Check Multiple condition for same row - python

I have to compare 2 different sources and identify all the mismatches for all IDs
Source_excel table
+-----+-------------+------+----------+
| id | name | City | flag |
+-----+-------------+------+----------+
| 101 | Plate | NY | Ready |
| 102 | Back washer | NY | Sold |
| 103 | Ring | MC | Planning |
| 104 | Glass | NMC | Ready |
| 107 | Cover | PR | Ready |
+-----+-------------+------+----------+
Source_dw table
+-----+----------+------+----------+
| id | name | City | flag |
+-----+----------+------+----------+
| 101 | Plate | NY | Planning |
| 102 | Nut | TN | Expired |
| 103 | Ring | MC | Planning |
| 104 | Top Wire | NY | Ready |
| 105 | Bolt | MC | Expired |
+-----+----------+------+----------+
Expected result
+-----+-------------+----------+------------+----------+------------+---------+------------------+
| ID | excel_name | dw_name | excel_flag | dw_flag | excel_city | dw_city | RESULT |
+-----+-------------+----------+------------+----------+------------+---------+------------------+
| 101 | Plate | Plate | Ready | Planning | NY | NY | FLAG_MISMATCH |
| 102 | Back washer | Nut | Sold | Expired | NY | TN | NAME_MISMATCH |
| 102 | Back washer | Nut | Sold | Expired | NY | TN | FLAG_MISMATCH |
| 102 | Back washer | Nut | Sold | Expired | NY | TN | CITY_MISMATCH |
| 103 | Ring | Ring | Planning | Planning | MC | MC | ALL_MATCH |
| 104 | Glass | Top Wire | Ready | Ready | NMC | NY | NAME_MISMATCH |
| 104 | Glass | Top Wire | Ready | Ready | NMC | NY | CITY_MISMATCH |
| 107 | Cover | | Ready | | PR | | MISSING IN DW |
| 105 | | Bolt | | Expired | | MC | MISSING IN EXCEL |
+-----+-------------+----------+------------+----------+------------+---------+------------------+
I'm new to python and I have tried the below query but it not giving the expected result.
import pandas as pd
source_excel = pd.read_csv('C:/Mypython/Newyork/excel.csv',encoding = "ISO-8859-1")
source_dw = pd.read_csv('C:/Mypython/Newyork/dw.csv',encoding = "ISO-8859-1")
comparison_result = pd.merge(source_excel,source_dw,on='ID',how='outer',indicator=True)
comparison_result.loc[(comparison_result['_merge'] == 'both') & (name_x != name_y), 'Result'] = 'NAME_MISMATCH'
comparison_result.loc[(comparison_result['_merge'] == 'both') & (city_x != city_y), 'Result'] = 'CITY_MISMATCH'
comparison_result.loc[(comparison_result['_merge'] == 'both') & (flag_x != flag_y), 'Result'] = 'FLAG_MISMATCH'
comparison_result.loc[comparison_result['_merge'] == 'left_only', 'Result'] = 'Missing in dw'
comparison_result.loc[comparison_result['_merge'] == 'right_only', 'Result'] = 'Missing in excel'
comparison_result.loc[comparison_result['_merge'] == 'both', 'Result'] = 'ALL_Match'
csv_column = comparison_result[['ID','name_x','name_y','city_x','city_y','flag_x','flag_y','Result']]
print(csv_column)
Is there any other way I can check all the condition and report each in separate row. If separate row not possible, atleast i need in same column separated by all mismatches. something like FLAG_MISMATCH,CITY_MISMATCH

You could do:
df = pd.merge(Source_excel, Source_dw, on = 'ID', how = 'left', suffixes = (None, '_dw'))
This will create a new dataframe like the one you want, although you'll have to reorder the columns as you want. Note that the '_dw' is a suffix and not a prefix in this case.
You can reorder the columns as you like by using this code:
#Complement with the order you want
df = df[['ID', 'excel_name']]
For the result column I think you'll have to create a column for each condition you're trying to check (at least that's the way I know how to). Here's an example:
#This will return 1 if there's a match and 0 otherwise
df['result_flag'] = df.apply(lambda x: 1 if x.excel_flag == x.flag_dw else 0, axis = 1)

Here is a way to do the scoring:
df['result'] = 0
# repeated mask / df.loc statements suggests a loop, over a list of tuples
mask = df['excel_flag'] != df['df_flag']
df.loc[mask, 'result'] += 1
mask = df['excel_name'] != df['dw_name']
df.loc[mask, 'result'] += 10
df['result'] = df['result'].map({ 0: 'all match',
1: 'flag mismatch',
10: 'name mismatch',
11: 'all mismatch',})

Related

Pandas dataframe or SQLite fuzzy search

I'm scraping multiple sports betting websites in order to compare the odds for each match across the websites.
My question is how to identify match_id from a match that already exists in the DB but has team names written in a different way.
Please feel free to add any approaches even if they don't use dataframes or SQLite.
The columns for matches table are:
match_id: int, sport: string, home_team: string, away_team: string, date: string (dd/mm/YYY)
So for each new match I want to verify if it already exists in the DB.
New match = (sport_to_check, home_team_to_check, away_team_to_check, date_to_check)
My pseudo-code is like:
SELECT match_id FROM matches
WHERE sport = (sport_to_check)
AND date = (date_to_check)
AND (fuzz(home_team, home_team_to_check) > 80 OR fuzz(away_team, away_team_to_check) > 80) //the fuzzy scores evaluation
If no match is found the new row would be inserted.
I believe there's no way to mix python with SQL like that so that's why I refer to it as "pseudo-code".
I can also pull the matches table into a Pandas dataframe and do the evaluation with it, if that works (how?...).
At any given time it isn't expected for matches table to have above a couple of thousand records.
Let me give you some examples of expected outputs. Where the solution is represented by "find(row)"
Having matches table in DB as:
+----------+------------+-----------------------------+----------------------+------------+
| match_id | sport | home_team | visitor_team | date |
+----------+------------+-----------------------------+----------------------+------------+
| 84 | football | confianca | cuiaba esporte clube | 24/11/2020 |
| 209 | football | cs alagoana | operario pr | 24/11/2020 |
| 184 | football | grenoble foot 38 | as nancy lorraine | 24/11/2020 |
| 7 | football | sv turkgucu-ataspor munchen | saarbrucken | 24/11/2020 |
| 414 | handball | dinamo bucareste | usam nimes | 24/11/2020 |
| 846 | handball | benidorm | naturhouse la rioja | 25/11/2020 |
| 874 | handball | cegledi | ferencvarosi tc | 25/11/2020 |
| 418 | handball | lemvig-thyboron | kif kolding | 25/11/2020 |
| 740 | ice hockey | tps | kookoo | 25/11/2020 |
| 385 | football | stevenage | hull | 29/11/2020 |
+----------+------------+-----------------------------+----------------------+------------+
And new matches to evaluate:
+----------------+------------+---------------------+---------------------+------------+
| row (for demo) | sport | home_team | visitor_team | date |
+----------------+------------+---------------------+---------------------+------------+
| A | football | confianca-se | cuiaba mt | 24/11/2020 |
| B | football | csa | operario | 24/11/2020 |
| C | football | grenoble | nancy | 24/11/2020 |
| D | football | sv turkgucu ataspor | 1 fc saarbrucken | 24/11/2020 |
| E | handball | dinamo bucuresti | nimes | 24/11/2020 |
| F | handball | bm benidorm | bm logrono la rioja | 25/11/2020 |
| G | handball | cegledi kkse | ftc budapest | 25/11/2020 |
| H | handball | lemvig | kif kobenhavn | 25/11/2020 |
| I | ice hockey | turku ps | kookoo kouvola | 25/11/2020 |
| J | football | stevenage borough | hull city | 29/11/2020 |
| K | football | west brom | sheffield united | 28/11/2020 |
+----------------+------------+---------------------+---------------------+------------+
Outputs:
find(A) returns: 84
find(B) returns: 209
find(C) returns: 184
find(D) returns: 7
find(E) returns: 414
find(F) returns: 846
find(G) returns: 874
find(H) returns: 418
find(I) returns: 740
find(J) returns: 385
find(K) returns: (something like "not found" => I would then insert the new row)
Thanks!
Basically I filter down the original table by the given date and sport. then use fuzzywuzzy to find the best match between the home and visitors between the rows remaining:
Setup:
import pandas as pd
cols = ['match_id','sport','home_team','visitor_team','date']
df1 = pd.DataFrame([
['84','football','confianca','cuiaba esporte clube','24/11/2020'],
['209','football','cs alagoana','operario pr','24/11/2020'],
['184','football','grenoble foot 38','as nancy lorraine','24/11/2020'],
['7','football','sv turkgucu-ataspor munchen','saarbrucken','24/11/2020'],
['414','handball','dinamo bucareste','usam nimes','24/11/2020'],
['846','handball','benidorm','naturhouse la rioja','25/11/2020'],
['874','handball','cegledi','ferencvarosi tc','25/11/2020'],
['418','handball','lemvig-thyboron','kif kolding','25/11/2020'],
['740','ice hockey','tps','kookoo','25/11/2020'],
['385','football','stevenage','hull','29/11/2020']], columns=cols)
cols = ['row','sport','home_team','visitor_team','date']
df2 = pd.DataFrame([
['A','football','confianca-se','cuiaba mt','24/11/2020'],
['B','football','csa','operario','24/11/2020'],
['C','football','grenoble','nancy','24/11/2020'],
['D','football','sv turkgucu ataspor','1 fc saarbrucken','24/11/2020'],
['E','handball','dinamo bucuresti','nimes','24/11/2020'],
['F','handball','bm benidorm','bm logrono la rioja','25/11/2020'],
['G','handball','cegledi kkse','ftc budapest','25/11/2020'],
['H','handball','lemvig','kif kobenhavn','25/11/2020'],
['I','ice hockey','turku ps','kookoo kouvola','25/11/2020'],
['J','football','stevenage borough','hull city','29/11/2020'],
['K','football','west brom','sheffield united','28/11/2020']], columns=cols)
Code:
import pandas as pd
from fuzzywuzzy import fuzz
import string
def calculate_ratio(row):
return fuzz.token_set_ratio(row['col1'],row['col2'] )
def find(df1, df2, row_search):
alpha = df2.query('row == "{row_search}"'.format(row_search=row_search))
sport = alpha.iloc[0]['sport']
date = alpha.iloc[0]['date']
home_team = alpha.iloc[0]['home_team']
visitor_team = alpha.iloc[0]['visitor_team']
beta = df1.query('sport == "{sport}" & date == "{date}"'.format(sport=sport,date=date))
if len(beta) == 0:
return 'Not found.'
else:
temp = pd.DataFrame({'match_id':list(beta['match_id']),'col1':list(beta['home_team'] + ' ' + beta['visitor_team']), 'col2':[home_team + ' ' + visitor_team]*len(beta)})
temp['score'] = temp.apply(calculate_ratio, axis=1)
temp = temp.sort_values('score', ascending=False)
outcome = temp.head(1).iloc[0]['match_id']
return outcome
for row_alpha in string.ascii_uppercase[0:11]:
outcome = find(df1, df2, row_alpha)
print ('{row_alpha} --> {outcome}'.format(row_alpha=row_alpha, outcome=outcome))
Output:
A --> 84
B --> 209
C --> 184
D --> 7
E --> 414
F --> 846
G --> 874
H --> 418
I --> 740
J --> 385
K --> Not found.

dataframe pandas excel combine header

Is it possible with pandas to marge two (or three...) header-rows with united excel-cells into one?
For example table:
| Report for ..... | Income | Ordered |
|-----------------|--------------------|---------------------|--------------|---------------|-----------|-------------------------------|
| Brend | Art of supplier | Contract | pcs | income price | pcs | rub (prize for selling) |
| Elena Chezelle | Y0060 | 0400-6752 Agent | 85 | 245,00 | 226 | 785,00 |
| Amour Bridal | ALWE-1199-WHITE | 0400-6752 Agent | 47 | 56,00 | 163 | 857,00 |
into:
| Brend | Art of supplier | Contract | Income pcs | Income price | Ordered pcs | Ordered rub (prize for selling) |
|----------------|--------------------|---------------------|-----------------|---------------------------|-------------|----------------------------------------|
| Elena Chezelle | Y0060 | 0400-6752 Agent | 85 | 245,00 | 226 | 785,00 |
| Amour Bridal | ALWE-1199-WHITE | 0400-6752 Agent | 47 | 56,00 | 163 | 857,00 |
until now made it with code using cycles:
file = 'static/ExportToEXCELOPENXML - 2020-05-11T180206.635.xlsx'
df = pd.read_excel(file)
df_list = []
for x in df.columns:
if 'Unnamed' in x or 'Report' in x:
df_list.append('')
else:
df_list.append(x + ' ')
i = 0
while i < len(df_list):
if df_list[i] == '':
df_list[i] = df_list[i - 1]
i += 1
print(df_list)
df.columns = df_list + df.iloc[0]
df_new = df.iloc[1:].reset_index(drop=True)
df_new.to_excel('static/test.xlsx', index=None)
Is it possible make it only with pandas (without cycles)?
When you read the excel you can give two rows to be added as header
df = pd.read_excel('static/ExportToEXCELOPENXML - 2020-05-11T180206.635.xlsx', header=[0,1])
If you want to join them together with a separator then you can do it after reading
df.columns = df.columns.map('_'.join)

How to aggregate and restructure dataframe data in pyspark (column wise)

I am trying to aggregate data in pyspark dataframe on a particular criteria. I am trying to align the acct based on switchOUT amount to switchIN amount. So that accounts with money switching out of becomes from account and other accounts become to_accounts.
Data I am getting in the dataframe to begin with
+--------+------+-----------+----------+----------+-----------+
| person | acct | close_amt | open_amt | switchIN | switchOUT |
+--------+------+-----------+----------+----------+-----------+
| A | 1 | 125 | 50 | 75 | 0 |
+--------+------+-----------+----------+----------+-----------+
| A | 2 | 100 | 75 | 25 | 0 |
+--------+------+-----------+----------+----------+-----------+
| A | 3 | 200 | 300 | 0 | 100 |
+--------+------+-----------+----------+----------+-----------+
To this table
+--------+--------+-----------+----------+----------+
| person | from_acct| to_acct | switchIN | switchOUT|
+--------+----------+--------+----------+-----------+
| A | 3 | 1 | 75 | 100 |
+--------+----------+--------+----------+-----------+
| A | 3 | 2 | 25 | 100 |
+--------+----------+--------+----------+-----------+
And also how can I do it so that it works for N number of rows (not just 3 accounts)
So far I have used this code
# define udf
def sorter(l):
res = sorted(l, key=operator.itemgetter(1))
return [item[0] for item in res]
def list_to_string(l):
res = 'from_fund_' +str(l[0]) + '_to_fund_'+str(l[1])
return res
def listfirstAcc(l):
res = str(l[0])
return res
def listSecAcc(l):
res = str(l[1])
return res
sort_udf = F.udf(sorter)
list_str = F.udf(list_to_string)
extractFirstFund = F.udf(listfirstAcc)
extractSecondFund = F.udf(listSecAcc)
# Add additional columns
df= df.withColumn("move", sort_udf("list_col").alias("sorted_list"))
df= df.withColumn("move_string", list_str("move"))
df= df.withColumn("From_Acct",extractFirstFund("move"))
df= df.withColumn("To_Acct",extractSecondFund("move"))
Current outcome I am getting:
+--------+--------+-----------+----------+----------+
| person | from_acct| to_acct | switchIN | switchOUT|
+--------+----------+--------+----------+-----------+
| A | 3 | 1,2 | 75 | 100 |
+--------+----------+--------+----------+-----------+

pivot multiple views into single result table/view

I have 2 views as below:
experiments:
select * from experiments;
+--------+--------------------+-----------------+
| exp_id | exp_properties | value |
+--------+--------------------+-----------------+
| 1 | indicator:chemical | phenolphthalein |
| 1 | base | NaOH |
| 1 | acid | HCl |
| 1 | exp_type | titration |
| 1 | indicator:color | faint_pink |
+--------+--------------------+-----------------+
calculations:
select * from calculations;
+--------+------------------------+--------------+
| exp_id | exp_report | value |
+--------+------------------------+--------------+
| 1 | molarity:base | 0.500000000 |
| 1 | volume:acid:in_ML | 23.120000000 |
| 1 | volume:base:in_ML | 5.430000000 |
| 1 | moles:H | 0.012500000 |
| 1 | moles:OH | 0.012500000 |
| 1 | molarity:acid | 0.250000000 |
+--------+------------------------+--------------+
I managed to pivot each of these views individually as below:
experiments_pivot:
+-------+--------------------+------+------+-----------+----------------+
|exp_id | indicator:chemical | base | acid | exp_type | indicator:color|
+-------+--------------------+------+------+-----------+----------------+
| 1 | phenolphthalein | NaOH | HCl | titration | faint_pink |
+------+---------------------+------+------+-----------+----------------+
calculations_pivot:
+-------+---------------+---------------+--------------+-------------+------------------+-------------------+
|exp_id | molarity:base | molarity:acid | moles:H | moles:OH | volume:acid:in_ML| volume:base:in_ML |
+-------+---------------+---------------+--------------+-------------+------------------+-------------------+
| 1 | 0.500000000 | 0.250000000 | 0.012500000 | 0.012500000 | 23.120000000 | 5.430000000 |
+------+---------------------+------+------+-----------+----------------------------------------------------+
My question is how to get these two pivot results as a single row? Desired result is as below:
+-------+--------------------+------+------+-----------+----------------+--------------+---------------+--------------+-------------+------------------+------------------+
|exp_id | indicator:chemical | base | acid | exp_type | indicator:color|molarity:base | molarity:acid | moles:H | moles:OH | volume:acid:in_ML| volume:base:in_ML |
+-------+--------------------+------+------+-----------+----------------+--------------+---------------+--------------+-------------+------------------+------------------+
| 1 | phenolphthalein | NaOH | HCl | titration | faint_pink | 0.500000000 | 0.250000000 | 0.012500000 | 0.012500000 | 23.120000000 | 5.430000000 |
+------+---------------------+------+------+-----------+----------------+--------------+---------------+--------------+-------------+------------------+------------------+
Database Used: Mysql
Important Note: Each of these views can have increasing number of rows. Hence I considered "dynamic pivoting" for each of the view individually.
For reference -- Below is a prepared statement I used to pivot experiments in MySQL(and a similar statement to pivot the other view as well):
set #sql = Null;
SELECT
GROUP_CONCAT(DISTINCT
CONCAT(
'MAX(IF(exp_properties = ''',
exp_properties,
''', value, NULL)) AS ',
concat("`",exp_properties, "`")
)
)into #sql
from experiments;
set #sql = concat(
'select exp_id, ',
#sql,
' from experiment group by exp_id'
);
prepare stmt from #sql;
execute stmt;

Best way to compare 2 dfs, get the name of different col & before + after vals?

What is the best way to compare 2 dataframes w/ the same column names, row by row, if a cell is different have the Before & After value and which cellis different in that dataframe.
I know this question has been asked a lot, but none of the applications fit my use case. Speed is important. There is a package called datacompy but it is not good if I have to compare 5000 dataframes in a loop (i'm only comparing 2 at a time, but around 10,000 total, and 5000 times).
I don't want to join the dataframes on a column. I want to compare them row by row. Row 1 with row 1. Etc. If a column in row 1 is different, I only need to know the column name, the before, and the after. Perhaps if it is numeric I could also add a column w/ the abs val. of the dif.
The problem is, there is sometimes an edge case where rows are out of order (only by 1 entry), and don’t want these to come up as false positives.
Example:
These dataframes would be created when I pass in race # (there are 5,000 race numbers)
df1
+-----+-------+--+------+--+----------+----------+-------------+--+
| Id | Speed | | Name | | Distance | | Location | |
+-----+-------+--+------+--+----------+----------+-------------+--+
| 181 | 10.3 | | Joe | | 2 | | New York | |
| 192 | 9.1 | | Rob | | 1 | | Chicago | |
| 910 | 1.0 | | Fred | | 5 | | Los Angeles | |
| 97 | 1.8 | | Bob | | 8 | | New York | |
| 88 | 1.2 | | Ken | | 7 | | Miami | |
| 99 | 1.1 | | Mark | | 6 | | Austin | |
+-----+-------+--+------+--+----------+----------+-------------+--+
df2:
+-----+-------+--+------+--+----------+----------+-------------+--+
| Id | Speed | | Name | | Distance | | | Location |
+-----+-------+--+------+--+----------+----------+-------------+--+
| 181 | 10.3 | | Joe | | 2 | | New York | |
| 192 | 9.4 | | Rob | | 1 | | Chicago | |
| 910 | 1.0 | | Fred | | 5 | | Los Angeles | |
| 97 | 1.5 | | Bob | | 8 | | New York | |
| 99 | 1.1 | | Mark | | 6 | | Austin | |
| 88 | 1.2 | | Ken | | 7 | | Miami | |
+-----+-------+--+------+--+----------+----------+-------------+--+
diff:
+-------+----------+--------+-------+
| Race# | Diff_col | Before | After |
+-------+----------+--------+-------+
| 123 | Speed | 9.1 | 9.4 |
| 123 | Speed | 1.8 | 1.5 |
An example of a false positive is with the last 2 rows, Ken + Mark.
I could summarize the differences in one line per race, but if the dataframe has 3000 records and there are 1,000 differences (unlikely, but possible) than I will have tons of columns. I figured this was was easier as I could export to excel and then sort by race #, see all the differences, or by diff_col, see which columns are different.
def DiffCol2(df1, df2, race_num):
is_diff = False
diff_cols_list = []
row_coords, col_coords = np.where(df1 != df2)
diffDf = []
alldiffDf = []
for y in set(col_coords):
col_df1 = df1.iloc[:,y].name
col_df2 = df2.iloc[:,y].name
for index, row in df1.iterrows():
if df1.loc[index, col_df1] != df2.loc[index, col_df2]:
col_name = col_df1
if col_df1 != col_df2: col_name = (col_df1, col_df2)
diffDf.append({‘Race #’: race_num,'Column Name': col_name, 'Before: df2.loc[index, col_df2], ‘After’: df1.loc[index, col_df1]})
try:
check_edge_case = df1.loc[index, col_df1] == df2.loc[index+1, col_df1]
except:
check_edge_case = False
try:
check_edge_case_two = df1.loc[index, col_df1] == df2.loc[index-1, col_df1]
except:
check_edge_case_two = False
if not (check_edge_case or check_edge_case_two):
col_name = col_df1
if col_df1 != col_df2:
col_name = (col_df1, col_df2) #if for some reason column name isn’t the same, which should never happen but in case, I want to know both col names
is_diff = True
diffDf.append({‘Race #’: race_num,'Column Name': col_name, 'Before: df2.loc[index, col_df2], ‘After’: df1.loc[index, col_df1]})
return diffDf, alldiffDf, is_diff
[apologies in advance for weirdly formatted tables, i did my best given how annoying pasting tables into s/o is]
The code below works if dataframes have the same number and names of columns and the same number of rows, so comparing only values in the tables
Not sure where you want to get Race# from
df1 = pd.DataFrame(np.random.randn(10, 4), columns=list('ABCD'))
df2 = df1.copy(deep=True)
df2['B'][5] = 100 # Creating difference
df2['C'][6] = 100 # Creating difference
dif=[]
for col in df1.columns:
for bef, aft in zip(df1[col], df2[col]):
if bef!=aft:
dif.append([col, bef, aft])
print(dif)
Results below
Alternative solution without loops
df = df1.melt()
df.columns=['Column', 'Before']
df.insert(2, 'After', df2.melt().value)
df[df.Before!=df.After]

Categories