Pandas - normalize Json list - python

I am trying to normalize a column from a Pandas dataframe that is a list of dictionaries (can be missing).
Example to reproduce
import pandas as pd
bids = pd.Series([[{'price': 606, 'quantity': 28},{'price': 588, 'quantity': 29},
{'price': 513, 'quantity': 33}],[],[{'price': 7143, 'quantity': 15},
{'price': 68, 'quantity': 91},{'price': 6849, 'quantity': 12}]])
data = pd.DataFrame([1,2,3]).rename(columns={0:'id'})
data['bids'] = bids
Desired output
id price quantity
1 606 28
1 588 29
1 513 33
3 7143 15
3 68 91
3 6849 12
Attempt
Trying to resolve using pandas json_normalize, following docs here. I'm confused by why none of the below work, and what type of record_path will fix my problem. All the below error.
pd.json_normalize(data['bids'])
pd.json_normalize(data['bids'],['price','quantity'])
pd.json_normalize(data['bids'],[['price','quantity']])

Use DataFrame.explode on column bids then create a new dataframe from the dictionaries in exploded bids column and use DataFrame.join to join it with df:
df = data.explode('bids').dropna(subset=['bids']).reset_index(drop=True)
df = df.join(pd.DataFrame(df.pop('bids').tolist()))
Result:
print(df)
id price quantity
0 1 606 28
1 1 588 29
2 1 513 33
3 3 7143 15
4 3 68 91
5 3 6849 12

Adding another approach with np.repeat and np.concatenate with json_normalize
out = pd.io.json.json_normalize(np.concatenate(data['bids']))
out.insert(0,'id',np.repeat(data['id'],data['bids'].str.len()).to_numpy())
Or you can also use np.hstack as #Shubham mentions instead of np.concatenate:
out = pd.io.json.json_normalize(np.hstack(data['bids']))
print(out)
id price quantity
0 1 606 28
1 1 588 29
2 1 513 33
3 3 7143 15
4 3 68 91
5 3 6849 12

Related

Filtering dataframes based on one column with a different type of other column

I have the following problem
import pandas as pd
data = {
"ID": [420, 380, 390, 540, 520, 50, 22],
"duration": [50, 40, 45,33,19,1,3],
"next":["390;50","880;222" ,"520;50" ,"380;111" ,"810;111" ,"22;888" ,"11" ]
}
#load data into a DataFrame object:
df = pd.DataFrame(data)
print(df)
As you can see I have
ID duration next
0 420 50 390;50
1 380 40 880;222
2 390 45 520;50
3 540 33 380;111
4 520 19 810;111
5 50 1 22;888
6 22 3 11
Things to notice:
ID type is int
next type is a string with numbers separated by ; if more than two numbers
I would like to filter the rows with no next in the ID
For example in this case
420 has a follow up in both 390 and 50
380 has as next 880 and 222 both of which are not in ID so this one
540 has as next 380 and 111 and while 111 is not in ID, 380 is so not this one
same with 50
In the end I want to get
1 380 40 880;222
4 520 19 810;111
6 22 3 11
With only one value I used print(df[~df.next.astype(int).isin(df.ID)]) but in this case isin can not be simply applied.
How can I do this?
Let us try with split then explode with isin check
s = df.next.str.split(';').explode().astype(int)
out = df[~s.isin(df['ID']).groupby(level=0).any()]
Out[420]:
ID duration next
1 380 40 880;222
4 520 19 810;111
6 22 3 11
Use a regex with word boundaries for efficiency:
pattern = '|'.join(df['ID'].astype(str))
out = df[~df['next'].str.contains(fr'\b(?:{pattern})\b')]
Output:
ID duration next
1 380 40 880;222
4 520 19 810;111
6 22 3 11

Replace blank value in dataframe based on another column condition

I have many blanks in a merged data set and I want to fill them with a condition.
My current code looks like this
import pandas as pd
import csv
import numpy as np
pd.set_option('display.max_columns', 500)
# Read all files into pandas dataframes
Jan = pd.read_csv(r'C:\~\Documents\Jan.csv')
Feb = pd.read_csv(r'C:\~\Documents\Feb.csv')
Mar = pd.read_csv(r'C:\~\Documents\Mar.csv')
Jan=pd.DataFrame({'Department':['52','5','56','70','7'],'Item':['2515','254','818','','']})
Feb=pd.DataFrame({'Department':['52','56','765','7','40'],'Item':['2515','818','524','','']})
Mar=pd.DataFrame({'Department':['7','70','5','8','52'],'Item':['45','','818','','']})
all_df_list = [Jan, Feb, Mar]
appended_df = pd.concat(all_df_list)
df = appended_df
df.to_csv(r"C:\~\Documents\SallesDS.csv", index=False)
Data set:
df
Department Item
52 2515
5 254
56 818
70
7 50
52 2515
56 818
765 524
7
40
7 45
70
5 818
8
52
What I want is to fill the empty cells in Item with a correspondent values of the Department column.
So If Department is 52 and Item is empty it should be filled with 2515
Department 7 and Item is empty fill it with 45
and the result should look like this
df
Department Item
52 2515
5 254
56 818
70
7 50
52 2515
56 818
765 524
7 45
40
7 45
70
5 818
8
52 2515
I tried the following method but non of them worked.
1
df.loc[(df['Item'].isna()) & (df['Department'].str.contains(52)), 'Item'] = 2515
df.loc[(df['Item'].isna()) & (df['Department'].str.contains(7)), 'Item'] = 45
2
df["Item"] = df["Item"].fillna(df["Department"])
df = df.replace({"Item":{"52":"2515", "7":"45"}})
both ethir return error or do not work
Answer:
Hi I have used the below code and it worked
b = [52]
df.Item=np.where(df.Department.isin(b),df.Item.fillna(2515),df.Item)
a = [7]
df.Item=np.where(df.Department.isin(a),df.Item.fillna(45),df.Item)
Hope it helps someone who face the same issue
The following solution first creates a map of each department and it's maximum corresponding item (assuming there is one), and then matches that item to a department with a blank item. Note that in your data frame, the empty items are an empty string ("") and not NaN.
Create a map:
values = df.groupby('Department').max()
values['Item'] = values['Item'].apply(lambda x: np.nan if x == "" else x)
values = values.dropna().reset_index()
Department Item
0 5 818
1 52 2515
2 56 818
3 7 45
4 765 524
Then use df.apply():
df['Item'] = df.apply(lambda x: values[values['Department'] == x['Department']]['Item'].values if x['Item'] == "" else x['Item'], axis=1)
In this case, the new values will have brackets around them. They can be removed with str.replace():
df['Item'] = df['Item'].astype(str).str.replace(r'\[|\'|\'|\]', "", regex=True)
The result:
Department Item
0 52 2515
1 5 254
2 56 818
3 70
4 7 45
0 52 2515
1 56 818
2 765 524
3 7 45
4 40
0 7 45
1 70
2 5 818
3 8
4 52 2515
Hi I have used the below code and it worked
b = [52]
df.Item=np.where(df.Department.isin(b),df.Item.fillna(2515),df.Item)
a = [7]
df.Item=np.where(df.Department.isin(a),df.Item.fillna(45),df.Item)
Hope it helps someone who face the same issue

Changing the order of my columns to create a data frame suitable for barplot

I have this data frame (two first row, the real one is huge)
df
p__Actinobacteriota 25 555
p__Bacteroidota 31 752
I would like to transform this data frame to the next one:
dft
p__Actinobacteriota 25 A
p__Actinobacteriota 555 B
p__Bacteroidota 31 A
p__Bacteroidota 725 B
What is the most simple way to do that?
I will assume that your dataframe is:
pd.DataFrame([['p__Actinobacteriota', 25, 555], ['p__Bacteroidota', 31, 752]])
which prints as:
0 1 2
0 p__Actinobacteriota 25 555
1 p__Bacteroidota 31 752
It is easy to stack it:
df.rename(columns={1:'A', 2:'B'}).set_index([0]).stack().rename('val').reset_index()
which give:
0 level_1 val
0 p__Actinobacteriota A 25
1 p__Actinobacteriota B 555
2 p__Bacteroidota A 31
3 p__Bacteroidota B 752

Group by, aggregate, include separate column

Here's my data:
foo = pd.DataFrame({
'accnt' : [101, 102, 103, 104, 105, 101, 102, 103, 104, 105],
'gender' : [0, 1 , 0, 1, 0, 0, 1 , 0, 1, 0],
'date' : pd.to_datetime(["2019-01-01 00:10:21", "2019-01-05 00:09:18", "2019-01-05 00:09:30", "2019-02-05 00:05:12", "2019-04-01 00:08:46",
"2019-04-01 00:11:31", "2019-02-06 00:01:39", "2019-01-26 00:15:14", "2019-01-21 00:12:36", "2019-03-01 00:09:31"]),
'value' : [10, 20, 30, 40, 50, 5, 2, 6, 48, 96]
})
Which is:
accnt date gender value
0 101 2019-01-01 00:10:21 0 10
1 102 2019-01-05 00:09:18 1 20
2 103 2019-01-05 00:09:30 0 30
3 104 2019-02-05 00:05:12 1 40
4 105 2019-04-01 00:08:46 0 50
5 101 2019-04-01 00:11:31 0 5
6 102 2019-02-06 00:01:39 1 2
7 103 2019-01-26 00:15:14 0 6
8 104 2019-01-21 00:12:36 1 48
9 105 2019-03-01 00:09:31 0 96
I want to do the following:
- Group by accnt, include gender, take latest date as latest_date, count number of transactions as txn_count; resulting in:
accnt gender latest_date txn_count
101 0 2019-04-01 00:11:31 2
102 1 2019-02-06 00:01:39 2
103 0 2019-01-26 00:15:14 2
104 1 2019-02-05 00:05:12 2
105 0 2019-04-01 00:08:46 2
In R, I can do this using group_by and summarise from dplyr:
foo %>% group_by(accnt) %>%
summarise(gender = last(gender), most_recent_order_date = max(date), order_count = n()) %>% data.frame()
I'm taking last(gender) to include it, since gender is the same throughout for any accnt, I can take min, max or mean instead also.
How can I do the same in python using pandas?
I've tried:
foo.groupby('accnt').agg({'gender' : ['mean'],
'date': ['max'],
'value': ['count']}).rename(columns = {'gender' : "gender",
'date' : "most_recent_order_date",
'value' : "order_count"})
But this leads to "extra" column names. I'd also like to know what is the best way to include a non-aggregation column like gender in the result.
In R summarise will equal to agg , mutate equal to transform
The reason why you have multiple index in columns : Since you pass the function call with list , which means you can do something like {'date':['mean','sum']}
foo.groupby('accnt').agg({'gender' : 'first',
'date': 'max',
'value': 'count'}).rename(columns = {'date' : "most_recent_order_date",
'value' : "order_count"}).reset_index()
Out[727]:
accnt most_recent_order_date order_count gender
0 101 2019-04-01 00:11:31 2 0
1 102 2019-02-06 00:01:39 2 1
2 103 2019-01-26 00:15:14 2 0
3 104 2019-02-05 00:05:12 2 1
4 105 2019-04-01 00:08:46 2 0
Some example : Here I called two function same time for one columns , which means there should be have two level of index to make sure the out columns names do not have duplicated
foo.groupby('accnt').agg({'gender' : ['first','mean']})
Out[728]:
gender
first mean
accnt
101 0 0
102 1 1
103 0 0
104 1 1
105 0 0
Sorry for the late response. Here's a solution I found.
# Pandas Operations
foo = foo.groupby('accnt').agg({'gender' : ['mean'],
'date': ['max'],
'value': ['count']})
# Drop additionally created column names from Pandas Operations
foo.columns = foo.columns.droplevel(1)
# Rename original column names
foo.rename( columns = { 'date':'latest_date',
'value':'txn_count'},
inplace=True)
If you'd like to include an additional non aggregate column, you can simply append a new column to the grouped foo dataframe.

filter pandas dataframe based in another column

this might be a basic question, but I have not being able to find a solution. I have two dataframes, with identical rows and columns, called Volumes and Prices, which are like this
Volumes
Index ProductA ProductB ProductC ProductD Limit
0 100 300 400 78 100
1 110 370 20 30 100
2 90 320 200 121 100
3 150 320 410 99 100
....
Prices
Index ProductA ProductB ProductC ProductD Limit
0 50 110 30 90 0
1 51 110 29 99 0
2 49 120 25 88 0
3 51 110 22 96 0
....
I want to assign 0 to the "cell" of the Prices dataframe which correspond to Volumes less than what it is on the Limit column
so, the ideal output would be
Prices
Index ProductA ProductB ProductC ProductD Limit
0 50 110 30 0 0
1 51 110 0 0 0
2 0 120 25 88 0
3 51 110 22 0 0
....
I tried
import pandas as pd
import numpy as np
d_price = {'ProductA' : [50, 51, 49, 51], 'ProductB' : [110,110,120,110],
'ProductC' : [30,29,25,22],'ProductD' : [90,99,88,96], 'Limit': [0]*4}
d_volume = {'ProductA' : [100,110,90,150], 'ProductB' : [300,370,320,320],
'ProductC' : [400,20,200,410],'ProductD' : [78,30,121,99], 'Limit': [100]*4}
Prices = pd.DataFrame(d_price)
Volumes = pd.DataFrame(d_volume)
Prices[Volumes > Volumes.Limit]=0
but I do not obtain any changes to the Prices dataframe... obviously I'm having a hard time understanding boolean slicing, any help would be great
The problem is in
Prices[Volumes > Volumes.Limit]=0
Since Limit varies on each row, you should use, for example, apply like following:
Prices[Volumes.apply(lambda x : x>x.Limit, axis=1)]=0
you can use mask to solve this problem, I am not an expert either but this solutions does what you want to do.
test=(Volumes.ix[:,'ProductA':'ProductD'] >= Volumes.Limit.values)
final = Prices[test].fillna(0)

Categories