Find in what polygon is each point - python

I am new to Python, so I apologize for the rudimentary programming skills, I am aware I am using a bit too much "loop for" (coming from Matlab it is dragging me down).
I have millions of points (timestep, long, lat, pointID) and hundreds of irregular non-overlapping polygons (vertex_long,vertex_lat,polygonID).points and polygons format sample
I want to know what polygon contains each point.
I was able to do it this way:
from matplotlib import path
def inpolygon(lon_point, lat_point, lon_poly, lat_poly):
shape = lon_point.shape
lon_point = lon_point.reshape(-1)
lat_point = lat_point.reshape(-1)
lon_poly = lon_poly.values.reshape(-1)
lat_poly = lat_poly.values.reshape(-1)
points = [(lon_point[i], lat_point[i]) for i in range(lon_point.shape[0])]
polys = path.Path([(lon_poly[i], lat_poly[i]) for i in range(lon_poly.shape[0])])
return polys.contains_points(points).reshape(shape)
And then
import numpy as np
import pandas as pd
Areas_Lon = Areas.iloc[:,0]
Areas_Lat = Areas.iloc[:,1]
Areas_ID = Areas.iloc[:,2]
Unique_Areas = np.unique(Areas_ID)
Areas_true=np.zeros((Areas_ID.shape[0],Unique_Areas.shape[0]))
for i in range(Areas_ID.shape[0]):
for ii in range(Unique_Areas.shape[0]):
Areas_true[i,ii]=(Areas_ID[i]==Unique_Areas[ii])
Areas_Lon_Vertex=np.zeros(Unique_Areas.shape[0],dtype=object)
Areas_Lat_Vertex=np.zeros(Unique_Areas.shape[0],dtype=object)
for i in range(Unique_Areas.shape[0]):
Areas_Lon_Vertex[i]=(Areas_Lon[(Areas_true[:,i]==1)])
Areas_Lat_Vertex[i]=(Areas_Lat[(Areas_true[:,i]==1)])
import f_inpolygon as inpolygon
Areas_in=np.zeros((Unique_Areas.shape[0],Points.shape[0]))
for i in range (Unique_Areas.shape[0]):
for ii in range (PT.shape[0]):
Areas_in[i,ii]=(inpolygon.inpolygon(Points[ii,2], Points[ii,3], Areas_Lon_Vertex[i], Areas_Lat_Vertex[i]))
This way the final outcome Areas_in Areas_in format contains as many rows as polygons and as many columns as points, where every column is true=1 at the row where the point is relative to polygon index (1st given polygon ID --> 1st row, and so).
The code works but very slowly for what it is supossed to do. When locating points in a regular grid or within a point radius I have succesfully tried implement a KDtree, what increases dramatically the speed, but I can`t do the same or whatever faster to irregular non-overlapping polygons.
I have seen some related questions but rather than asking for what polygons a point is were about whether a point is inside a polygon or not.
Any idea please?

Have you tried Geopandas Spatial join?
install the Package using pip
pip install geopandas
or conda
conda install -c conda-forge geopandas
then you should able to read the data as GeoDataframe
import geopandas
df = geopandas.read_file("file_name1.csv") # you can read shp files too.
right_df = geopandas.read_file("file_name2.csv") # you can read shp files too.
# Convert into geometry column
geometry = [Point(xy) for xy in zip(df['longitude'], df['latitude'])] # Coordinate reference system : WGS84
crs = {'init': 'epsg:4326'}
# Creating a Geographic data frame
left_df = geopandas.GeoDataFrame(df, crs=crs, geometry=geometry)
Then you can apply the sjoin
jdf = geopandas.sjoin(left_df, right_df, how='inner', op='intersects', lsuffix='left', rsuffix='right')
the option in op are:
intersects
contains
within
All should do the same in your case when you joining two geometry columns of type Polygon and Point

Related

How do I correctly reproject a geodataframe with multiple geometry colums?

In the geopandas documentation it says that
A GeoDataFrame may also contain other columns with geometrical (shapely) objects, but only one column can be the active geometry at a time. To change which column is the active geometry column, use the set_geometry method.
I'm wondering how to use such a GeoDataFrame if the goal is to flexibly reproject the geometrical data in these various columns to one or more other coordinate reference systems. Here's what I tried.
First try
import geopandas as gpd
from shapely.geometry import Point
crs_lonlat = 'epsg:4326' #geometries entered in this crs (lon, lat in degrees)
crs_new = 'epsg:3395' #geometries needed in (among others) this crs
gdf = gpd.GeoDataFrame(crs=crs_lonlat)
gdf['geom1'] = [Point(9,53), Point(9,54)]
gdf['geom2'] = [Point(8,63), Point(8,64)]
#Working: setting geometry and reprojecting for first time.
gdf = gdf.set_geometry('geom1')
gdf = gdf.to_crs(crs_new) #geom1 is reprojected to crs_new, geom2 still in crs_lonlat
gdf
Out:
geom1 geom2
0 POINT (1001875.417 6948849.385) POINT (8 63)
1 POINT (1001875.417 7135562.568) POINT (8 64)
gdf.crs
Out: 'epsg:3395'
So far, so good. Things go off the rails if I want to set geom2 as the geometry column, and reproject that one as well:
#Not working: setting geometry and reprojecting for second time.
gdf = gdf.set_geometry('geom2') #still in crs_lonlat...
gdf.crs #...but this still says crs_new...
Out: 'epsg:3395'
gdf = gdf.to_crs(crs_new) #...so this doesn't do anything! (geom2 unchanged)
gdf
Out:
geom1 geom2
0 POINT (1001875.417 6948849.385) POINT (8.00000 63.00000)
1 POINT (1001875.417 7135562.568) POINT (8.00000 64.00000)
Ok, so, apparently, the .crs attribute of the gdf is not reset to its original value when changing the column that serves as the geometry - it seems, the crs is not stored for the individual columns. If that is the case, the only way I see to use reprojection with this dataframe, is to backtrack: start --> select column as geometry --> reproject gdf to crs_new --> use/visualize/... --> reproject gdf back to crs_lonlat --> goto start. This is not usable if I want to visualise both columns in one figure.
Second try
My second attempt was, to store the crs with each column separately, by changing the corresponding lines in the script above to:
gdf = gpd.GeoDataFrame()
gdf['geom1'] = gpd.GeoSeries([Point(9,53), Point(9,54)], crs=crs_lonlat)
gdf['geom2'] = gpd.GeoSeries([Point(8,63), Point(8,64)], crs=crs_lonlat)
However, it soon became clear that, though initialised as a GeoSeries, these columns are normal pandas Series, and don't have a .crs attribute the same way GeoSeries do:
gdf['geom1'].crs
AttributeError: 'Series' object has no attribute 'crs'
s = gpd.GeoSeries([Point(9,53), Point(9,54)], crs=crs_lonlat)
s.crs
Out: 'epsg:4326'
Is there something I'm missing here?
Is the only solution, to decide on the 'final' crs beforehand - and do all the reprojecting before adding the columns? Like so...
gdf = gpd.GeoDataFrame(crs=crs_new)
gdf['geom1'] = gpd.GeoSeries([Point(9,53), Point(9,54)], crs=crs_lonlat).to_crs(crs_new)
gdf['geom2'] = gpd.GeoSeries([Point(8,63), Point(8,64)], crs=crs_lonlat).to_crs(crs_new)
#no more reprojecting done/necessary/possible! :/
...and then, when another crs is needed, rebuild the entire gdf from scratch? That can't be the way this was intended to be used.
Unfortunately, the desired behaviour is currently not possible. Due to limitations in the package, geopandas does not accommodate this use case at the moment, as can be seen in this issue in the github repo.
My workaround is to not use a GeoDataFrame at all, but rather combine a normal pandas DataFrame, for the non-shapely data, with several seperate geopandas GeoSeries, for the shapely geometry data. The GeoSeries each have their own crs and can be correctly reprojected whenever necessary.

Geopandas contains working for one point but not many

I need filter rows of a dataframe within a multipolygon. My multypolygon is stored in gdf_polygon and my points are stored in gdf. Here is a bit resume of how they look.
gdf_polygon
id geometry
0 MULTIPOLYGON (((39.81239 21.43429, 39.81445 21...
gdf
id geometry
0 POINT (50.05832 26.43992)
... ...
The problem is that when I tried to check if there are any points inside it return False, but I know there are some points inside the polygon.
Basically, if I run this I have False as output.
gdf_polygon.geometry.contains(gdf.geometry).any()
Otherwise, if I run this I have True as output, because that point is inside the polygon.
gdf_polygon.geometry.contains(gdf.geometry[141828])
I know I could iterate through all the rows of gdf and run the contains for each one, but since my dataset is quite big (around 30.000.000 rows) that would be very inefficient. So I was looking for an explanation or possible fixes.
My dataframes creations is:
crs = {'init': 'epsg:4326'}
df = pd.read_csv(FOLDER+file, compression='gzip', escapechar='\\')
geometry = [Point(xy) for xy in zip(df.longitude, df.latitude)]
gdf = gpd.GeoDataFrame(df,crs=crs, geometry=geometry)
inside = gdf.geometry.within(gdf_polygon.geometry)
When comparing two GeoSeries in contains geopandas aligns them, see https://gis.stackexchange.com/questions/345785/geopandas-intersect-function-gives-different-result-to-shapely/345822#345822 for explanation.
To make your code work as intended, you need to compare your GeoSeries of points with the multi polygon geometry itself. And do it vice versa, using within.
polygon = gdf_polygon.geometry.iloc[0]
gdf.geometry.within(polygon)

Overlaying Shapefile datapoints on Density Map

I am new to shapefiles and mapping in python so I was hoping to get some help with overlaying data points from a shapefile on a density map.
To be honest, I am a beginner with mapping and reading in shapefiles so what I have so far not much.
I have started off using pyshp but if there are better packages out there to do this then I would love any feedback.
The following code is to create the base map of the LA area:
def get_base_map(rides_clean):
return folium.Map(locations=[rides_clean.start_lat.mean(),
rides_clean.start_lon.mean()],
zoom_start = 20, tiles = 'cartodbpositron')
The following code is to create the density/heat map:
from folium import plugins
stationArr = rides_clean[['start_lat', 'start_lon']][:40000].as_matrix()
get_base_map(rides_clean).add_child(plugins.HeatMap(stationArr,
radius=40, max_val=300))
The following code is the same heat map but with route lines added:
(draw_route_lines(get_base_map(rides_clean),
routedf_vol)).add_child(plugins.HeatMap(stationArr, radius=40,
max_val=300))
I want to see data points from the shapefile shown as markers on top of the density plot.
It is possible to do this with pyshp. I've only ever used Matplotlib to plot shapefile points on a map, but this method will create two arrays which will be the x and y coordinates of each point you'd like to plot. The first snippet is used if you have multiple shapes in your shapefile, while the second can be used if you only have one shape.
import shapefile
import numpy as np
sf = shapefile.Reader('/path/to/shapefile')
point_list = []
for shape in sf:
temp = shape.points()
point_list.append(temp)
point_list = np.array(point_list)
x = point_list[:,0]
y = point_list[:,1]
And for a shapefile with only a single shape:
import shapefile
import numpy as np
sf = shapefile.Reader('/path/to/shapefile')
point_list = np.array(sf.shape(0).points)
x = point_list[:,0]
y = point_list[:,1]
You can tell how many shapes are in your shapefile using sf.shapes() and it will print a list detailing all the different shapes. From your question it appeared you were wanting to plot it as points on the marker rather than lines, sorry if this is not the case.

Plotting with folium

The task is to make an adress popularity map for Moscow. Basically, it should look like this:
https://nbviewer.jupyter.org/github/python-visualization/folium/blob/master/examples/GeoJSON_and_choropleth.ipynb
For my map I use public geojson: http://gis-lab.info/qa/moscow-atd.html
The only data I have - points coordinates and there's no information about the district they belong to.
Question 1:
Do I have to manually calculate for each disctrict if the point belongs to it, or there is more effective way to do this?
Question 2:
If there is no way to do this easier, then, how can I get all the coordinates for each disctrict from the geojson file (link above)?
import pandas as pd
import numpy as np
import geopandas as gpd
from shapely.geometry import Point
Reading in the Moscow area shape file with geopandas
districts = gpd.read_file('mo-shape/mo.shp')
Construct a mock user dataset
moscow = [55.7, 37.6]
data = (
np.random.normal(size=(100, 2)) *
np.array([[.25, .25]]) +
np.array([moscow])
)
my_df = pd.DataFrame(data, columns=['lat', 'lon'])
my_df['pop'] = np.random.randint(500, 100000, size=len(data))
Create Point objects from the user data
geom = [Point(x, y) for x,y in zip(my_df['lon'], my_df['lat'])]
# and a geopandas dataframe using the same crs from the shape file
my_gdf = gpd.GeoDataFrame(my_df, geometry=geom)
my_gdf.crs = districts.crs
Then the join using default value of 'inner'
gpd.sjoin(districts, my_gdf, op='contains')
Thanks to #BobHaffner, I tried to solve the problem using geopandas.
Here are my steps:
I download a shape-files for Moscow using this link click
From a list of tuples containing x and y (latitude and logitude) coordinates I create list of Points (docs)
Assuming that in the dataframe from the first link I have polygons I can write a simple loop for checking if the Point is inside this polygon. For details read this.

Python: Convert map in kilometres to degrees

I have a pandas Dataframe with a few million rows, each with an X and Y attribute with their location in kilometres according to the WGS 1984 World Mercator projection (created using ArcGIS).
What is the easiest way to project these points back to degrees, without leaving the Python/pandas environment?
There is already a python module that can do these kind of transformations for you called pyproj. I will agree it is actually not the simplest module to find via google. Some examples of its use can be seen here
Many years later, this is how I would do this. Keeping everything in GeoPandas to minimise the possibility of footguns.
Some imports:
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point
Create a dataframe (note the values must be in metres!)
df = pd.DataFrame({"X": [50e3, 900e3], "Y": [20e3, 900e3]})
Create geometries from the X/Y coordinates
df["geometry"] = df.apply(lambda row: Point(row.X, row.Y), axis=1)
Convert to a GeoDataFrame, setting the current CRS.
In this case EPSG:3857, the projection from the question.
gdf = gpd.GeoDataFrame(df, crs=3857)
Project it to the standard WGS84 CRS in degrees (EPSG:4326).
gdf = gdf.to_crs(4326)
And then (optionally), extract the X/Y coordinates in degrees back into standard columns:
gdf["X_deg"] = gdf.geometry.apply(lambda p: p.x)
gdf["Y_deg"] = gdf.geometry.apply(lambda p: p.y)

Categories