Dash dropdown with linechart - python

I'm trying to connect a dropdown in dash with a figure. I'm using the following code:
df = pd.read_csv('https://api.statbank.dk/v1/data/mpk100/CSV?valuePresentation=Value&timeOrder=Ascending&LAND=*&Tid=*', sep=';')
df = df[df['INDHOLD'] != '..']
df['rate'] = df['INDHOLD'].str.replace(',', '.').astype(float)
df_countries = df['LAND'].unique()
df['TID'] = pd.to_datetime(df['TID']) #datetime
df.groupby('LAND')
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = JupyterDash(__name__, external_stylesheets=external_stylesheets)
# Create server variable with Flask server object for use with gunicorn
server = app.server
app.layout = html.Div([
html.Div([
html.Div([
dcc.Dropdown(id='linedropdown',
options=[{'label': i, 'value': i} for i in df_countries],
value='DANMARK',
multi=True,
clearable=False
),
],className='six columns'),
],className='row'),
html.Div([
html.Div([
dcc.Graph(id='linechart'),
],className='six columns'),
],className='row'),
])
#app.callback(
[Output('linechart', 'figure')],
[Input('linedropdown', 'value')]
)
def update_graph(linedropval):
df_filterd = df[df['LAND'].isin(['INDHOLD'])]
#extract list of chosen countries
list_chosen_countries=df_filterd['LAND'].tolist()
#filter original df according to chosen countries
#because original df has all the complete dates
df_line = df[df['LAND'].isin(list_chosen_countries)]
line_chart = px.line(
data_frame=df_line,
x='TID',
y=linedropval,
color='LAND',
labels={'Rate':'rate', 'Datetime':'date'},
)
line_chart.update_layout(uirevision='foo')
return (line_chart)
#------------------------------------------------------------------
app.run_server()
But I'm getting the following error in the dashboard:
ValueError: All arguments should have the same length. The length of
column argument `df[color]` is 0, whereas the length of previously-
processed arguments ['TID', 'y'] is 1
and
ValueError: Value of 'y' is not the name of a column in 'data_frame'.
Expected one of ['LAND', 'TID', 'INDHOLD', 'rate'] but received: DANMARK
How can i tackle this? The dropdown includes countries with their respectice interest rates over years. This should be simple. But i have issues with the callback.

While all the columns in your dataframe are upper-case:
Index(['LAND', 'TID', 'INDHOLD', 'rate'], dtype='object')
All strings in the column 'LAND' are mixed case:
array(['Belgien', 'Bulgarien', 'Danmark', 'Estland', 'Finland',
'Frankrig', 'Grækenland', 'Irland', 'Island', 'Italien', 'Letland',
'Litauen', 'Luxembourg', 'Nederlandene', 'Norge', 'Polen',
'Portugal', 'Rumænien', 'Rusland', 'Schweiz', 'Slovakiet',
'Slovenien', 'Spanien', 'Storbritannien', 'Sverige', 'Tjekkiet',
'Tyskland', 'Ungarn', 'Østrig', 'Sydafrika', 'Canada', 'Mexico',
'USA', 'Israel', 'Indien', 'Japan', 'Sydkorea', 'Tyrkiet',
'Australien', 'New Zealand', 'Euro-dollar-renten'], dtype=object)
And you're trying to reference all countries here using only uppper-case like 'DANMARK'.
Correcting that will launch the app with a working selector. The figure doesn't quite work though since your filtering is a bit weird. Let me know what you're trying to achieve here and we can take a look at that too.
Figure / App
Complete code:
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
df = pd.read_csv('https://api.statbank.dk/v1/data/mpk100/CSV?valuePresentation=Value&timeOrder=Ascending&LAND=*&Tid=*', sep=';')
df = df[df['INDHOLD'] != '..']
df['rate'] = df['INDHOLD'].str.replace(',', '.').astype(float)
df_countries = df['LAND'].unique()
df['TID'] = pd.to_datetime(df['TID']) #datetime
df.groupby('LAND')
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = JupyterDash(__name__, external_stylesheets=external_stylesheets)
# Create server variable with Flask server object for use with gunicorn
server = app.server
app.layout = html.Div([
html.Div([
html.Div([
dcc.Dropdown(id='linedropdown',
options=[{'label': i, 'value': i} for i in df_countries],
value='Danmark',
multi=True,
clearable=False
),
],className='six columns'),
],className='row'),
html.Div([
html.Div([
dcc.Graph(id='linechart'),
],className='six columns'),
],className='row'),
])
#app.callback(
[Output('linechart', 'figure')],
[Input('linedropdown', 'value')]
)
def update_graph(linedropval):
#global df_filtered
global df_line
df_filtered = df[df['LAND'].isin(['INDHOLD'])]
#extract list of chosen countries
list_chosen_countries=df_filterd['LAND'].tolist()
#filter original df according to chosen countries
#because original df has all the complete dates
df_line = df[df['LAND'].isin(list_chosen_countries)]
line_chart = px.line(
data_frame=df_line,
x='TID',
y=linedropval,
color='LAND',
labels={'Rate':'rate', 'Datetime':'date'},
)
line_chart.update_layout(uirevision='foo')
return (line_chart)
#------------------------------------------------------------------
# Run app and display result inline in the notebook
app.enable_dev_tools(dev_tools_hot_reload =True)
app.run_server(mode='inline', port = 8040, dev_tools_ui=True, debug=True,
dev_tools_hot_reload =True, threaded=True)

Related

Dash -Callback with multiple inputs (input and dropdown) in Datatable

I'm new to Dash and Python. I have an app with a dropdown and a search input however I cannot get the callback to get both inputs to work. Currently either only the dropdown will work or just the input. I would like to first select the dropdown and then be able to search for text within the Datatable.
Below is my code.
import pandas as pd
import dash
import dash_table
import dash_core_components as dcc
import dash_bootstrap_components as dbc
import dash_html_components as html
import pathlib
from dash.dependencies import Input, Output
df = pd.read_csv('data.csv',encoding='cp1252')
env_list = df["Environment"].unique()
PAGE_SIZE = 20
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]
)
def description_card():
"""
:return: A Div containing logo.
"""
return html.Div(
id="description-card",
children=[
html.Img(id="logo", src=app.get_asset_url("logo.png"), height=80)
],style={'textAlign': 'center'}
)
def generate_control_card():
"""
:return: Descriptions
"""
return html.Div(
id="env-card",
children=[
html.H3("Welcome to the Package Catalog"),
]
)
app.layout = html.Div(
id="app-container",
children=[
# Banner
html.Div(
id="banner",
className="banner",
children=[description_card(),generate_control_card()
],
),
html.Div([
html.P([
html.Label("Select Environment", style={"background": "#F5F5F5"}),
dcc.Dropdown(
id='env-select',
options=[{'label': i, 'value': i} for i in env_list],
value=env_list[0],
)]),
html.Div([
html.P([
html.Label("Search for a package and description in the search box.", style={'display':'inline-block', 'background': '#F5F5F5'}),
dcc.Input(value='', id='filter-input', placeholder='Filter', debounce=True)
]),
dash_table.DataTable(css=[{'selector': '.row', 'rule': 'margin: 0'}],
id='datatable-paging',
columns=[
{"name": i, "id": i} for i in df.columns # sorted(df.columns)
],
style_header={
'backgroundColor': 'F5F5F5',
'fontWeight': 'bold'
},
page_current=0,
page_size=PAGE_SIZE,
page_action='custom',
sort_action='custom',
sort_mode='single',
sort_by=[]
)
]),
]),
])
#app.callback(
Output('datatable-paging', 'data'),
[
Input('datatable-paging', 'page_current'),
Input('datatable-paging', 'page_size'),
Input('datatable-paging', 'sort_by'),
Input('env-select', 'value'),
Input('filter-input', 'value')
])
def update_table(page_current, page_size, sort_by, environment_input, filter_string,
):
# Filter
dff = df[df.Environment==environment_input]
dff = df[df.apply(lambda row: row.str.contains(filter_string, regex=False).any(), axis=1)]
# Sort
if len(sort_by):
dff = dff.sort_values(
sort_by[0]['column_id'],
ascending=sort_by[0]['direction'] == 'asc',
inplace=False
)
return dff.iloc[
page_current * page_size:(page_current + 1) * page_size
].to_dict('records')
Change this line
dff = df[df.apply(lambda row: row.str.contains(filter_string, regex=False).any(), axis=1)]
to this
dff = dff[df.apply(lambda row: row.str.contains(filter_string, regex=False).any(), axis=1)]
In the line before the one shown above you apply your dropdown filter and store the filtered result as dff. So by using df instead of dff you're essentially discarding the dropdown filter result.

Python Plotly Dash dropdown Adding a "select all" for scatterplot

I would like to add a select all for my dropdown, and make it the default when the app opens up, with the ability to then one by one remove capsule and also to unselect the select all button and select a group of capsule. I managed to find several ways that other people have use the select all option but none seems to work for my situation. Thank you!
Data looks this this.
Dash look like this.
import pandas as pd
import plotly.express as px # (version 4.7.0)
import plotly.graph_objects as go
import dash # (version 1.12.0) pip install dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
app = dash.Dash(__name__)
server = app.server
df = pd.read_csv("tcd vs rh.csv")
print(df)
capsuleID = df['Capsule_ID'].unique()
print(capsuleID)
capsuleID_names = list(capsuleID)
print(capsuleID_names)
capsuleID_names_1 = [{'label': k, 'value': k } for k in sorted(capsuleID)]
capsuleID_names_2 = [{'label': '(Select All)', 'value': 'All'}]
capsuleID_names_all = capsuleID_names_1 + capsuleID_names_2
app.layout = html.Div([
html.H1("Web Application Dashboards with Dash", style={'text-align': 'center'}),
dcc.Dropdown(id="capsule_select",
options=capsuleID_names_all,
optionHeight=25,
multi=True,
searchable=True,
placeholder='Please select...',
clearable=True,
value=[''],
style={'width': "40%"}
),
html.Div([
dcc.Graph(id="the_graph")
]),
])
# -----------------------------------------------------------
#app.callback(
Output('the_graph', 'figure'),
[Input('capsule_select', 'value')]
)
def update_graph(capsule_chosen):
if capsule_chosen == 'all_values':
dff = df['Capsule_ID']
else:
dff = df[df['Capsule_ID'].isin(capsule_chosen)] # filter all rows where capsule ID is the capsule ID selected
scatterplot = px.scatter(
data_frame=dff,
x="tcd",
y="humidity",
)
scatterplot.update_traces(textposition='top center')
return scatterplot
# ------------------------------------------------------------------------------
if __name__ == '__main__':
app.run_server(debug=True)
If by default you want to select everything from df['Capsule_ID'] you can simply pass it to the value of your dropdown.
Then you can change your callback to something like this for the 'select all' functionality:
#app.callback(
Output("the_graph", "figure"),
Output("capsule_select", "value"),
Input("capsule_select", "value"),
)
def update_graph(capsules_chosen):
dropdown_values = capsules_chosen
if "All" in capsules_chosen:
dropdown_values = df["Capsule_ID"]
dff = df
else:
dff = df[df["Capsule_ID"].isin(capsules_chosen)]
scatterplot = px.scatter(
data_frame=dff,
x="tcd",
y="humidity",
)
scatterplot.update_traces(textposition="top center")
return scatterplot, dropdown_values
In addition to your check not working with the default dropdown value, you were doing this:
dff = df['Capsule_ID']
which means you were setting dff to a single column. This is not what want since 'tcd' and 'humidity' columns don't exist on df['Capsule_ID'].

plotly dash range slider with datetime and scatterplot interaction

I would like to add a range slider along with my dropdown, and make the range slider the 'Wallclock' datetime along with an interaction that allows the range slider to chose the datetime for that capsules based on the dropdown value. I managed to find several ways that other people have done this but none seems to work for my situation especially the callback and the update of the graph. Thank you!
Data looks like this.
Dash looks like this.
Code looks like this.
import pandas as pd
import plotly.express as px # (version 4.7.0)
import plotly.graph_objects as go
import numpy as np
import openpyxl
import dash # (version 1.12.0) pip install dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
app = dash.Dash(__name__)
server = app.server
df = pd.read_excel("tcd vs rh 2.xlsx")
print(df)
capsuleID = df['Capsule_ID'].unique()
print(capsuleID)
capsuleID_names = sorted(list(capsuleID))
print(capsuleID_names)
capsuleID_names_1 = [{'label': k, 'value': k} for k in sorted(capsuleID)]
capsuleID_names_2 = [{'label': '(Select All)', 'value': 'All'}]
capsuleID_names_all = capsuleID_names_1 + capsuleID_names_2
app.layout = html.Div([
html.H1("Relative Humidity vs TCD", style={'text-align': 'center'}),
dcc.Dropdown(id="capsule_select",
options=capsuleID_names_all,
optionHeight=25,
multi=True,
searchable=True,
placeholder='Please select...',
clearable=True,
value=['All'],
style={'width': "100%"}
),
dcc.RangeSlider(id='slider',
min=df['Wallclock'].min(),
max=df['Wallclock'].max(),
value=[df.iloc[-101]['Wallclock'].timestamp(), df.iloc[-1]['Wallclock'].timestamp()]
),
html.Div([
dcc.Graph(id="the_graph"),
]),
])
# -----------------------------------------------------------
#app.callback(
Output('the_graph', 'figure'),
Output('capsule_select', 'value'),
Input('capsule_select', 'value'),
Input('slider', 'value'),
)
def update_graph(capsule_chosen):
lBound = pd.to_datetime(value[0], unit='s')
uBound = pd.to_datetime(value[1], unit='s')
filteredData = df.loc[(df['date'] >= lBound) & (df['date'] <= uBound)]
dropdown_values = capsule_chosen
if "All" in capsule_chosen:
dropdown_values = capsuleID_names
dff = df
else:
dff = df[df['Capsule_ID'].isin(capsule_chosen)] # filter all rows where capsule ID is the capsule ID selected
scatterplot = px.scatter(
data_frame=dff,
x="tcd",
y="humidity",
hover_name="Wallclock",
)
scatterplot.update_traces(textposition='top center')
return scatterplot, dropdown_values
# ------------------------------------------------------------------------------
if __name__ == '__main__':
app.run_server(debug=True)
obviously I don't have access to your Excel spreadsheet so generated a data frame with same shape
taken approach of using a second figure with a rangeslider for slider capability
updated callback to use this figure as input for date range
used jupyter dash inline, this can be changed back to your setup (commented lines)
generate some sample data
import pandas as pd
import numpy as np
df = pd.DataFrame(
{
"Wallclock": pd.date_range(
"22-dec-2020 00:01:36", freq="5min", periods=2000
),
"tcd": np.linspace(3434, 3505, 2000) *np.random.uniform(.9,1.1, 2000),
"humidity": np.linspace(63, 96, 2000),
}
).pipe(lambda d: d.assign(Capsule_ID=(d.index // (len(d)//16))+2100015))
slider is a figure with a rangeslider
import pandas as pd
import plotly.express as px # (version 4.7.0)
import plotly.graph_objects as go
import numpy as np
import openpyxl
import dash # (version 1.12.0) pip install dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
from jupyter_dash import JupyterDash
# app = dash.Dash(__name__)
# server = app.server
app = JupyterDash(__name__)
# df = pd.read_excel("tcd vs rh 2.xlsx")
# print(df)
capsuleID = df["Capsule_ID"].unique()
# print(capsuleID)
capsuleID_names = sorted(list(capsuleID))
# print(capsuleID_names)
capsuleID_names_1 = [{"label": k, "value": k} for k in sorted(capsuleID)]
capsuleID_names_2 = [{"label": "(Select All)", "value": "All"}]
capsuleID_names_all = capsuleID_names_1 + capsuleID_names_2
def slider_fig(df):
return px.scatter(
df.groupby("Wallclock", as_index=False).size(), x="Wallclock", y="size"
).update_layout(
xaxis={"rangeslider": {"visible": True}, "title":None},
height=125,
yaxis={"tickmode": "array", "tickvals": [], "title": None},
margin={"l": 0, "r": 0, "t": 0, "b": 0},
)
app.layout = html.Div(
[
html.H1("Relative Humidity vs TCD", style={"text-align": "center"}),
dcc.Dropdown(
id="capsule_select",
options=capsuleID_names_all,
optionHeight=25,
multi=True,
searchable=True,
placeholder="Please select...",
clearable=True,
value=["All"],
style={"width": "100%"},
),
dcc.Graph(
id="slider",
figure=slider_fig(df),
),
html.Div(
[
dcc.Graph(id="the_graph"),
]
),
]
)
# -----------------------------------------------------------
#app.callback(
Output("the_graph", "figure"),
Output("capsule_select", "value"),
Output("slider", "figure"),
Input("capsule_select", "value"),
Input('slider', 'relayoutData'),
State("slider", "figure")
)
def update_graph(capsule_chosen, slider, sfig):
dropdown_values = capsule_chosen
if "All" in capsule_chosen:
dropdown_values = capsuleID_names
dff = df
else:
dff = df[
df["Capsule_ID"].isin(capsule_chosen)
] # filter all rows where capsule ID is the capsule ID selected
if slider and "xaxis.range" in slider.keys():
dff = dff.loc[dff["Wallclock"].between(*slider["xaxis.range"])]
else:
# update slider based on selected capsules
sfig = slider_fig(dff)
scatterplot = px.scatter(
data_frame=dff,
x="tcd",
y="humidity",
hover_name="Wallclock",
)
scatterplot.update_traces(textposition="top center")
return scatterplot, dropdown_values, sfig
# ------------------------------------------------------------------------------
if __name__ == "__main__":
# app.run_server(debug=True)
app.run_server(mode="inline")

Update Plotly Dash graph on page refresh

New to Plotly Dash.
I’m working through the tutorial on my simple example. Learning how to update a graph when new data is added to the data frame (two data frames in this case) and how to connect this with the dropdown that I have on my dashboard.
I want my graphs to get updated with new data on each page load or page refresh (as I will have only a few updates per day.)
This is the code I'm working on:
import pandas as pd
import plotly.express as px
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
app = dash.Dash(__name__)
data = [['Blue', 20], ['Red ', 12], ['Green', 33]]
df = pd.DataFrame(data, columns=['Color', 'Number'])
data1 = [['A', 10, 88], ['B ', 50, 45], ['C', 25, 120]]
df1 = pd.DataFrame(data1, columns=['Letter', 'Column1', 'Column2'])
fig = px.bar(df, x=df['Color'], y=df['Number'])
fig1 = px.line(x=df1['Letter'], y=df1['Column1'], color=px.Constant('Column1'),
labels=dict(x='Letter', y='Column1', color='Letter'))
fig1.add_bar(x=df1['Letter'], y=df1['Column2'], name='Letter')
app.layout = html.Div(children=[
html.H1(children='Colors and Letters', style={'text-align': 'center'}),
html.Div(children='Color', style={'text-align': 'center'}),
html.Div([
html.Label(['Choose a graph:'], style={'font-weight': 'bold'}),
dcc.Dropdown(
id='dropdown',
options=[
{'label': 'Colors', 'value': 'graph1'},
{'label': 'Letters', 'value': 'graph2'},
],
value='graph1',
style={"width": "60%"}),
html.Div(dcc.Graph(id='graph')),
]),
])
#app.callback(
Output('graph', 'figure'),
[Input(component_id='dropdown', component_property='value')]
)
def select_graph(value):
if value == 'graph1':
return fig
else:
return fig1
if __name__ == '__main__':
app.run_server(debug=True)
Any help would be greatly appreciated. Thanks in advance.
As documented in the section on live update, you should be able to achieve the desired behaviour by defining a function that creates the layout,
def layout():
return html.Div(...)
and assigning this function as the app layout,
app.layout = layout # note no (), you must assign the function itself, not the layout

Connecting graphs with dropdown (Plotly Dash)

I am building the app in which I want to plot two separate graphs from two data frames. I would like to use the dropdown to display only one graph per page based on each data frame (df,df1).
I followed the Plotly reference ​and couldn't reproduce it on my example.
This is my code so far that works (it displays both graphs on the same page, without dropdown):
import pandas as pd
import dash
import plotly.express as px
import dash_core_components as dcc
import dash_html_components as html
app = dash.Dash(__name__)
data = [['Blue',20],['Red ',12],['Green',33]]
df = pd.DataFrame(data,columns=['Color','Number'])
data1 = [['A',10,88],['B ',50,45],['C',25,120]]
df1 = pd.DataFrame(data1,columns=['Letter','Column1','Column2'])
fig = px.bar(df, x=df['Color'], y=df['Number'])
fig1 = px.line(x=df1['Letter'], y=df1['Column1'], color=px.Constant('Column1'),
labels=dict(x='Letter', y='Column1', color='Letter'))
fig1.add_bar(x=df1['Letter'], y=df1['Column2'], name='Letter')
app.layout = html.Div(children=[
html.H1(children='Colors and Letters', style={'text-align': 'center'}),
html.Div(children='Color', style={'text-align': 'center'}),
dcc.Graph(
id='example-graph',
figure=fig
),
html.Div(children='Letter', style={'text-align': 'center'}),
dcc.Graph(
id='example-graph1',
figure=fig1
)
])
if __name__ == '__main__':
app.run_server(debug=True)
This is what I would like to get:
What would be the best approach to do this?
Thanks in advance.
I don't have much experience with Dash, but here's a great answer and your code throughout. The point is to introduce a dropdown so that the initial value is displayed as fig. Depending on the return value of the callback function, I use the if function to switch the graph.
import pandas as pd
import plotly.express as px
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
app = dash.Dash(__name__)
data = [['Blue',20],['Red ',12],['Green',33]]
df = pd.DataFrame(data,columns=['Color','Number'])
data1 = [['A',10,88],['B ',50,45],['C',25,120]]
df1 = pd.DataFrame(data1,columns=['Letter','Column1','Column2'])
app.layout = html.Div(children=[
html.H1(children='Colors and Letters', style={'text-align': 'center'}),
html.Div(children='Color', style={'text-align': 'center'}),
html.Div([
html.Label(['Choose a graph:'],style={'font-weight': 'bold'}),
dcc.Dropdown(
id='dropdown',
options=[
{'label': 'graph1', 'value': 'graph1'},
{'label': 'graph2', 'value': 'graph2'},
],
value='graph1',
style={"width": "60%"}),
html.Div(dcc.Graph(id='graph')),
]),
])
#app.callback(
Output('graph', 'figure'),
[Input(component_id='dropdown', component_property='value')]
)
def select_graph(value):
if value == 'graph1':
fig = px.bar(df, x=df['Color'], y=df['Number'])
return fig
else:
fig1 = px.line(x=df1['Letter'], y=df1['Column1'], color=px.Constant('Column1'),
labels=dict(x='Letter', y='Column1', color='Letter'))
fig1.add_bar(x=df1['Letter'], y=df1['Column2'], name='Letter')
return fig1
if __name__ == '__main__':
app.run_server(debug=True)

Categories