0 py36h6e4cd66_1
boto3 1.9.146 <pip>
boto3 1.9.134 py_0
botocore 1.12.146 <pip>
botocore 1.12.134 py_0
bottleneck 1.2.1 py36haac1ea0_0
bzip2 1.0.6 h14c3975_5
ca-certificates 2019.1.23 0
cached-property 1.5.1 <pip>
cairo 1.14.12 h8948797_3
certifi 2019.3.9 py36_0
cffi 1.11.5 py36h9745a5d_0
chardet 3.0.4 py36h0f667ec_1
click 6.7 py36h5253387_0
cloudpickle 0.5.3 py36_0
clyent 1.2.2 py36h7e57e65_1
colorama 0.3.9 py36h489cec4_0
contextlib2 0.5.5 py36h6c84a62_0
cryptography 2.3.1 py36hc365091_0
cudatoolkit 10.0.130 0
curl 7.60.0 h84994c4_0
cycler 0.10.0 py36h93f1223_0
cymem 2.0.2 py36hfd86e86_0
cython 0.28.2 py36h14c3975_0
cytoolz 0.9.0.1 py36h14c3975_0
dask 0.17.5 py36_0
dask-core 0.17.5 py36_0
dataclasses 0.6 py_0 fastai
datashape 0.5.4 py36h3ad6b5c_0
dbus 1.13.2 h714fa37_1
decorator 4.3.0 py36_0
defusedxml 0.6.0 py_0
dill 0.2.9 py36_0
distributed 1.21.8 py36_0
docker 3.7.2 <pip>
docker-compose 1.24.0 <pip>
docker-pycreds 0.4.0 <pip>
dockerpty 0.4.1 <pip>
docopt 0.6.2 <pip>
docutils 0.14 py36hb0f60f5_0
entrypoints 0.2.3 py36h1aec115_2
environment-kernels 1.1.1 <pip>
et_xmlfile 1.0.1 py36hd6bccc3_0
expat 2.2.5 he0dffb1_0
fastai 1.0.52 1 fastai
fastcache 1.0.2 py36h14c3975_2
fastprogress 0.1.21 py_0 fastai
filelock 3.0.4 py36_0
flask 1.0.2 py36_1
flask-cors 3.0.4 py36_0
fontconfig 2.13.0 h9420a91_0
freetype 2.9.1 h8a8886c_1
fribidi 1.0.5 h7b6447c_0
get_terminal_size 1.0.0 haa9412d_0
gevent 1.3.0 py36h14c3975_0
glib 2.56.1 h000015b_0
glob2 0.6 py36he249c77_0
gmp 6.1.2 h6c8ec71_1
gmpy2 2.0.8 py36hc8893dd_2
graphite2 1.3.11 h16798f4_2
graphviz 2.40.1 h21bd128_2
greenlet 0.4.13 py36h14c3975_0
gst-plugins-base 1.14.0 hbbd80ab_1
gstreamer 1.14.0 hb453b48_1
h5py 2.8.0 py36h989c5e5_3
harfbuzz 1.8.4 hec2c2bc_0
hdf5 1.10.2 hba1933b_1
hdijupyterutils 0.12.7 <pip>
heapdict 1.0.0 py36_2
html5lib 1.0.1 py36h2f9c1c0_0
icu 58.2 h9c2bf20_1
idna 2.6 py36h82fb2a8_1
imageio 2.3.0 py36_0
imagesize 1.0.0 py36_0
intel-openmp 2018.0.0 8
ipykernel 4.8.2 py36_0
ipyparallel 6.2.2 <pip>
ipython 6.4.0 py36_0
ipython_genutils 0.2.0 py36hb52b0d5_0
ipywidgets 7.2.1 py36_0
ipywidgets 7.4.0 <pip>
isort 4.3.4 py36_0
itsdangerous 0.24 py36h93cc618_1
jbig 2.1 hdba287a_0
jdcal 1.4 py36_0
jedi 0.12.0 py36_1
jinja2 2.10 py36ha16c418_0
jmespath 0.9.4 py_0
jpeg 9b h024ee3a_2
jsonschema 2.6.0 py36h006f8b5_0
jupyter 1.0.0 py36_4
jupyter_client 5.2.3 py36_0
jupyter_console 5.2.0 py36he59e554_1
jupyter_core 4.4.0 py36h7c827e3_0
jupyterlab 0.32.1 py36_0
jupyterlab_launcher 0.10.5 py36_0
kiwisolver 1.0.1 py36h764f252_0
krb5 1.14.2 hcdc1b81_6
lazy-object-proxy 1.3.1 py36h10fcdad_0
libcurl 7.60.0 h1ad7b7a_0
libedit 3.1.20170329 h6b74fdf_2
libffi 3.2.1 hd88cf55_4
libgcc-ng 8.2.0 hdf63c60_1
libgfortran 3.0.0 1 conda-forge
libgfortran-ng 7.2.0 hdf63c60_3
libpng 1.6.37 hbc83047_0
libprotobuf 3.5.2 hd28b015_1 conda-forge
libsodium 1.0.16 h1bed415_0
libssh2 1.8.0 h9cfc8f7_4
libstdcxx-ng 8.2.0 hdf63c60_1
libtiff 4.0.9 he85c1e1_1
libtool 2.4.6 h544aabb_3
libuuid 1.0.3 h1bed415_2
libxcb 1.13 h1bed415_1
libxml2 2.9.8 h26e45fe_1
libxslt 1.1.32 h1312cb7_0
llvmlite 0.23.1 py36hdbcaa40_0
locket 0.2.0 py36h787c0ad_1
lxml 4.2.1 py36h23eabaa_0
lzo 2.10 h49e0be7_2
markupsafe 1.0 py36hd9260cd_1
matplotlib 2.2.2 <pip>
matplotlib 3.0.3 py36h5429711_0
mccabe 0.6.1 py36h5ad9710_1
mistune 0.8.3 py36h14c3975_1
mkl 2018.0.3 1
mkl-service 1.1.2 py36h17a0993_4
mkl_fft 1.0.6 py36h7dd41cf_0
mkl_random 1.0.1 py36h629b387_0
mock 3.0.5 <pip>
more-itertools 4.1.0 py36_0
mpc 1.0.3 hec55b23_5
mpfr 3.1.5 h11a74b3_2
mpi 1.0 openmpi conda-forge
mpmath 1.0.0 py36hfeacd6b_2
msgpack 0.6.0 <pip>
msgpack-numpy 0.4.3.2 py36_0
msgpack-python 0.5.6 py36h6bb024c_0
multipledispatch 0.5.0 py36_0
murmurhash 1.0.2 py36he6710b0_0
nb_conda 2.2.1 py36_2 conda-forge
nb_conda_kernels 2.2.1 py36_0 conda-forge
nbconvert 5.4.1 py36_3
nbformat 4.4.0 py36h31c9010_0
ncurses 6.1 hf484d3e_0
networkx 2.1 py36_0
ninja 1.8.2 py36h6bb024c_1
nltk 3.3.0 py36_0
nose 1.3.7 py36hcdf7029_2
notebook 5.5.0 py36_0
numba 0.38.0 py36h637b7d7_0
numexpr 2.6.5 py36h7bf3b9c_0
numpy 1.15.4 py36h1d66e8a_0
numpy 1.15.4 <pip>
numpy-base 1.15.4 py36h81de0dd_0
numpydoc 0.8.0 py36_0
nvidia-ml-py3 7.352.0 py_0 fastai
odo 0.5.1 py36h90ed295_0
olefile 0.45.1 py36_0
onnx 1.4.1 <pip>
openmpi 3.1.0 h26a2512_3 conda-forge
openpyxl 2.5.3 py36_0
openssl 1.0.2r h7b6447c_0
packaging 17.1 py36_0
pandas 0.24.2 <pip>
pandas 0.23.0 py36h637b7d7_0
pandoc 1.19.2.1 hea2e7c5_1
pandocfilters 1.4.2 py36ha6701b7_1
pango 1.42.3 h8589676_0
paramiko 2.4.2 <pip>
parso 0.2.0 py36_0
partd 0.3.8 py36h36fd896_0
patchelf 0.9 hf79760b_2
path.py 11.0.1 py36_0
pathlib2 2.3.2 py36_0
patsy 0.5.0 py36_0
pcre 8.42 h439df22_0
pep8 1.7.1 py36_0
pexpect 4.5.0 py36_0
pickleshare 0.7.4 py36h63277f8_0
pillow 5.2.0 py36heded4f4_0
pip 10.0.1 py36_0
pixman 0.34.0 hceecf20_3
pkginfo 1.4.2 py36_1
plac 0.9.6 py36_0
plotly 2.7.0 <pip>
pluggy 0.6.0 py36hb689045_0
ply 3.11 py36_0
preshed 2.0.1 py36he6710b0_0
prompt_toolkit 1.0.15 py36h17d85b1_0
protobuf 3.5.2 py36hd28b015_0 conda-forge
protobuf3-to-dict 0.1.5 <pip>
psutil 5.4.5 py36h14c3975_0
psycopg2 2.7.5 <pip>
ptyprocess 0.5.2 py36h69acd42_0
py 1.5.3 py36_0
py4j 0.10.7 <pip>
pyasn1 0.4.5 <pip>
pycodestyle 2.4.0 py36_0
pycosat 0.6.3 py36h0a5515d_0
pycparser 2.18 py36hf9f622e_1
pycrypto 2.6.1 py36h14c3975_8
pycurl 7.43.0.1 py36hb7f436b_0
pyflakes 1.6.0 py36h7bd6a15_0
pygal 2.4.0 <pip>
pygments 2.2.0 py36h0d3125c_0
pykerberos 1.2.1 py36h14c3975_0
pylint 1.8.4 py36_0
PyNaCl 1.3.0 <pip>
pyodbc 4.0.23 py36hf484d3e_0
pyopenssl 18.0.0 py36_0
pyparsing 2.2.0 py36hee85983_1
pyqt 5.9.2 py36h751905a_0
pysocks 1.6.8 py36_0
pyspark 2.3.2 <pip>
pytables 3.4.3 py36h02b9ad4_2
pytest 3.5.1 py36_0
pytest-arraydiff 0.2 py36_0
pytest-astropy 0.3.0 py36_0
pytest-doctestplus 0.1.3 py36_0
pytest-openfiles 0.3.0 py36_0
pytest-remotedata 0.2.1 py36_0
python 3.6.5 hc3d631a_2
python-dateutil 2.7.3 py36_0
pytorch 1.1.0 py3.6_cuda10.0.130_cudnn7.5.1_0 pytorch
pytz 2018.4 py36_0
pywavelets 0.5.2 py36he602eb0_0
pyyaml 3.12 py36hafb9ca4_1
pyzmq 17.0.0 py36h14c3975_0
qt 5.9.6 h52aff34_0
qtawesome 0.4.4 py36h609ed8c_0
qtconsole 4.3.1 py36h8f73b5b_0
qtpy 1.4.1 py36_0
readline 7.0 ha6073c6_4
regex 2018.01.10 py36h14c3975_1000 fastai
requests 2.20.0 py36_1000 conda-forge
requests-kerberos 0.12.0 <pip>
rope 0.10.7 py36h147e2ec_0
ruamel_yaml 0.15.35 py36h14c3975_1
s3fs 0.1.5 py36_0
s3transfer 0.2.0 <pip>
s3transfer 0.2.0 py36_0
sagemaker 1.20.1 <pip>
sagemaker-pyspark 1.2.4 <pip>
scikit-image 0.13.1 py36h14c3975_1
scikit-learn 0.19.1 py36h7aa7ec6_0
scikit-learn 0.20.3 <pip>
scipy 1.1.0 py36hfc37229_0
seaborn 0.8.1 py36hfad7ec4_0
send2trash 1.5.0 py36_0
setuptools 39.1.0 py36_0
simplegeneric 0.8.1 py36_2
singledispatch 3.4.0.3 py36h7a266c3_0
sip 4.19.8 py36hf484d3e_0
six 1.11.0 py36h372c433_1
snappy 1.1.7 hbae5bb6_3
snowballstemmer 1.2.1 py36h6febd40_0
sortedcollections 0.6.1 py36_0
sortedcontainers 1.5.10 py36_0
spacy 2.0.18 py36hf484d3e_1000 fastai
sparkmagic 0.12.5 <pip>
sphinx 1.7.4 py36_0
sphinxcontrib 1.0 py36h6d0f590_1
sphinxcontrib-websupport 1.0.1 py36hb5cb234_1
spyder 3.2.8 py36_0
SQLAlchemy 1.2.11 <pip>
sqlalchemy 1.2.7 py36h6b74fdf_0
sqlite 3.23.1 he433501_0
statsmodels 0.9.0 py36h3010b51_0
sympy 1.1.1 py36hc6d1c1c_0
tblib 1.3.2 py36h34cf8b6_0
terminado 0.8.1 py36_1
testpath 0.3.1 py36h8cadb63_0
texttable 0.9.1 <pip>
thinc 6.12.1 py36h637b7d7_1000 fastai
tk 8.6.8 hbc83047_0
toolz 0.9.0 py36_0
torchvision 0.2.2 py_3 pytorch
tornado 5.0.2 py36_0
tqdm 4.31.1 py36_1
traitlets 4.3.2 py36h674d592_0
typing 3.6.4 py36_0
typing-extensions 3.7.2 <pip>
ujson 1.35 py36h14c3975_0
unicodecsv 0.14.1 py36ha668878_0
unixodbc 2.3.6 h1bed415_0
urllib3 1.23 py36_0
wcwidth 0.1.7 py36hdf4376a_0
webencodings 0.5.1 py36h800622e_1
websocket-client 0.56.0 <pip>
werkzeug 0.14.1 py36_0
wheel 0.31.1 py36_0
widgetsnbextension 3.2.1 py36_0
widgetsnbextension 3.4.2 <pip>
wrapt 1.10.11 py36h28b7045_0
xlrd 1.1.0 py36h1db9f0c_1
xlsxwriter 1.0.4 py36_0
xlwt 1.3.0 py36h7b00a1f_0
xz 5.2.4 h14c3975_4
yaml 0.1.7 had09818_2
zeromq 4.2.5 h439df22_0
zict 0.1.3 py36h3a3bf81_0
zlib 1.2.11 ha838bed_2
I was told I do have pytorch installed but my script keeps giving me this error:
$ cat nohup.out
Traceback (most recent call last):
File "high_performing_data_point_models_cifar10.py", line 5, in <module>
import torch
ModuleNotFoundError: No module named 'torch'
does that mean that I need to install it as pytroch and not torch? Is this not weird?
Note I am running this on an AWS instance p3.2xlarge. This keeps happening when I log out and then go back in that my torch package gets missing...?!?! :/
original post: https://discuss.pytorch.org/t/torchvision-installed-but-not-torch/51758
The issue persists even if I open just a python interactive and try to import it:
(pytorch_p36) ubuntu#ip-123-12-21-123:~$ python
Python 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56)
[GCC 7.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'torch'
>>>
It also happens running the script directly:
(pytorch_p36) ubuntu#ip-123-12-21-123:~/project/folder$ python high_performing_data_point_models_cifar10.py
Traceback (most recent call last):
File "high_performing_data_point_models_cifar10.py", line 5, in <module>
import torch
ModuleNotFoundError: No module named 'torch'
I can't import torchvision either!
$ python
Python 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56)
[GCC 7.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torchvision
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'torchvision'
>>>
Your conda list command shows that it was run from the environment called automl:
# packages in environment at /home/ubuntu/anaconda3/envs/automl:
However, when you show the commands that you are trying to run, you are doing so from the (pytorch_p36) environment.
You should run your conda install command while inside this pytorch_p36 environment.
Go to the official website and try installing it as said over there. As I just followed the official documentation and it is working fine.
Here is the step though.
conda install pytorch-cpu torchvision-cpu -c pytorch
You can follow the official documentation.
link
It is really easy to miss smth while working with several machines and several conda/python environments. I think it is a good idea to start from the very beginning. Here is installation process that works fine for me.
0. Connect to your aws-instance using SSH or PuTTY.
1. Create conda env named pytorch_p36 with python 3.6 on your aws machine:
user#aws-instance:~$ conda create -n pytorch_p36 python=3.6
2. Activate it:
user#aws-instance:~$ conda activate pytorch_p36
Or with (for older conda versions):
user#aws-instance:~$ source activate pytorch_p36
Now you should see (pytorch_p36) before your shell prompt:
(pytorch_p36) user#aws-instance:~$
3. Go to PyTorch website and choose appropriate installation command via conda. Run it in your shell:
(pytorch_p36) user#aws-instance:~$ conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
4. Verify the installation:
(pytorch_p36) user#aws-instance:~$ conda list
# packages in environment at /home/user/anaconda3/envs/pytorch_p36:
#
# Name Version Build Channel
...
cudatoolkit 10.0.130 0
...
python 3.6.9 h265db76_0
pytorch 1.1.0 py3.6_cuda10.0.130_cudnn7.5.1_0 pytorch
...
torchvision 0.3.0 py36_cu10.0.130_1 pytorch
...
5. Verify the running with nohup:
(pytorch_p36) user#aws-instance:~$ nohup python -c "import torch; import torchvision; print('PyTorch is fine!')" && cat nohup.out
nohup: ignoring input and appending output to 'nohup.out'
PyTorch is fine!
AWS Machine Learning AMI already has pytorch v1.1.0 and torchvision v0.2.2 installed in the predefined pytorch_p36 virtual environment. So you are not required to create new venv and install pytorch each time you log in. All you need is to run :
$ source activate pytorch_p36
(without dollar sign, obviously). Then, if you run pip show torch you will see that it is already there.

Categories