I am currently making an infection survival game for my A-level coursework, and I am struggling on how I can make this efficient.
When the cells get infected I need to check more and more cells, my computer science teacher recommended I save infections as a boolean value as I can do a lot more with that later, however it makes it more inefficient due to me having to eventually check the amount of cells squared which causes a lot of framerate issues.
My original idea was to store the uninfected and infected in separate lists but my comp sci teacher said I was over complicating it, however this didn't have any framerate issues.
A lot of my code has taken inspiration from this question Random movement pygame, especially when it comes to the cell movement.
TLDR: I want to make my code more efficient but I can't think of how
My code:
import sys, random, pygame
import matplotlib.pyplot as plt
from pygame.locals import *
import time
pygame.init()
#Window details
windowWidth = 400
windowHeight = 400
pixSize = 2
FPS = 60
screen = pygame.display.set_mode((windowWidth, windowHeight))
pygame.display.set_caption("Infection Game")
class Cell:
def __init__(self):
self.xPos = random.randrange(1,windowWidth)
self.yPos = random.randrange(1,windowHeight)
self.speed = 2
self.isInfected = False
self.infectionRange = 5
self.move = [None, None]
self.direction = None
def cellDraw(self):
if self.isInfected == False:
pygame.draw.rect(screen, (255,255,255), (self.xPos,self.yPos,pixSize,pixSize),0)
else:
pygame.draw.rect(screen, (0,255,0), (self.xPos,self.yPos,pixSize,pixSize),0)
def cellMovement(self):
directions = {"S":((-1,2),(1,self.speed)),"SW":((-self.speed,-1),(1,self.speed)),"W":((-self.speed,-1),(-1,2)),"NW":((-self.speed,-1),(-self.speed,-1)),"N":((-1,2),(-self.speed,-1)),"NE":((1,self.speed),(-self.speed,-1)),"E":((1,self.speed),(-1,2)),"SE":((1,self.speed),(1,self.speed))} #((min x, max x)(min y, max y))
directionsName = ("S","SW","W","NW","N","NE","E","SE") #possible directions
if random.randrange(0,5) == 2: #move about once every 5 frames
if self.direction == None: #if no direction is set, set a random one
self.direction = random.choice(directionsName)
else:
a = directionsName.index(self.direction) #get the index of direction in directions list
b = random.randrange(a-1,a+2) #set the direction to be the same, or one next to the current direction
if b > len(directionsName)-1: #if direction index is outside the list, move back to the start
b = 0
self.direction = directionsName[b]
self.move[0] = random.randrange(directions[self.direction][0][0],directions[self.direction][0][1]) + 0.35
self.move[1] = random.randrange(directions[self.direction][1][0],directions[self.direction][1][1]) + 0.35
if self.xPos < 5 or self.xPos > windowWidth - 5 or self.yPos < 5 or self.yPos > windowHeight - 5: #if cell is near the border of the screen, change direction
if self.xPos < 5:
self.direction = "E"
elif self.xPos > windowWidth - 5:
self.direction = "W"
elif self.yPos < 5:
self.direction = "S"
elif self.yPos > windowHeight - 5:
self.direction = "N"
self.move[0] = random.randrange(directions[self.direction][0][0],directions[self.direction][0][1]) + 0.35
self.move[1] = random.randrange(directions[self.direction][1][0],directions[self.direction][1][1]) + 0.35
if self.move[0] != None: #add the relative coordinates to the cells coordinates
self.xPos += self.move[0]
self.yPos += self.move[1]
def Infect(self):
for i in cellList:
if (self.xPos > i.xPos - self.infectionRange and self.xPos < i.xPos + self.infectionRange) and (self.yPos > i.yPos - self.infectionRange and self.yPos < i.yPos + self.infectionRange):
i.isInfected = True
xgraph = []
ygraph = []
cellList = []
startTime = time.time()
for i in range(1000):
cell = Cell()
cellList.append(cell)
cellList[0].isInfected = True
def gameLoop():
while True:
infectList = []
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
sys.exit()
screen.fill((0,0,0))
for i in cellList:
i.cellDraw()
i.cellMovement()
for i in cellList:
if i.isInfected == True:
i.Infect()
infectList.append(i)
xgraph.append(time.time()-startTime)
ygraph.append(len(infectList))
plt.plot(xgraph,ygraph)
plt.xlabel('time (s)')
plt.ylabel('infected')
if len(infectList) == 1000:
plt.show()
pygame.display.update() #update display
pygame.time.Clock().tick(FPS) #limit FPS
gameLoop()
First off, I've changed some of your code:
if self.isInfected == False:
if self.direction == None:
To
if not self.isInfected:
if self.direction is None:
Just so it reads a little a nicer.
Secondly, I've vectorized the Infect function:
uninfected = [i for i in cellList if not i.isInfected]
uninfected_array = np.array([[i.xPos, i.yPos] for i in uninfected])
indices = np.greater(uninfected_array[:, 0], self.xPos - self.infectionRange) * \
np.greater(self.xPos + self.infectionRange, uninfected_array[:, 0]) * \
np.greater(uninfected_array[:, 1], self.yPos - self.infectionRange) * \
np.greater(self.yPos + self.infectionRange, uninfected_array[:, 1])
for i in np.where(indices)[0]:
uninfected[i].isInfected = True
It takes the same time for this number of cells, but should scale better.
It turns out creating the array takes almost all the time. So you can create it once, pull it out of the loop and shave off a bunch of time:
def Infect(self, uninfected, uninfected_array):
indices = np.greater(uninfected_array[:, 0], self.xPos - self.infectionRange) * \
np.greater(self.xPos + self.infectionRange, uninfected_array[:, 0]) * \
np.greater(uninfected_array[:, 1], self.yPos - self.infectionRange) * \
np.greater(self.yPos + self.infectionRange, uninfected_array[:, 1])
for i in np.where(indices)[0]:
uninfected[i].isInfected = True
uninfected = [i for i in cellList if not i.isInfected]
uninfected_array = np.array([[i.xPos, i.yPos] for i in uninfected])
# To prevent errors with empty arrays
if len(uninfected) > 0:
for i in cellList:
if i.isInfected:
i.Infect(uninfected, uninfected_array)
# To prevent errors when everyone is infected
if infected == 0:
infected = len(cellList) - len(uninfected)
Lastly, you don't really seem to be using the infectList, so I replaced it with a counter:
infected = 0
if len(uninfected) > 0:
for i in cellList:
if i.isInfected:
infected += 1
As a side note, I'd change the UI controls a bit so it's easier to graph, instead of quitting using sys.exit it's nicer just to break out of the while loop. You also only plot the results once:
running = True
while running:
infectList = []
for event in pygame.event.get():
if event.type == QUIT:
running = False
...
pygame.quit()
plt.plot(xgraph, ygraph)
plt.xlabel('time (s)')
plt.ylabel('infected')
plt.show()
Implementing all this results in:
import random
import pygame
import matplotlib.pyplot as plt
from pygame.locals import *
import time
import numpy as np
pygame.init()
# Window details
windowWidth = 400
windowHeight = 400
pixSize = 2
FPS = 60
screen = pygame.display.set_mode((windowWidth, windowHeight))
pygame.display.set_caption("Infection Game")
class Cell:
def __init__(self):
self.xPos = random.randrange(1, windowWidth)
self.yPos = random.randrange(1, windowHeight)
self.speed = 2
self.isInfected = False
self.infectionRange = 5
self.move = [None, None]
self.direction = None
def cellDraw(self):
if not self.isInfected:
pygame.draw.rect(screen, (255, 255, 255), (self.xPos, self.yPos, pixSize, pixSize), 0)
else:
pygame.draw.rect(screen, (0, 255, 0), (self.xPos, self.yPos, pixSize, pixSize), 0)
def cellMovement(self):
directions = {"S": ((-1, 2), (1, self.speed)), "SW": ((-self.speed, -1), (1, self.speed)),
"W": ((-self.speed, -1), (-1, 2)), "NW": ((-self.speed, -1), (-self.speed, -1)),
"N": ((-1, 2), (-self.speed, -1)), "NE": ((1, self.speed), (-self.speed, -1)),
"E": ((1, self.speed), (-1, 2)),
"SE": ((1, self.speed), (1, self.speed))} # ((min x, max x)(min y, max y))
directionsName = ("S", "SW", "W", "NW", "N", "NE", "E", "SE") # possible directions
if random.randrange(0, 5) == 2: # move about once every 5 frames
if self.direction is None: # if no direction is set, set a random one
self.direction = random.choice(directionsName)
else:
a = directionsName.index(self.direction) # get the index of direction in directions list
b = random.randrange(a - 1,
a + 2) # set the direction to be the same, or one next to the current direction
if b > len(directionsName) - 1: # if direction index is outside the list, move back to the start
b = 0
self.direction = directionsName[b]
self.move[0] = random.randrange(directions[self.direction][0][0], directions[self.direction][0][1]) + 0.35
self.move[1] = random.randrange(directions[self.direction][1][0], directions[self.direction][1][1]) + 0.35
if self.xPos < 5 or self.xPos > windowWidth - 5 or self.yPos < 5 or self.yPos > windowHeight - 5: # if cell is near the border of the screen, change direction
if self.xPos < 5:
self.direction = "E"
elif self.xPos > windowWidth - 5:
self.direction = "W"
elif self.yPos < 5:
self.direction = "S"
elif self.yPos > windowHeight - 5:
self.direction = "N"
self.move[0] = random.randrange(directions[self.direction][0][0], directions[self.direction][0][1]) + 0.35
self.move[1] = random.randrange(directions[self.direction][1][0], directions[self.direction][1][1]) + 0.35
if self.move[0] is not None: # add the relative coordinates to the cells coordinates
self.xPos += self.move[0]
self.yPos += self.move[1]
def Infect(self, uninfected, uninfected_array):
indices = np.greater(uninfected_array[:, 0], self.xPos - self.infectionRange) * \
np.greater(self.xPos + self.infectionRange, uninfected_array[:, 0]) * \
np.greater(uninfected_array[:, 1], self.yPos - self.infectionRange) * \
np.greater(self.yPos + self.infectionRange, uninfected_array[:, 1])
for i in np.where(indices)[0]:
uninfected[i].isInfected = True
xgraph = []
ygraph = []
cellList = []
startTime = time.time()
for i in range(1000):
cell = Cell()
cellList.append(cell)
cellList[0].isInfected = True
def gameLoop():
running = True
while running:
infectList = []
for event in pygame.event.get():
if event.type == QUIT:
running = False
screen.fill((0, 0, 0))
for i in cellList:
i.cellDraw()
i.cellMovement()
infected = 0
uninfected = [i for i in cellList if not i.isInfected]
uninfected_array = np.array([[i.xPos, i.yPos] for i in uninfected])
if len(uninfected) > 0:
for i in cellList:
if i.isInfected:
i.Infect(uninfected, uninfected_array)
infected += 1
if infected == 0:
infected = len(cellList) - len(uninfected)
xgraph.append(time.time() - startTime)
ygraph.append(infected)
pygame.display.update() # update display
pygame.time.Clock().tick(FPS) # limit FPS
pygame.quit()
# figured this is what you wanted to do ;)
plt.plot(xgraph, ygraph)
plt.xlabel('time (s)')
plt.ylabel('infected')
plt.show()
gameLoop()
And it runs smooth
Related
I have created a simple simulation to show evolution. It works through a simuple window that contains many squares representing single-celled organisms. The screen looks like this:
The single-celled organisms (dubbed amoebae for conciseness) move around randomly. If they collide with another amoebae they produce an offspring. However, to prevent them reproducing infinitely I introduced an age measure. Amoebae must attain a certain age before they reproduce and once they do their age is reset to 1.
Now for the evolution part. As you can see, the amoebae are different colours. This represents the 'gene' that is passed down to offspring through reproduction (there is a chance of mutation controlled by a constant called maturingSpeed, which I set very high to increase the speed of evolution). It's called maturingSpeed and it controls the speed at which the amoebae age, which means that amoebae that have a higher maturingSpeed with reproduce faster and pass on their gene. In this way, they should gradually evolve through natural selection so all of the amoebae have a very high maturingSpeed. A high maturingSpeed translates to a brighter colour on the screen.
There is one other thing I should mention, which is the life countdown on each amoeba. It starts out at 10000 and ticks down by one each time the amoeba is updated. This is to gradually kill off the old amoebae, also increasing the rate of evolution and making it more lifelike.
My problem is that before the amoebae all evolve to get a high maturingSpeed (the highest I've had is around 65%), they become too numerous and the simulation starts slowing down as it struggles to load them all. I need a method to make the amoebae die off faster as more of them are produced. I have tried to cull them if they are above a certain number, or increase their countdown rate based on the number of amoebae however all of these methods cause them to eventually stop reproducing and die off for some reason. I have deleted these sections from my code now because they didn't work but I could add them again if needed.
My source code:
import pygame
import random
import time
import itertools
from pygame.locals import (
QUIT
)
pygame.init()
SCREEN_WIDTH = 500
SCREEN_HEIGHT = 500
screen = pygame.display.set_mode([500, 500])
amoebas = pygame.sprite.Group()
all_sprites = pygame.sprite.Group()
idList = []
mutationConstant = 254
class Amoeba(pygame.sprite.Sprite):
id_iter = itertools.count()
def __init__(self, maturingSpeed, x, y):
super(Amoeba, self).__init__()
self.id = 'amoeba' + str(next(Amoeba.id_iter))
idList.append(self.id)
self.surf = pygame.Surface((10,10))
if maturingSpeed <= 0:
maturingSpeed = 1
elif maturingSpeed >= 255:
maturingSpeed = 254
print(maturingSpeed)
self.surf.fill((maturingSpeed, 0, 0))
self.rect = self.surf.get_rect(
center=(
x,
y,
)
)
self.speed = 2
self.age = 1
self.maturingSpeed = int(maturingSpeed)
self.life = 9999
def update(self):
if self.rect.left <= 0:
direction = 1
elif self.rect.right >= SCREEN_WIDTH:
direction = 2
elif self.rect.top <= 0:
direction = 3
elif self.rect.bottom >= SCREEN_HEIGHT:
direction = 4
else:
direction = random.randint(1, 4)
if direction == 1:
self.rect.move_ip(self.speed, 0)
elif direction == 2:
self.rect.move_ip(-self.speed, 0)
elif direction == 3:
self.rect.move_ip(0, self.speed)
elif direction == 4:
self.rect.move_ip(0, -self.speed)
self.life = self.life - 1
if self.life <= 0:
self.kill()
modMaturingSpeed = self.maturingSpeed / 1240
self.age = self.age + (1 * modMaturingSpeed)
#classmethod
def collide(cls):
global collisionSuccess
collisionSuccess = False
global posList
posList = [[amoeba.rect.left, amoeba.rect.bottom] for amoeba in amoebas]
length = len(posList)
for i in range(length):
for amoeba in amoebas:
if amoeba.id == str(idList[i]):
ageOne = getattr(amoeba, 'age')
for h in range(i+1, length):
for amoeba in amoebas:
if amoeba.id == str(idList[h]):
ageTwo = getattr(amoeba, 'age')
OneX = int(posList[i][0])
OneY = int(posList[i][1])
TwoX = int(posList[h][0])
TwoY = int(posList[h][1])
if ageOne >= 100 and ageTwo >= 100:
if (OneX < TwoX + 10 and OneX + 10 > TwoX
and OneY < TwoY + 10 and 10 + OneY > TwoY):
for amoeba in amoebas:
if amoeba.id == str(idList[i]):
setattr(amoeba, 'age', 1)
pOMSinitial = int(getattr(amoeba, 'maturingSpeed'))
for amoeba in amoebas:
if amoeba.id == str(idList[h]):
setattr(amoeba, 'age', 1)
pTMSinitial = int(getattr(amoeba, 'maturingSpeed'))
locationX = OneX + random.randint(-10, 10)
locationY = OneY + random.randint(-10, 10)
if pOMSinitial >= pTMSinitial:
pOMSfinal = pOMSinitial + mutationConstant
pTMSfinal = pTMSinitial - mutationConstant
newMaturingSpeed = random.randint(pTMSfinal, pOMSfinal)
else:
pOMSfinal = pOMSinitial - mutationConstant
pTMSfinal = pTMSinitial + mutationConstant
newMaturingSpeed = random.randint(pOMSfinal, pTMSfinal)
collisionSuccess = True
return cls(newMaturingSpeed, locationX, locationY)
screen.fill((255, 255, 255))
for i in range(15):
amoebaname = Amoeba(random.randint(100, 150), random.randint(0, SCREEN_WIDTH), random.randint(0, SCREEN_HEIGHT))
amoebas.add(amoebaname)
all_sprites.add(amoebaname)
p = 0
while True:
ageArray = [amoeba.age for amoeba in amoebas]
if p == 1000:
print(amoebas)
five = 0
four = 0
three = 0
two = 0
one = 0
for amoeba in amoebas:
if amoeba.maturingSpeed >= 200:
five = five + 1
elif amoeba.maturingSpeed >=150:
four = four + 1
elif amoeba.maturingSpeed >= 100:
three = three + 1
elif amoeba.maturingSpeed >= 50:
two = two + 1
else:
one = one + 1
total = one + two + three + four + five
DivFive = five / total
DivFour = four / total
DivThree = three / total
DivTwo = two / total
DivOne = one / total
print(DivFive, DivFour, DivThree, DivTwo, DivOne)
p = 0
else:
p = p + 1
time.sleep(0.0000001)
screen.fill((255, 255, 255))
for event in pygame.event.get():
if event.type == QUIT:
break
amoebas.update()
amoebaname = Amoeba.collide()
if collisionSuccess == True:
amoebas.add(amoebaname)
all_sprites.add(amoebaname)
for entity in all_sprites:
screen.blit(entity.surf, entity.rect)
pygame.display.flip()
pygame.quit()
Too many nested loops and unneeded data structures. I did some cleanup and it's faster now. And it seems that the mutation constant was far to high. I changed the value from 254 to 25.
import pygame
import random
import time
import itertools
from pygame.locals import (
QUIT
)
SCREEN_WIDTH = 500
SCREEN_HEIGHT = 500
MUTATION_CONSTANT = 25
pygame.init()
screen = pygame.display.set_mode([SCREEN_WIDTH, SCREEN_HEIGHT])
amoebas = pygame.sprite.Group()
class Amoeba(pygame.sprite.Sprite):
id_iter = itertools.count()
def __init__(self, maturing_speed, x, y):
super().__init__()
self.id = 'amoeba' + str(next(Amoeba.id_iter))
self.surf = pygame.Surface((10, 10))
self.maturing_speed = min(max(maturing_speed, 1), 254)
self.surf.fill((self.maturing_speed, 0, 0))
self.rect = self.surf.get_rect(center=(x, y,))
self.speed = 2
self.age = 1
self.life = 9999
def update(self):
if self.rect.left <= 0:
direction = 1
elif self.rect.right >= SCREEN_WIDTH:
direction = 2
elif self.rect.top <= 0:
direction = 3
elif self.rect.bottom >= SCREEN_HEIGHT:
direction = 4
else:
direction = random.randint(1, 4)
if direction == 1:
self.rect.move_ip(self.speed, 0)
elif direction == 2:
self.rect.move_ip(-self.speed, 0)
elif direction == 3:
self.rect.move_ip(0, self.speed)
elif direction == 4:
self.rect.move_ip(0, -self.speed)
self.life = self.life - 1
if self.life <= 0:
self.kill()
self.age = self.age + (1 * self.maturing_speed / 1240)
#classmethod
def collide(cls):
for amoeba_1, amoeba_2 in itertools.combinations(amoebas, 2):
if amoeba_1.age >= 100 and amoeba_2.age >= 100 and (
pygame.sprite.collide_rect(amoeba_1, amoeba_2)
):
amoeba_1.age = 1
amoeba_2.age = 1
location_x = amoeba_1.rect.left + random.randint(-10, 10)
location_y = amoeba_1.rect.bottom + random.randint(-10, 10)
speed_low = min(amoeba_1.maturing_speed, amoeba_2.maturing_speed) - MUTATION_CONSTANT
speed_high = max(amoeba_1.maturing_speed, amoeba_2.maturing_speed) + MUTATION_CONSTANT
new_maturing_speed = random.randint(speed_low, speed_high)
return cls(new_maturing_speed, location_x, location_y)
return None
def main():
screen.fill((255, 255, 255))
for i in range(25):
amoeba = Amoeba(random.randint(100, 150), random.randint(0, SCREEN_WIDTH), random.randint(0, SCREEN_HEIGHT))
amoebas.add(amoeba)
step_counter = 0
while True:
step_counter += 1
if step_counter % 100 == 0:
print(step_counter, amoebas)
five = 0
four = 0
three = 0
two = 0
one = 0
for amoeba in amoebas:
if amoeba.maturing_speed >= 200:
five = five + 1
elif amoeba.maturing_speed >= 150:
four = four + 1
elif amoeba.maturing_speed >= 100:
three = three + 1
elif amoeba.maturing_speed >= 50:
two = two + 1
else:
one = one + 1
total = one + two + three + four + five
print(f'{five/total:.4f} {four/total:.4f} {three/total:.4f} {two/total:.4f} {one/total:.4f}')
time.sleep(0.0000001)
screen.fill((255, 255, 255))
for event in pygame.event.get():
if event.type == QUIT:
break
amoebas.update()
amoeba = Amoeba.collide()
if amoeba:
amoebas.add(amoeba)
for amoeba in amoebas:
screen.blit(amoeba.surf, amoeba.rect)
pygame.display.flip()
pygame.quit()
if __name__ == '__main__':
main()
I needed help, I was trying to map the position of a ghost in its current position such as (225, 175) to its position on the matrix (7,9), not sure what the math is to calculate its relative position, the reason why im asking is because it makes it easier to detect if theres a wall in matrix position as opposed to current position. I want to be able to do this so I can decide its next move at an intersection.
import pygame
import time
import random
import pickle
import math
pygame.init()
pygame.mixer.init()
pygame.display.set_caption("Pac-Man")
# Sets the size of the screen via (WIDTH, HEIGHT)
SCREEN_WIDTH = 478
SCREEN_HEIGHT = 608
# Speed of Characters
SPEED = 1
# Frames per second, how fast the game runs
FPS = 50
# Colors (RED,GREEN,BLUE)
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
YELLOW = (255, 255, 0)
BLUE = (0, 0, 255)
# Sets the WIDTH and HEIGHT of the window
WINDOW = (SCREEN_WIDTH, SCREEN_HEIGHT)
# Displays the screen
SCREEN = pygame.display.set_mode(WINDOW)
CLOCK = pygame.time.Clock()
PacManStartSurface = pygame.transform.scale(pygame.image.load
("PacManStart.png"), (23, 23))
PacManStartSurface.convert()
PacManStartRect = PacManStartSurface.get_rect(topleft =
(((SCREEN_WIDTH - 25) // 2),
(SCREEN_HEIGHT + 144) // 2))
PacManSurface = pygame.transform.scale(pygame.image.load
("PacManRight.png"), (23, 23))
PacManSurface.convert()
PacManRect = PacManStartSurface.get_rect(topleft =
(((SCREEN_WIDTH - 125) // 2),
(SCREEN_HEIGHT + 144) // 2))
CurrentSurface = PacManStartSurface
CurrentRect = PacManStartRect
BackgroundSurface = pygame.image.load("Background.png").convert()
PinkGhostSurface = pygame.transform.scale(pygame.image.load("PinkGhost.png")
.convert(), (23, 23))
PinkGhostRect = PinkGhostSurface.get_rect()
YellowGhostSurface = pygame.transform.scale(pygame.image.load
("YellowGhost.png")
.convert(), (23, 23))
YellowGhostRect = YellowGhostSurface.get_rect()
RedGhostSurface = pygame.transform.scale(pygame.image.load("RedGhost.png")
.convert(), (23, 23))
RedGhostRect = RedGhostSurface.get_rect()
BlueGhostSurface = pygame.transform.scale(pygame.image.load("BlueGhost.png")
.convert(), (23, 23))
BlueGhostRect = BlueGhostSurface.get_rect()
pygame.mixer.music.load('power_pellet.wav')
Font = pygame.font.Font("emulogic.ttf", 15)
class PacMan():
def __init__(self):
self.LIVES = 3
class Maze():
def __init__(self):
self.DOTS = []
self.WALLS = []
self.ENERGIZER = []
self.GHOSTS = []
self.WALLS_XY = []
self.BLOCK_WIDTH = 25
self.BLOCK_HEIGHT = 25
self.MAZE_OFFSET_X = 0
self.MAZE_OFFSET_Y = 50
# 0 - Dots
# 1 - Walls
# 2 - Empty Spaces
# 3 - Energizers
# 4 - Ghosts
self.MATRIX = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], \
[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1], \
[1,3,1,1,0,1,1,1,0,1,0,1,1,1,0,1,1,3,1], \
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], \
[1,0,1,1,0,1,0,1,1,1,1,1,0,1,0,1,1,0,1], \
[1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1], \
[1,1,1,1,0,1,1,1,2,1,2,1,1,1,0,1,1,1,1], \
[2,2,2,1,0,1,2,2,2,4,2,2,2,1,0,1,2,2,2], \
[1,1,1,1,0,1,2,1,1,1,1,1,2,1,0,1,1,1,1], \
[0,0,0,0,0,2,2,1,4,4,4,1,2,2,0,0,0,0,0], \
[1,1,1,1,0,1,2,1,1,1,1,1,2,1,0,1,1,1,1], \
[2,2,2,1,0,1,2,2,2,2,2,2,2,1,0,1,2,2,2], \
[1,1,1,1,0,1,2,1,1,1,1,1,2,1,0,1,1,1,1], \
[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1], \
[1,3,1,1,0,1,1,1,0,1,0,1,1,1,0,1,1,3,1], \
[1,0,0,1,0,0,0,0,0,2,0,0,0,0,0,1,0,0,1], \
[1,1,0,1,0,1,0,1,1,1,1,1,0,1,0,1,0,1,1], \
[1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1], \
[1,0,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,0,1], \
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], \
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
# BackgroundImage(X, Y, WIDTH, HEIGHT)
self.MAZE_X = self.BLOCK_WIDTH * (len(self.MATRIX[0])
+ self.MAZE_OFFSET_X)
self.MAZE_Y = self.BLOCK_HEIGHT * (len(self.MATRIX)
+ self.MAZE_OFFSET_Y)
self.MAZE_WIDTH = self.BLOCK_WIDTH * len(self.MATRIX[0])
self.MAZE_HEIGHT = self.BLOCK_HEIGHT * len(self.MATRIX)
def DrawMaze(self, MazeSurface):
for ROW in range(len(self.MATRIX)):
for COLUMN in range(len(self.MATRIX[0])):
# Saves the position of each dot
if self.MATRIX[ROW][COLUMN] == 0:
self.DOTS.append([(self.BLOCK_WIDTH * COLUMN),
(self.BLOCK_HEIGHT * ROW), 4, 4])
# Saves the position of each wall
if self.MATRIX[ROW][COLUMN] == 1:
self.WALLS.append(pygame.draw.rect(MazeSurface, WHITE,
[((self.BLOCK_WIDTH) * COLUMN),
((self.BLOCK_HEIGHT) * ROW),
self.BLOCK_WIDTH, self.BLOCK_HEIGHT]))
# Saves the position of each Energizer
if self.MATRIX[ROW][COLUMN] == 3:
self.ENERGIZER.append([(self.BLOCK_WIDTH * COLUMN),
(self.BLOCK_HEIGHT * ROW), 14, 14])
if self.MATRIX[ROW][COLUMN] == 4:
self.GHOSTS.append([(self.BLOCK_WIDTH * COLUMN),
(self.BLOCK_HEIGHT * ROW), 23, 23])
for WALL in self.WALLS:
X, Y, WIDTH, HEIGHT = WALL
self.WALLS_XY.append((X, Y))
class Main(Maze):
def __init__(self):
# Inherits Maze class
Maze.__init__(self)
self.TimeBetweenBites = 0.1
self.LastBiteTime = time.time()
self.MouthOpen = False
self.PacManDirection = ""
self.GhostDirection = ""
self.SCORE = 0
self.HIGH_SCORE = 0
self.GridSizeX = SCREEN_HEIGHT // 19
self.GridSizeY = SCREEN_HEIGHT // 32
def PacManMovement(self):
key = pygame.key.get_pressed()
if key[pygame.K_LEFT] and not key[pygame.K_UP] \
and not key[pygame.K_DOWN]:
self.PacManDirection = "LEFT"
elif key[pygame.K_RIGHT] and not key[pygame.K_UP] \
and not key[pygame.K_DOWN]:
self.PacManDirection = "RIGHT"
elif key[pygame.K_UP] and not key[pygame.K_LEFT] \
and not key[pygame.K_RIGHT]:
self.PacManDirection = "UP"
elif key[pygame.K_DOWN] and not key[pygame.K_LEFT] \
and not key[pygame.K_RIGHT]:
self.PacManDirection = "DOWN"
def ContinuePacManMovement(self):
if self.PacManDirection == "LEFT":
CurrentRect.x -= SPEED
self.PacManWallDetection(-1, 0, CurrentRect)
if self.PacManDirection == "RIGHT":
CurrentRect.x += SPEED
self.PacManWallDetection(1, 0, CurrentRect)
if self.PacManDirection == "UP":
CurrentRect.y -= SPEED
self.PacManWallDetection(0, -1, CurrentRect)
if self.PacManDirection == "DOWN":
CurrentRect.y += SPEED
self.PacManWallDetection(0, 1, CurrentRect)
def ContinueGhostMovement(self):
if self.GhostDirection == "LEFT":
PinkGhostRect.x -= SPEED
self.GhostWallDetection(-1, 0, PinkGhostRect)
if self.GhostDirection == "RIGHT":
PinkGhostRect.x += SPEED
self.GhostWallDetection(1, 0, PinkGhostRect)
if self.GhostDirection == "UP":
PinkGhostRect.y -= SPEED
self.GhostWallDetection(0, -1, PinkGhostRect)
if self.GhostDirection == "DOWN":
PinkGhostRect.y += SPEED
self.GhostWallDetection(-1, 0, PinkGhostRect)
def PacManTeleport(self):
if CurrentRect.right < 0:
CurrentRect.right = SCREEN_WIDTH + 20
if CurrentRect.left > SCREEN_WIDTH:
CurrentRect.right = 0
def GhostTeleport(self, Intersection):
if PinkGhostRect.right < 0:
PinkGhostRect.right = SCREEN_WIDTH + 20
Intersection.append("LEFT")
if PinkGhostRect.left > SCREEN_WIDTH:
PinkGhostRect.right = 0
Intersection.append("RIGHT")
def PacManWallDetection(self, x, y, CurrentRect):
CurrentRect.right += x
for WALL in self.WALLS:
COLLIDE = CurrentRect.colliderect(WALL)
if COLLIDE:
if x < 0:
CurrentRect.left = WALL.right
CurrentSurface = pygame.transform.rotate(PacManSurface, 180)
MazeSurface.blit(CurrentSurface, CurrentRect)
if x > 0:
CurrentRect.right = WALL.left
break
CurrentRect.top += y
for WALL in self.WALLS:
COLLIDE = CurrentRect.colliderect(WALL)
if COLLIDE:
if y < 0:
CurrentRect.top = WALL.bottom
if y > 0:
CurrentRect.bottom = WALL.top
break
def GhostWallDetection(self, x, y, PinkGhostRect):
PinkGhostRect.right += x
for WALL in self.WALLS:
COLLIDE = PinkGhostRect.colliderect(WALL)
if COLLIDE:
if x < 0:
PinkGhostRect.left = WALL.right
if random.randrange(0, 100) <= 40:
self.GhostDirection = "RIGHT"
if x > 0:
PinkGhostRect.right = WALL.left
if random.randrange(0, 100) <= 40:
self.GhostDirection = "LEFT"
break
PinkGhostRect.top += y
for WALL in self.WALLS:
COLLIDE = PinkGhostRect.colliderect(WALL)
if COLLIDE:
if y < 0:
PinkGhostRect.top = WALL.bottom
if random.randrange(0, 100) <= 40:
self.GhostDirection = "DOWN"
if y > 0:
PinkGhostRect.bottom = WALL.top
if random.randrange(0, 100) <= 40:
self.GhostDirection = "UP"
break
def GetAvailableMoves(self):
Intersection = []
self.GhostTeleport(Intersection)
print(PinkGhostRect.topleft)
print(self.WALLS_XY)
if ((PinkGhostRect.x - 1, PinkGhostRect.y)) not in self.WALLS_XY:
Intersection.append("LEFT")
if ((PinkGhostRect.x + 1, PinkGhostRect.y)) not in self.WALLS_XY:
Intersection.append("RIGHT")
if ((PinkGhostRect.x, PinkGhostRect.y - 1)) not in self.WALLS_XY:
Intersection.append("UP")
if ((PinkGhostRect.x, PinkGhostRect.y + 1)) not in self.WALLS_XY:
Intersection.append("DOWN")
print(Intersection)
return Intersection
def EatDots(self):
for ROW in range(len(self.MATRIX)):
for COLUMN in range(len(self.MATRIX[0])):
for DOT in self.DOTS:
CHOMP = CurrentRect.colliderect(DOT)
if CHOMP:
Main.PlaySound(self, 0)
self.DOTS.remove(DOT)
self.MATRIX[ROW][COLUMN] = 3
self.SCORE += 10
if self.SCORE > self.HIGH_SCORE:
self.HIGH_SCORE = self.SCORE
return str(self.SCORE), str(self.HIGH_SCORE)
def EatEnergizer(self):
for ROW in range(len(self.MATRIX)):
for COLUMN in range(len(self.MATRIX[0])):
for POWERUP in self.ENERGIZER:
CHOMP = CurrentRect.colliderect(POWERUP)
if CHOMP:
self.ENERGIZER.remove(POWERUP)
self.MATRIX[ROW][COLUMN] = 3
self.SCORE += 50
Main.PlaySound(self, 1)
if self.SCORE > self.HIGH_SCORE:
self.HIGH_SCORE = self.SCORE
return str(self.SCORE), str(self.HIGH_SCORE)
def EatGhosts(self):
pass
def DrawDots(self):
for POSITION in self.DOTS:
X = POSITION[0] + 13
Y = POSITION[1] + 13
WIDTH = POSITION[2]
HEIGHT = POSITION[3]
pygame.draw.circle(MazeSurface, YELLOW, (X, Y),
WIDTH // 2, HEIGHT // 2)
def DrawEnergizer(self):
for POSITION in self.ENERGIZER:
X = POSITION[0] + 13
Y = POSITION[1] + 13
WIDTH = POSITION[2]
HEIGHT = POSITION[3]
pygame.draw.circle(MazeSurface, YELLOW, (X, Y),
WIDTH // 2, HEIGHT // 2)
def DrawGhosts(self):
MazeSurface.blit(PinkGhostSurface, PinkGhostRect)
MazeSurface.blit(YellowGhostSurface, YellowGhostRect)
MazeSurface.blit(RedGhostSurface, RedGhostRect)
MazeSurface.blit(BlueGhostSurface, BlueGhostRect)
def GhostStartPosition(self):
X, Y, WIDTH, HEIGHT = self.GHOSTS[0]
PinkGhostRect.x = X
PinkGhostRect.y = Y
X, Y, WIDTH, HEIGHT = self.GHOSTS[1]
YellowGhostRect.x = X
YellowGhostRect.y = Y
X, Y, WIDTH, HEIGHT = self.GHOSTS[2]
RedGhostRect.x = X
RedGhostRect.y = Y
X, Y, WIDTH, HEIGHT = self.GHOSTS[3]
BlueGhostRect.x = X
BlueGhostRect.y = Y
def PlaySound(self, Track):
if Track == 0:
Eat = pygame.mixer.Sound("pacman_chomp.wav")
Eat.play()
pygame.mixer.fadeout(400)
if Track == 1:
EatPellet = pygame.mixer.Sound("pacman_eatghost.wav")
EatPellet.play()
pygame.mixer.music.play(7)
pygame.mixer.fadeout(400)
def ShowScore(self):
global Font
OneUpText = Font.render("1UP", True, WHITE)
OneUpTextRect = OneUpText.get_rect(center = (70, 10))
# Displays current score
OneUpScoreText = Font.render(str(self.SCORE), True, WHITE)
OneUpScoreRect = OneUpScoreText.get_rect(center =
((SCREEN_WIDTH - 290)
// 2, 26))
HighScoreText = Font.render("High Score", True, WHITE)
HighScoreTextRect = HighScoreText.get_rect(center =
(SCREEN_WIDTH // 2, 10))
# Displays High Score
HighScoreNumber = Font.render(str(self.HIGH_SCORE), True, WHITE)
HighScoreNumberRect = HighScoreNumber.get_rect(center =
((SCREEN_WIDTH + 90)
// 2, 26))
SCREEN.blit(OneUpText, OneUpTextRect)
SCREEN.blit(OneUpScoreText, OneUpScoreRect)
SCREEN.blit(HighScoreText, HighScoreTextRect)
SCREEN.blit(HighScoreNumber, HighScoreNumberRect)
def PacManBite(self):
global CurrentSurface
CurrentTime = time.time()
if CurrentTime - self.LastBiteTime >= self.TimeBetweenBites:
self.LastBiteTime = CurrentTime
if self.MouthOpen:
CurrentSurface = PacManStartSurface
else:
CurrentSurface = PacManSurface
self.MouthOpen = not self.MouthOpen
if self.PacManDirection == "LEFT":
CurrentSurface = pygame.transform.rotate(CurrentSurface, 180)
if self.PacManDirection == "RIGHT":
CurrentSurface = CurrentSurface
if self.PacManDirection == "UP":
CurrentSurface = pygame.transform.rotate(CurrentSurface, 90)
if self.PacManDirection == "DOWN":
CurrentSurface = pygame.transform.rotate(CurrentSurface, 270)
def PacManLives(self):
pass
def Update(self):
Player.PacManTeleport()
Player.ContinuePacManMovement()
Player.ContinueGhostMovement()
Player.GetAvailableMoves()
MazeSurface.blit(BackgroundSurface, BackgroundRect)
Player.DrawDots()
Player.DrawEnergizer()
Player.DrawGhosts()
Player.EatDots()
Player.EatEnergizer()
MazeSurface.blit(CurrentSurface, CurrentRect)
Player.PacManBite()
SCREEN.blit(MazeSurface, MazeRect)
Player.ShowScore()
Player = Main()
BackgroundSurface = pygame.transform.scale(BackgroundSurface,
(Player.MAZE_WIDTH,
Player.MAZE_HEIGHT))
BackgroundRect = BackgroundSurface.get_rect()
MazeSurface = pygame.Surface((Player.MAZE_WIDTH, Player.MAZE_HEIGHT))
MazeRect = MazeSurface.get_rect(topleft = (Player.MAZE_OFFSET_X,
Player.MAZE_OFFSET_Y))
Player.DrawMaze(MazeSurface)
Player.GhostStartPosition()
'''
Before the game starts ...
pregame = True
while pregame:
if key button pressed:
pregame = False
run = True
'''
run = True
while run:
SCREEN.fill(BLACK)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
if event.type == pygame.KEYDOWN:
Player.PacManMovement()
Player.Update()
pygame.display.update()
CLOCK.tick(FPS)
pygame.quit()
You just need to divide the position in the grid by the size of a tile with the // (floor-division) operator:
pos_in_maze = (225, 175)
column = pos_in_maze[0] // Player.BLOCK_WIDTH
row = pos_in_maze[1] // Player.BLOCK_HEIGHT
Since the size of a tile is 25 the results are 9 for the column and 7 for the row.
screen_pos = (225, 175)
column = (screen_pos[0] - Player.MAZE_OFFSET_X) // Player.BLOCK_WIDTH
row = (screen_pos[1] - Player.MAZE_OFFSET_Y) // Player.BLOCK_HEIGHT
Since MAZE_OFFSET_X is 0 and MAZE_OFFSET_Y is 50 the results are 9 for the column and 5 for the row.
When the big circle touches the little circles I want the little circle that it touched to disappear from the screen. However, I can't figure out how exactly you delete an individual drawing in pygame. How do I fix this issue? does pygame have this feature built-in?
from pygame import *
import random as rd
import math as m
init()
screen = display.set_mode((800, 600))
p_1_x = 200
p_1_y = 200
p_1_change_x = 0
p_1_change_y = 0
def p_1(x, y):
player_1 = draw.circle(screen, (0, 0, 0), (x, y), 15)
def pick_up(x, y, xx, yy):
distance = m.sqrt(m.pow(xx - x, 2) + m.pow(yy - y, 2))
if distance < 19:
# I think the code to delete should go here
pass
dots = []
locations = []
for i in range(5):
x = rd.randint(100, 700)
y = rd.randint(100, 500)
locations.append((x, y))
while True:
screen.fill((255, 255, 255))
for events in event.get():
if events.type == QUIT:
quit()
if events.type == KEYDOWN:
if events.key == K_RIGHT:
p_1_change_x = 1
if events.key == K_LEFT:
p_1_change_x = -1
if events.key == K_UP:
p_1_change_y += 1
if events.key == K_DOWN:
p_1_change_y -= 1
if events.type == KEYUP:
if events.key == K_RIGHT or K_LEFT or K_UP or K_DOWN:
p_1_change_x = 0
p_1_change_y = 0
p_1_x += p_1_change_x
p_1_y -= p_1_change_y
for i, locate in enumerate(locations):
dot = draw.circle(screen, (0, 0, 0), locate, 5)
dots.append(dot)
for l in enumerate(locate):
pick_up(p_1_x, p_1_y, locate[0], locate[1])
p_1(p_1_x, p_1_y)
display.update()
Your code was so messy and hard to maintain, first I made 2 classes for Balls & Dots.
I detect collision by pygame.Rect.colliderect, first I make 2 rectangle then I check the collision like this:
def pick_up(ball, dot):
ball_rect = Rect( ball.x - ball.SIZE , ball.y - ball.SIZE , ball.SIZE*2, ball.SIZE*2)
dot_rect = Rect( dot.x - dot.SIZE , dot.y - dot.SIZE , dot.SIZE*2, dot.SIZE*2)
if ball_rect.colliderect(dot_rect):
return True
return False
If collision detects I remove it from dots array in the while loop:
for dot in dots:
if pick_up(ball, dot): # if dot in range ball
dots.remove(dot)
dot.draw()
Here is the whole source:
from pygame import *
import random as rd
SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
NUMBER_OF_DOTS = 5
class Ball():
SIZE = 15
def __init__(self, x, y):
self.x = x
self.y = y
def draw(self):
draw.circle(screen, (0, 0, 0), (self.x, self.y), Ball.SIZE)
def move(self, vx, vy):
self.x += vx
self.y += vy
class Dot():
SIZE = 5
def __init__(self, x, y):
self.x = x
self.y = y
def draw(self):
draw.circle(screen, (0, 0, 0), (self.x, self.y), Dot.SIZE)
def pick_up(ball, dot):
ball_rect = Rect( ball.x - ball.SIZE , ball.y - ball.SIZE , ball.SIZE*2, ball.SIZE*2)
dot_rect = Rect( dot.x - dot.SIZE , dot.y - dot.SIZE , dot.SIZE*2, dot.SIZE*2)
if ball_rect.colliderect(dot_rect):
return True
return False
init()
screen = display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
dots = []
ball = Ball(200,200)
# generate dots
for i in range(NUMBER_OF_DOTS):
x = rd.randint(100, 700)
y = rd.randint(100, 500)
dots.append(Dot(x,y))
# the main game loop
while True:
screen.fill((255, 255, 255))
keys=key.get_pressed()
for events in event.get():
keys=key.get_pressed()
if events.type == QUIT:
quit()
if keys[K_RIGHT]:
ball.move(+1,0)
if keys[K_LEFT]:
ball.move(-1,0)
if keys[K_UP]:
ball.move(0,-1)
if keys[K_DOWN]:
ball.move(0,+1)
for dot in dots:
dot.draw()
if pick_up(ball, dot):
dots.remove(dot)
ball.draw()
display.update()
time.delay(1) # Speed down
Update1:
PyGame Rectangle Collision
http://www.pygame.org/docs/ref/rect.html#pygame.Rect.colliderect
Update2:
I make a repo in the github and did some changes,
Dots are colorful, new dot gets random color and the ball gets bigger whenever eats a dot.
https://github.com/peymanmajidi/Ball-And-Dots-Game__Pygame
The code should delete it from the locations list so that it's not re-drawn in the future. You clear the screen each frame, so clearing + not-redrawing is "deleting".
Say you modified pick_up() to simply return True or False:
def pick_up(x, y, xx, yy):
result = False
distance = m.sqrt(m.pow(xx - x, 2) + m.pow(yy - y, 2))
if distance < 19:
result = True # It was picked
return result
Then as you iterate through the locations list drawing & checking for being picked, save the index of the picked circles, then remove them from the locations in a second step. Using the 2-step form means you don't have to worry about accidentally skipping items if you delete from the list as you iterate over it.
p_1_x += p_1_change_x
p_1_y -= p_1_change_y
picked_up = [] # empty list to hold "picked" items
for i, locate in enumerate(locations):
dot = draw.circle(screen, (0, 0, 0), locate, 5)
dots.append(dot)
for l in enumerate(locate):
if ( pick_up(p_1_x, p_1_y, locate[0], locate[1]) ):
picked_up.append( i ) # save the index of anything "picked"
# remove any picked-up circles from the list
for index in sorted( picked_up, reverse=True ): # start with the highest index first
print( "Removing circle from location[%d]" % ( index ) ) # DEBUG
del( locations[ index ] )
This is my first time asking here, so sorry if I don't ask very well.
Lately I've been trying to make a Terraria-type game where you can break/place blocks in a randomly generated landscape. While trying to implement the breaking-block mechanic (which is triggered by clicking on a block), I ran into an issue. The block no longer became solid (that's a good thing), but the block's image is still there, and I can walk right through it.
A visual example:
Before breaking block vs.
After breaking block
Here's the code
Main file (hopefully only the relevant bits):
# Imports
import pygame as pg
import json
import sys
import random
import os
from settings import *
from world_handler import *
# Initialize pygame
pg.mixer.pre_init()
pg.init()
# Fonts
# NOTE: put fonts in here
# Helper functions
def load_image(file_path):
# Loads an image
img = pg.image.load(file_path)
return img
def play_sound(sound, loops=0, maxtime=0, fade_ms=0):
# Plays some audio
if sound_on:
sound.play(loops, maxtime, fade_ms)
def play_music():
# Plays background music
if sound_on:
pg.mixer.music.play(-1)
# File paths
current_path = os.path.dirname(__file__)
assets_path = os.path.join(current_path, "assets")
image_path = os.path.join(assets_path, "img")
# Images
player_standing = load_image((os.path.join(image_path, "player", "standing", "player-standing.png")))
player_walking1 = load_image((os.path.join(image_path, "player", "walking", "player-walking1.png")))
player_walking2 = load_image((os.path.join(image_path, "player", "walking", "player-walking2.png")))
player_walking3 = load_image((os.path.join(image_path, "player", "walking", "player-walking3.png")))
player_walking4 = load_image((os.path.join(image_path, "player", "walking", "player-walking4.png")))
player_jumping = load_image((os.path.join(image_path, "player", "jumping", "player-jumping.png")))
player_images = {"walking": [player_walking1, player_walking2, player_walking3, player_walking4],
"jumping": player_jumping,
"standing": player_standing}
block_images = {"Grass": load_image((os.path.join(image_path, "blocks", "grass.png"))),
"Dirt": load_image((os.path.join(image_path, "blocks", "dirt.png"))),
"Stone": load_image((os.path.join(image_path, "blocks", "stone.png")))}
cursor_tracker = load_image((os.path.join(image_path, "misc", "clear-single-pixel.png")))
class Entity(pg.sprite.Sprite):
def __init__(self, x, y, image):
# Initialize an entity
super().__init__()
self.image = image
self.rect = self.image.get_rect()
self.rect.x = x
self.rect.y = y
self.vx = 0
self.vy = 0
def apply_gravity(self, world):
# Let the enemy be affected by gravity
self.vy += world.gravity
self.vy = min(self.vy, world.terminal_velocity)
class Block(Entity):
def __init__(self, x, y, image):
# Initialize the block
super().__init__(x, y, image)
class Cursor(Entity):
def __init__(self, x, y, image):
# Initialize the invisible mouse cursor object
# This will be used to track where the mouse goes and if the mouse is on a block
super().__init__(x, y, image)
self.on_block = False
def follow_mouse(self):
# Make object follow the mouse
self.mouse_x, self.mouse_y = pg.mouse.get_pos()
self.rect.x = self.mouse_x
self.rect.y = self.mouse_y
def detect_block_collision(self, world):
# Detects collsion between cursor tracker and a block
hit_list = pg.sprite.spritecollide(self, world.blocks, True)
if len(hit_list) > 0:
pass
def update(self, world):
# Update the cursor object
self.follow_mouse()
world.active_sprites.add(self)
class Player(Entity):
def __init__(self, images):
# Initialize the player
super().__init__(0, 0, images["standing"])
# Images in each direction
self.image_standing_right = images["standing"]
self.image_standing_left = pg.transform.flip(self.image_standing_right, 1, 0)
self.images_walking_right = images["walking"]
self.images_walking_left = [pg.transform.flip(img, 1, 0) for img in self.images_walking_right]
self.image_jumping_right = images["jumping"]
self.image_jumping_left = pg.transform.flip(self.image_jumping_right, 1, 0)
# Player variables
self.running_images = self.images_walking_right
self.image_index = 0
self.steps = 0
self.speed = 3.5
self.jump_power = 12
self.vx = 0
self.vy = 0
self.direction = "right"
self.on_ground = True
self.score = 0
self.health = 100
self.max_health = 100
self.invincibility = 0
def move_left(self):
# Move to the left
self.vx = -self.speed + 0.9
self.direction = "left"
def move_right(self):
# Move to the rightS
self.vx = self.speed
self.direction = "right"
def stop(self):
# Stop it right there
self.vx = 0
def jump(self, blocks):
# Jump up, jump up, and get down
self.rect.y += 1
hit_list = pg.sprite.spritecollide(self, blocks, False)
if len(hit_list) > 0:
self.vy = -1 * self.jump_power
self.rect.y -= 1
def check_world_boundaries(self, world):
# Make sure the player doesn"t walk off the world
if self.rect.left < 0:
self.rect.left = 0
elif self.rect.right > world.width:
self.rect.right = world.width
def move_and_process_blocks(self, blocks):
# Detect block collisions
# Block side collisions
self.rect.x += self.vx
hit_list = pg.sprite.spritecollide(self, blocks, False)
for block in hit_list:
if self.vx > 0:
self.rect.right = block.rect.left
self.vx = 0
elif self.vx < 0:
self.rect.left = block.rect.right
self.vx = 0
self.on_ground = False
# Block top and bottom collisions
self.rect.y += self.vy + 1 # The +1 isn"t necessary, but it helps
hit_list = pg.sprite.spritecollide(self, blocks, False)
for block in hit_list:
if self.vy > 0:
self.rect.bottom = block.rect.top
self.on_ground = True
self.vy = 0
elif self.vy < 0:
self.rect.top = block.rect.bottom
self.on_ground = True
self.vy = 0
def set_image(self):
# Set images and animate
if self.on_ground:
if self.vx != 0:
if self.direction == "right":
self.walking_images = self.images_walking_right
elif self.direction == "left":
self.walking_images = self.images_walking_left
self.steps = (self.steps + 1) % self.speed
if self.steps == 0:
self.image_index = (self.image_index + 1) % len(self.walking_images)
self.image = self.walking_images[self.image_index]
else:
if self.direction == "right":
self.image = self.image_standing_right
elif self.direction == "left":
self.image = self.image_standing_left
else:
if self.direction == "right":
self.image = self.image_jumping_right
elif self.direction == "left":
self.image = self.image_jumping_left
def die(self):
# D E D
pass
def check_block_breaks(self, blocks):
# Break a block
# mouse_pos = pg.mouse.get_pos()
# for block in blocks:
# if block.rect.collidepoint(mouse_pos):
# print("hi")
pass
def respawn(self, world):
# Hey, you"re back!
self.rect.x = world.start_x
self.rect.y = world.start_y
self.health = self.max_health
self.invincibility = 0
self.direction = "right"
def update(self, world):
# Constantly update the player
self.apply_gravity(world)
self.move_and_process_blocks(world.blocks)
self.check_world_boundaries(world)
self.set_image()
self.check_block_breaks(world.blocks)
if self.health > 0:
if self.invincibility > 0:
self.invincibility -= 1
else:
self.die()
class Game():
def __init__(self):
# Initialize the game itself
self.window = pg.display.set_mode([WINDOWWIDTH, WINDOWHEIGHT])
pg.display.set_caption(TITLE)
self.clock = pg.time.Clock()
self.done = False
self.reset()
def start(self):
# Start the whole thing up
self.world = World(worlds[self.current_world])
self.cursor = Cursor(0, 0, cursor_tracker)
self.world.reset()
self.player.respawn(self.world)
def reset(self):
# Reset the game
self.player = Player(player_images)
self.current_world = 0
self.start()
def update(self):
# Update things in the game
self.player.update(self.world)
self.cursor.update(self.world)
if self.player.health <= 0:
self.player.respawn(self.world)
def calculate_offset(self):
# Calculate x/y coordinates after screen scrolls
x = -1 * self.player.rect.centerx + WINDOWWIDTH / 2
if self.player.rect.centerx < WINDOWWIDTH / 2:
x = 0
elif self.player.rect.centerx > self.world.width - WINDOWWIDTH / 2:
x = -1 * self.world.width + WINDOWWIDTH
y = -1 * self.player.rect.centery + WINDOWHEIGHT / 2
if self.player.rect.centery < WINDOWHEIGHT / 2:
y = 0
elif self.player.rect.centery > self.world.height - WINDOWHEIGHT / 2:
y = -1 * self.world.height + WINDOWHEIGHT
return x, y
def draw(self):
# Draw sprites to the screen
self.offset_x, self.offset_y = self.calculate_offset()
self.world.active_layer.fill(TRANSPARENT)
self.world.active_sprites.draw(self.world.active_layer)
if self.player.invincibility % 3 < 2:
self.world.active_layer.blit(self.player.image, [self.player.rect.x, self.player.rect.y])
self.window.blit(self.world.background_layer, [self.offset_x / 3, self.offset_y])
self.window.blit(self.world.inactive_layer, [self.offset_x, self.offset_y])
self.window.blit(self.world.active_layer, [self.offset_x, self.offset_y])
self.offset_cursor_x = self.cursor.rect.x - self.offset_x
self.offset_cursor_y = self.cursor.rect.y - self.offset_y
self.cursor.rect.x = self.offset_cursor_x
self.cursor.rect.y = self.offset_cursor_y
pg.display.update(0, 0, WINDOWWIDTH, WINDOWHEIGHT)
def process_events(self):
# Handle events (key presses, mouse clicks, etc)
for event in pg.event.get():
if event.type == pg.QUIT:
self.done = True
elif event.type == pg.KEYDOWN:
# Jump
if event.key == JUMP:
self.player.jump(self.world.blocks)
# Debug reset
elif event.key == pg.K_r:
self.reset()
# Debug close
elif event.key == pg.K_q:
self.done = True
# Break a block if you click on it
if event.type == pg.MOUSEBUTTONDOWN:
# for block in self.world.blocks:
# if block.rect.collidepoint(self.offset_cursor_x, self.offset_cursor_y):
# block.kill()
self.cursor.detect_block_collision(self.world)
pressed = pg.key.get_pressed()
if pressed[LEFT]:
self.player.move_left()
elif pressed[RIGHT]:
self.player.move_right()
else:
self.player.stop()
def loop(self):
# Loop through essential functions
while not self.done:
self.process_events()
self.update()
self.draw()
self.clock.tick(FPS)
if __name__ == "__main__":
# Begin the loop and pre-initialize the game
game = Game()
game.start()
game.loop()
pg.quit()
sys.exit()
World Handler (generated blocks and adds them to groups):
Some parts are commented out because they serve no purpose yet, but will soon.
# Imports
import pygame as pg
import json
import random
import os
from settings import *
from main import *
# Initialize pygame
pg.init()
class World():
def __init__(self, file_path):
# Initialize the world
# Starting entities
self.starting_blocks = []
# Entity groups
self.blocks = pg.sprite.Group()
# Sprite groups (active/inactive)
self.active_sprites = pg.sprite.Group()
self.inactive_sprites = pg.sprite.Group()
# Read the world json file
with open(file_path, "r") as f:
data = f.read()
map_data = json.loads(data)
# World width and height
self.width = map_data["width"] * GRID_SIZE
self.height = map_data["height"] * GRID_SIZE
# Player start position
self.start_x = map_data["start"][0] * GRID_SIZE
self.start_y = map_data["start"][1] * GRID_SIZE
# Load blocks
for item in map_data["blocks"]:
x, y = item[0] * GRID_SIZE, item[1] * GRID_SIZE
img = block_images[item[2]]
self.starting_blocks.append(Block(x, y, img))
# Layers
self.background_layer = pg.Surface([self.width, self.height], pg.SRCALPHA, 32)
self.inactive_layer = pg.Surface([self.width, self.height], pg.SRCALPHA, 32)
self.active_layer = pg.Surface([self.width, self.height], pg.SRCALPHA, 32)
# Load background color
if map_data["bg-color"] != "":
self.background_layer.fill(map_data["bg-color"])
# Load background image
# if map_data["bg-image"] != "":
# bg_image = pg.image.load(map_data["bg-image"]).convert_alpha()
#
# if map_data["bg-fill-y"]:
# h = bg_image.get_height()
# w = int(bg_image.get_width() * WINDOWHEIGHT / h)
# bg_image = pg.transform.scale(bg_image, (w, WINDOWHEIGHT))
#
# if "top" in map_data["bg-position"]:
# start_y = 0
# elif "bottom" in map_data["bg-postion"]:
# start_y = self.height = bg_image.get_height()
#
# if map_data["bg-repeat-x"]:
# for x in range(0, self.width, bg_image.get_width()):
# self.background_layer.blit(bg_image, [x, start_y])
# else:
# self.background_layer.blit(bg_image, [0, start_y])
# Load background music
# pg.mixer.music.load(map_data["music"])
# Set the world's gravity strength and terminal velocity
self.gravity = map_data["gravity"]
self.terminal_velocity = map_data["terminal-velocity"]
# Grass generator
if map_data["gen-type"] == "earth":
gen_loop = map_data["width"]
x = 0
y = 56 * GRID_SIZE # The general y coordinate for block placing
y_gen = 56 * GRID_SIZE # Stored to be referenced in order to make a smoother landscape
for i in range (0, map_data["width"]):
# Generate grass
img = block_images["Grass"]
self.starting_blocks.append(Block(x, y, img))
y += GRID_SIZE
# Generate dirt
for i in range(0, 6):
img = block_images["Dirt"]
self.starting_blocks.append(Block(x, y, img))
y += GRID_SIZE
# Generate stone
for i in range(1, int((self.height / GRID_SIZE))):
img = block_images["Stone"]
self.starting_blocks.append(Block(x, y, img))
y += GRID_SIZE
y = y_gen
x += GRID_SIZE
gen_loop -= 1
# Randomly decide what the next grass' y will be in relation to the previous one
random_grass = random.randint(0, 5)
# The lowest point you'll find a block of grass
lowest_grass_y = 53 * GRID_SIZE
# How extreme the changes in block heights will be
# 0 is flat, 1 will have pretty smooth terrain, while something like 10 would be super steep
gen_extremity = 1
# Keep the grass at the same y
if random_grass == 0 or random_grass == 1 or random_grass == 2 or random_grass == 3:
gen_loop -= 1
if y <= lowest_grass_y:
y += GRID_SIZE
# Increase y
elif random_grass == 4:
y_gen += GRID_SIZE * gen_extremity
if y <= lowest_grass_y:
y += GRID_SIZE
# Decrease y
elif random_grass == 5:
y_gen -= GRID_SIZE * gen_extremity
if y <= lowest_grass_y:
y += GRID_SIZE
else:
raise ValueError("How did we get here? Grass generator somehow generated an invalid number.")
# Add starting entities to their groups
self.blocks.add(self.starting_blocks)
# Add sprites to inactive/active sprite groups
self.inactive_sprites.add(self.blocks)
# Does... something?
for s in self.active_sprites:
s.image.convert()
for s in self.inactive_sprites:
s.image.convert()
# Draw inactive sprites to the inactive layer
self.inactive_sprites.draw(self.inactive_layer)
# Convert layers
self.background_layer.convert()
self.inactive_layer.convert()
self.active_layer.convert()
Setting file (to help you recreate the issue and find out what's going on
# Imports
import pygame as pg
import os
# File paths
current_path = os.path.dirname(__file__)
assets_path = os.path.join(current_path, 'assets')
image_path = os.path.join(assets_path, 'img')
# Window settings
TITLE = "Mooncraft"
WINDOWWIDTH = 960
WINDOWHEIGHT = 640
FPS = 60
GRID_SIZE = 32
# Options
sound_on = True
# Controls
LEFT = pg.K_a
RIGHT = pg.K_d
JUMP = pg.K_SPACE
# Colors
TRANSPARENT = (0, 0, 0, 0)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
# World files
worlds = [(os.path.join(assets_path, 'worlds', 'earth.json'))]
If someone could explain what I'm doing wrong, it would be much appreciated.
Update 2: Added player class and settings file to help anyone willing to assist me find the issue.
From just a glance, it looks like you might not be clearing the screen at any point in the update loop, but rather drawing over what was already there. This would result in the block still being visible, but not actually there. Try adding screen.fill(#Color here) before flipping the display. Also try using pygame.display.update() instead of pygame.display.flip()
You can do this:
all_sprites = pg.sprite.Group()
all_sprites.add(your_sprite)
#your event:
all_sprites.remove(your_sprite)
So first here is my code:
import pygame, sys, random
from pygame.locals import *
# Create the constants (go ahead and experiment with different values)
BOARDWIDTH = 4 # number of columns in the board
BOARDHEIGHT = 4 # number of rows in the board
TILESIZE = 80
WINDOWWIDTH = 640
WINDOWHEIGHT = 480
FPS = 30
BLANK = None
# R G B
BLACK = ( 0, 0, 0)
WHITE = (255, 255, 255)
BRIGHTBLUE = ( 0, 50, 255)
DARKTURQUOISE = ( 3, 54, 73)
GREEN = ( 0, 204, 0)
BGCOLOR = DARKTURQUOISE
TILECOLOR = GREEN
TEXTCOLOR = WHITE
BORDERCOLOR = BRIGHTBLUE
BASICFONTSIZE = 20
BUTTONCOLOR = WHITE
BUTTONTEXTCOLOR = BLACK
MESSAGECOLOR = WHITE
XMARGIN = int((WINDOWWIDTH - (TILESIZE * BOARDWIDTH + (BOARDWIDTH - 1))) / 2)
YMARGIN = int((WINDOWHEIGHT - (TILESIZE * BOARDHEIGHT + (BOARDHEIGHT - 1))) / 2)
UP = 'up'
DOWN = 'down'
LEFT = 'left'
RIGHT = 'right'
def main():
global FPSCLOCK, DISPLAYSURF, BASICFONT, RESET_SURF, RESET_RECT, NEW_SURF, NEW_RECT, SOLVE_SURF, SOLVE_RECT
pygame.init()
FPSCLOCK = pygame.time.Clock()
DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))
pygame.display.set_caption('Slide Puzzle')
BASICFONT = pygame.font.Font('freesansbold.ttf', BASICFONTSIZE)
# Store the option buttons and their rectangles in OPTIONS.
RESET_SURF, RESET_RECT = makeText('Reset', TEXTCOLOR, TILECOLOR, WINDOWWIDTH - 120, WINDOWHEIGHT - 90)
NEW_SURF, NEW_RECT = makeText('New Game', TEXTCOLOR, TILECOLOR, WINDOWWIDTH - 120, WINDOWHEIGHT - 60)
SOLVE_SURF, SOLVE_RECT = makeText('Solve', TEXTCOLOR, TILECOLOR, WINDOWWIDTH - 120, WINDOWHEIGHT - 30)
mainBoard, solutionSeq = generateNewPuzzle(80)
SOLVEDBOARD = getStartingBoard() # a solved board is the same as the board in a start state.
allMoves = [] # list of moves made from the solved configuration
while True: # main game loop
slideTo = None # the direction, if any, a tile should slide
msg = 'Click tile or press arrow keys to slide.' # contains the message to show in the upper left corner.
if mainBoard == SOLVEDBOARD:
msg = 'Solved!'
drawBoard(mainBoard, msg)
checkForQuit()
for event in pygame.event.get(): # event handling loop
if event.type == MOUSEBUTTONUP:
spotx, spoty = getSpotClicked(mainBoard, event.pos[0], event.pos[1])
if (spotx, spoty) == (None, None):
# check if the user clicked on an option button
if RESET_RECT.collidepoint(event.pos):
resetAnimation(mainBoard, allMoves) # clicked on Reset button
allMoves = []
elif NEW_RECT.collidepoint(event.pos):
mainBoard, solutionSeq = generateNewPuzzle(80) # clicked on New Game button
allMoves = []
elif SOLVE_RECT.collidepoint(event.pos):
resetAnimation(mainBoard, solutionSeq + allMoves) # clicked on Solve button
allMoves = []
else:
# check if the clicked tile was next to the blank spot
blankx, blanky = getBlankPosition(mainBoard)
if spotx == blankx + 1 and spoty == blanky:
slideTo = LEFT
elif spotx == blankx - 1 and spoty == blanky:
slideTo = RIGHT
elif spotx == blankx and spoty == blanky + 1:
slideTo = UP
elif spotx == blankx and spoty == blanky - 1:
slideTo = DOWN
elif event.type == KEYUP:
# check if the user pressed a key to slide a tile
if event.key in (K_LEFT, K_a) and isValidMove(mainBoard, LEFT):
slideTo = LEFT
elif event.key in (K_RIGHT, K_d) and isValidMove(mainBoard, RIGHT):
slideTo = RIGHT
elif event.key in (K_UP, K_w) and isValidMove(mainBoard, UP):
slideTo = UP
elif event.key in (K_DOWN, K_s) and isValidMove(mainBoard, DOWN):
slideTo = DOWN
if slideTo:
slideAnimation(mainBoard, slideTo, 'Click tile or press arrow keys to slide.', 8) # show slide on screen
makeMove(mainBoard, slideTo)
allMoves.append(slideTo) # record the slide
pygame.display.update()
FPSCLOCK.tick(FPS)
def terminate():
pygame.quit()
sys.exit()
def checkForQuit():
for event in pygame.event.get(QUIT): # get all the QUIT events
terminate() # terminate if any QUIT events are present
for event in pygame.event.get(KEYUP): # get all the KEYUP events
if event.key == K_ESCAPE:
terminate() # terminate if the KEYUP event was for the Esc key
pygame.event.post(event) # put the other KEYUP event objects back
def getStartingBoard():
# Return a board data structure with tiles in the solved state.
# For example, if BOARDWIDTH and BOARDHEIGHT are both 3, this function
# returns [[1, 4, 7], [2, 5, 8], [3, 6, BLANK]]
counter = 1
board = []
for x in range(BOARDWIDTH):
column = []
for y in range(BOARDHEIGHT):
column.append(counter)
counter += BOARDWIDTH
board.append(column)
counter -= BOARDWIDTH * (BOARDHEIGHT - 1) + BOARDWIDTH - 1
board[BOARDWIDTH-1][BOARDHEIGHT-1] = BLANK
return board
def getBlankPosition(board):
# Return the x and y of board coordinates of the blank space.
for x in range(BOARDWIDTH):
for y in range(BOARDHEIGHT):
if board[x][y] == BLANK:
return (x, y)
def makeMove(board, move):
# This function does not check if the move is valid.
blankx, blanky = getBlankPosition(board)
if move == UP:
board[blankx][blanky], board[blankx][blanky + 1] = board[blankx][blanky + 1], board[blankx][blanky]
elif move == DOWN:
board[blankx][blanky], board[blankx][blanky - 1] = board[blankx][blanky - 1], board[blankx][blanky]
elif move == LEFT:
board[blankx][blanky], board[blankx + 1][blanky] = board[blankx + 1][blanky], board[blankx][blanky]
elif move == RIGHT:
board[blankx][blanky], board[blankx - 1][blanky] = board[blankx - 1][blanky], board[blankx][blanky]
def isValidMove(board, move):
blankx, blanky = getBlankPosition(board)
return (move == UP and blanky != len(board[0]) - 1) or \
(move == DOWN and blanky != 0) or \
(move == LEFT and blankx != len(board) - 1) or \
(move == RIGHT and blankx != 0)
def getRandomMove(board, lastMove=None):
# start with a full list of all four moves
validMoves = [UP, DOWN, LEFT, RIGHT]
# remove moves from the list as they are disqualified
if lastMove == UP or not isValidMove(board, DOWN):
validMoves.remove(DOWN)
if lastMove == DOWN or not isValidMove(board, UP):
validMoves.remove(UP)
if lastMove == LEFT or not isValidMove(board, RIGHT):
validMoves.remove(RIGHT)
if lastMove == RIGHT or not isValidMove(board, LEFT):
validMoves.remove(LEFT)
# return a random move from the list of remaining moves
return random.choice(validMoves)
def getLeftTopOfTile(tileX, tileY):
left = XMARGIN + (tileX * TILESIZE) + (tileX - 1)
top = YMARGIN + (tileY * TILESIZE) + (tileY - 1)
return (left, top)
def getSpotClicked(board, x, y):
# from the x & y pixel coordinates, get the x & y board coordinates
for tileX in range(len(board)):
for tileY in range(len(board[0])):
left, top = getLeftTopOfTile(tileX, tileY)
tileRect = pygame.Rect(left, top, TILESIZE, TILESIZE)
if tileRect.collidepoint(x, y):
return (tileX, tileY)
return (None, None)
def drawTile(tilex, tiley, number, adjx=0, adjy=0):
# draw a tile at board coordinates tilex and tiley, optionally a few
# pixels over (determined by adjx and adjy)
left, top = getLeftTopOfTile(tilex, tiley)
pygame.draw.rect(DISPLAYSURF, TILECOLOR, (left + adjx, top + adjy, TILESIZE, TILESIZE))
textSurf = BASICFONT.render(str(number), True, TEXTCOLOR)
textRect = textSurf.get_rect()
textRect.center = left + int(TILESIZE / 2) + adjx, top + int(TILESIZE / 2) + adjy
DISPLAYSURF.blit(textSurf, textRect)
def makeText(text, color, bgcolor, top, left):
# create the Surface and Rect objects for some text.
textSurf = BASICFONT.render(text, True, color, bgcolor)
textRect = textSurf.get_rect()
textRect.topleft = (top, left)
return (textSurf, textRect)
def drawBoard(board, message):
DISPLAYSURF.fill(BGCOLOR)
if message:
textSurf, textRect = makeText(message, MESSAGECOLOR, BGCOLOR, 5, 5)
DISPLAYSURF.blit(textSurf, textRect)
for tilex in range(len(board)):
for tiley in range(len(board[0])):
if board[tilex][tiley]:
drawTile(tilex, tiley, board[tilex][tiley])
left, top = getLeftTopOfTile(0, 0)
width = BOARDWIDTH * TILESIZE
height = BOARDHEIGHT * TILESIZE
pygame.draw.rect(DISPLAYSURF, BORDERCOLOR, (left - 5, top - 5, width + 11, height + 11), 4)
DISPLAYSURF.blit(RESET_SURF, RESET_RECT)
DISPLAYSURF.blit(NEW_SURF, NEW_RECT)
DISPLAYSURF.blit(SOLVE_SURF, SOLVE_RECT)
def slideAnimation(board, direction, message, animationSpeed):
#This function does not check if the move is valid.
blankx, blanky = getBlankPosition(board)
if direction == UP:
movex = blankx
movey = blanky + 1
elif direction == DOWN:
movex = blankx
movey = blanky - 1
elif direction == LEFT:
movex = blankx + 1
movey = blanky
elif direction == RIGHT:
movex = blankx - 1
movey = blanky
# prepare the base surface
drawBoard(board, message)
baseSurf = DISPLAYSURF.copy()
# draw a blank space over the moving tile on the baseSurf Surface.
moveLeft, moveTop = getLeftTopOfTile(movex, movey)
pygame.draw.rect(baseSurf, BGCOLOR, (moveLeft, moveTop, TILESIZE, TILESIZE))
for i in range(0, TILESIZE, animationSpeed):
# animate the tile sliding over
checkForQuit()
DISPLAYSURF.blit(baseSurf, (0, 0))
if direction == UP:
drawTile(movex, movey, board[movex][movey], 0, -i)
if direction == DOWN:
drawTile(movex, movey, board[movex][movey], 0, i)
if direction == LEFT:
drawTile(movex, movey, board[movex][movey], -i, 0)
if direction == RIGHT:
drawTile(movex, movey, board[movex][movey], i, 0)
pygame.display.update()
FPSCLOCK.tick(FPS)
def generateNewPuzzle(numSlides):
# From a starting configuration, make numSlides number of moves (and
# animate these moves).
sequence = []
board = getStartingBoard()
drawBoard(board, '')
pygame.display.update()
pygame.time.wait(500) # pause 500 milliseconds for effect
lastMove = None
for i in range(numSlides):
move = getRandomMove(board, lastMove)
slideAnimation(board, move, 'Generating new puzzle...', animationSpeed=int(TILESIZE / 3))
makeMove(board, move)
sequence.append(move)
lastMove = move
return (board, sequence)
def resetAnimation(board, allMoves):
# make all of the moves in allMoves in reverse.
revAllMoves = allMoves[:] # gets a copy of the list
revAllMoves.reverse()
for move in revAllMoves:
if move == UP:
oppositeMove = DOWN
elif move == DOWN:
oppositeMove = UP
elif move == RIGHT:
oppositeMove = LEFT
elif move == LEFT:
oppositeMove = RIGHT
slideAnimation(board, oppositeMove, '', animationSpeed=int(TILESIZE / 2))
makeMove(board, oppositeMove)
if __name__ == '__main__':
main()
Here is the bubble sort code:
def shortBubbleSort(alist):
exchanges = True
passnum = len(alist)-1
while passnum > 0 and exchanges:
exchanges = False
for i in range(passnum):
if alist[i]>alist[i+1]:
exchanges = True
temp = alist[i]
alist[i] = alist[i+1]
alist[i+1] = temp
passnum = passnum-1
alist=[20,30,40,90,50,60,70,80,100,110]
shortBubbleSort(alist)
print(alist)
I am not sure how to select the numbers I have and arrange them using bubble sort method.
Oh - I found your code very complex for python and bubble-sort.
Here is the my view:
def bubbleSort(alist):
for passnum in range(len(alist)-1, 0, -1):
for i in range(passnum):
if alist[i] > alist[i+1]:
alist[i] , alist[i+1] = alist[i+1] , alist[i]
alist = [54,26,93,17,77,31,44,55,20]
bubbleSort(alist)
print(alist)
You do not need any flags or temp variables - this is the python, the language of magic! :) :) :) abracadabra!!!