I am very new to the concept of "class" and "objects" in Python, I succeeded in defining a single function using:
# build the object "test"
class test:
def __init__(self,raw_data):
self.method1 = raw_data*10
self.method2 = raw_data*20
self.method3 = raw_data*30
# a quick test using "raw_data = 1"
output = test(1)
# here three methods are all working
print(output.method1)
print(output.method2)
print(output.method3)
# outputs
10
20
30
But in real work, how can I include a lot of functions/processing steps under this "class" or "object" thing. So I can run all of them together. The codes below failed (only the first function was working):
# build the object "test"
class test:
def __init__(self,raw_data):
self.method1 = raw_data*10
def compute_method_2(self,raw_data):
self.method2 = raw_data*20
def compute_method_3(self,raw_data):
self.method3 = raw_data*30
# a quick test using "raw_data = 1"
output = test(1)
# now only the first calculation worked
print(output.method1)
print(output.method2)
print(output.method3)
# Error report:
AttributeError: 'test' object has no attribute 'method2'
Many thanks for your help!
To clarify why I want to split the functions: This is just a simplified example. In real work, there are multiple functions needed for different processing steps, and those functions work on different items.
Usually, Python methods only run if you choose to run them. You've gotten tripped up because your first encounter with methods is __init__(), but that is actually a weird exception to that rule: it's run immediately when you create each object of that class (that's the whole point of __init__()). So you need to run those methods manually if you want them to run:
# a quick test using "raw_data = 1"
output = test(1)
# run other computations
output.compute_method_2(1)
output.compute_method_3(1)
# now all the values are available
print(output.method1)
print(output.method2)
print(output.method3)
If you want the methods to run when you create the objects, which it looks like you do here, it's better put that code in __init__() rather than manually calling them every time you make an object - remember, that's why __init__() is there! But maybe your __init__() was getting too big and that's why you wanted to split it up. In that case, you can put your code into methods still, but call them from __init__() (and then you don't need to call them separately like the above example):
class test:
def __init__(self,raw_data):
self.method1 = raw_data*10
self.compute_method_2(raw_data)
self.compute_method_3(raw_data)
def compute_method_2(self,raw_data):
self.method2 = raw_data*20
def compute_method_3(self,raw_data):
self.method3 = raw_data*30
By the way, a "method" is a member function of a class, like your compute_method_2() function (and like __init__()!). Data members are not methods, so it is confusing that you used names like self.method2 for these.
Related
I am trying to set the attribute values of a certain class AuxiliaryClass than is instantiated in a method from MainClass class in the most efficient way possible.
AuxiliaryClass is instantiated within a method of MainClass - see below. However, AuxiliaryClass has many different attributes and I need to set the value of those attributes once the class has been instantiated - see the last 3 lines of my code.
Note: due to design constraints I cannot explain here, my classes only contain methods, meaning that I need to declare attributes as methods (see below).
class AuxiliaryClass(object):
def FirstMethod(self):
return None
...
def NthMethod(self):
return None
class MainClass(object):
def Auxiliary(self):
return AuxiliaryClass()
def main():
obj = MainClass()
obj.Auxiliary().FirstMethod = #some_value
...
obj.Auxiliary().NthMethod = #some_other_value
# ~~> further code
Basically I want to replace these last 3 lines of code with something neater, more elegant and more efficient. I know I could use a dictionary if I was instantiating AuxiliaryClass directly:
d = {'FirstMethod' : some_value,
...
'NthMethod' : some_other_value}
obj = AuxiliaryClass(**d)
But this does not seem to work for the structure of my problem. Finally, I need to set the values of AuxiliaryClass's attributes once MainClass has been instantiated (so I can't set the attribute's values within method Auxiliary).
Is there a better way to do this than obj.Auxiliary().IthMethod = some_value?
EDIT
A couple of people have said that the following lines:
obj.Auxiliary().FirstMethod = #some_value
...
obj.Auxiliary().NthMethod = #some_other_value
will have no effect because they will immediately get garbage collected. I do not really understand what this means, but if I execute the following lines (after the lines above):
print(obj.Auxiliary().FirstMethod())
...
print(obj.Auxiliary().NthMethod())
I am getting the values I entered previously.
To speed things up, and make the customization somewhat cleaner, you can cache the results of the AuxilliaryClass constructor/singleton/accessor, and loop over a dict calling setattr().
Try something like this:
init_values = {
'FirstMethod' : some_value,
:
'NthMethod' : some_other_value,
}
def main():
obj = MainClass()
aux = obj.Auxiliary() # cache the call, only make it once
for attr,value in init_values.items(): # python3 here, iteritems() in P2
setattr(aux, attr, value)
# other stuff below this point
I understand what is happening here: my code has a series of decorators before all methods which allow memoization. I do not know exactly how they work but when used the problem described above - namely, that lines of type obj.Auxiliary().IthMethod = some_value get immediately garbage collected - does not occur.
Unfortunately I cannot give further details regarding these decorators as 1) I do not understand them very well and 2) I cannot transmit this information outside my company. I think under this circumstances it is difficult to answer my question because I cannot fully disclose all the necessary details.
We have a Tree, each node is an object.
The function that this tree has are 3, add(x);getmin();getmax()
The tree works perfectly; for example if i write
a = Heap()
a.add(5)
a.add(15)
a.add(20)
a.getmin()
a.getmax()
the stack look like this [5,15,20], now if i call getmin() it will print min element = 5 and the stack will look like [15,20] and so on.
The problem comes now;
the professor asked us to submit two files which are already created: main.py and minmaxqueue.py
main.py starts like this from minmaxqueue import add, getmin, getmax, and then is has already a list of functions calls of the kind
add(5)
add(15)
add(20)
getmin()
getmax()
in order to make work my script i had to do a=Heap() and then call always a.add(x). Since the TA's are going to run the script from a common file, i cant modify main.py such that it creates an object a=Heap(). It should run directly with add(5) and not with a.add(5)
Is there a way to fix this?
You can modify your module to create a global Heap instance, and define functions that forward everything to that global instance. Like this:
class Heap(object):
# all of your existing code
_heap = Heap()
def add(n):
return _heap.add(n)
def getmin():
return _heap.getmin()
def getmax():
return _heap.getmax()
Or, slightly more briefly:
_heap = Heap()
add = _heap.add
getmin = _heap.getmin
getmax = _heap.getmax
If you look at the standard library, there are modules that do exactly this, like random. If you want to create multiple Random instances, you can; if you don't care about doing that, you can just call random.choice and it works on the hidden global instance.
Of course for Random it makes sense; for Heap, it's a lot more questionable. But if that's what the professor demands, what can you do?
You can use this function to do that more quickly:
def make_attrs_global(obj):
for attr in dir(obj):
if not attr.startswith('__'):
globals()[attr] = getattr(obj, attr)
It makes all attributes of obj defined in global scope.
Just put this code at the end of your minmaxqueue.py file:
a = Heap()
make_attrs_global(a)
Now you should be able to call add directly without a. This is ugly but well...
First, if you guys think the way I'm trying to do things is not Pythonic, feel free to offer alternative suggestions.
I have an object whose functionality needs to change based on outside events. What I've been doing originally is create a new object that inherits from original (let's call it OrigObject()) and overwrites the methods that change (let's call the new object NewObject()). Then I modified both constructors such that they can take in a complete object of the other type to fill in its own values based on the passed in object. Then when I'd need to change functionality, I'd just execute myObject = NewObject(myObject).
I'm starting to see several problems with that approach now. First of all, other places that reference the object need to be updated to reference the new type as well (the above statement, for example, would only update the local myObject variable). But that's not hard to update, only annoying part is remembering to update it in other places each time I change the object in order to prevent weird program behavior.
Second, I'm noticing scenarios where I need a single method from NewObject(), but the other methods from OrigObject(), and I need to be able to switch the functionality on the fly. It doesn't seem like the best solution anymore to be using inheritance, where I'd need to make M*N different classes (where M is the number of methods the class has that can change, and N is the number of variations for each method) that inherit from OrigObject().
I was thinking of using attribute remapping instead, but I seem to be running into issues with it. For example, say I have something like this:
def hybrid_type2(someobj, a):
#do something else
...
class OrigObject(object):
...
def hybrid_fun(self, a):
#do something
...
def switch(type):
if type == 1:
self.hybrid_fun = OrigObject.hybrid_fun
else:
self.fybrid_fun = hybrid_type2
Problem is, after doing this and trying to call the new hybrid_fun after switching it, I get an error saying that hybrid_type2() takes exactly 2 arguments, but I'm passing it one. The object doesn't seem to be passing itself as an argument to the new function anymore like it does with its own methods, anything I can do to remedy that?
I tried including hybrid_type2 inside the class as well and then using self.hybrid_fun = self.hybrid_type2 works, but using self.hybrid_fun = OrigObject.hybrid_fun causes a similar error (complaining that the first argument should be of type OrigObject). I know I can instead define OrigObject.hybrid_fun() logic inside OrigObject.hybrid_type1() so I can revert it back the same way I'm setting it (relative to the instance, rather than relative to the class to avoid having object not be the first argument). But I wanted to ask here if there is a cleaner approach I'm not seeing here? Thanks
EDIT:
Thanks guys, I've given points for several of the solutions that worked well. I essentially ended up using a Strategy pattern using types.MethodType(), I've accepted the answer that explained how to do the Strategy pattern in python (the Wikipedia article was more general, and the use of interfaces is not needed in Python).
Use the types module to create an instance method for a particular instance.
eg.
import types
def strategyA(possible_self):
pass
instance = OrigObject()
instance.strategy = types.MethodType(strategyA, instance)
instance.strategy()
Note that this only effects this specific instance, no other instances will be effected.
You want the Strategy Pattern.
Read about descriptors in Python. The next code should work:
else:
self.fybrid_fun = hybrid_type2.__get__(self, OrigObject)
What about defining it like so:
def hybrid_type2(someobj, a):
#do something else
...
def hybrid_type1(someobj, a):
#do something
...
class OrigObject(object):
def __init__(self):
...
self.run_the_fun = hybrid_type1
...
def hybrid_fun(self, a):
self.run_the_fun(self, a)
def type_switch(self, type):
if type == 1:
self.run_the_fun = hybrid_type1
else:
self.run_the_fun = hybrid_type2
You can change class at runtime:
class OrigObject(object):
...
def hybrid_fun(self, a):
#do something
...
def switch(self):
self.__class__ = DerivedObject
class DerivedObject(OrigObject):
def hybrid_fun(self, a):
#do the other thing
...
def switch(self):
self.__class__ = OrigObject
I am developing a medium size program in python spread across 5 modules. The program accepts command line arguments using OptionParser in the main module e.g. main.py. These options are later used to determine how methods in other modules behave (e.g. a.py, b.py). As I extend the ability for the user to customise the behaviour or the program I find that I end up requiring this user-defined parameter in a method in a.py that is not directly called by main.py, but is instead called by another method in a.py:
main.py:
import a
p = some_command_line_argument_value
a.meth1(p)
a.py:
meth1(p):
# some code
res = meth2(p)
# some more code w/ res
meth2(p):
# do something with p
This excessive parameter passing seems wasteful and wrong, but has hard as I try I cannot think of a design pattern that solves this problem. While I had some formal CS education (minor in CS during my B.Sc.), I've only really come to appreciate good coding practices since I started using python. Please help me become a better programmer!
Create objects of types relevant to your program, and store the command line options relevant to each in them. Example:
import WidgetFrobnosticator
f = WidgetFrobnosticator()
f.allow_oncave_widgets = option_allow_concave_widgets
f.respect_weasel_pins = option_respect_weasel_pins
# Now the methods of WidgetFrobnosticator have access to your command-line parameters,
# in a way that's not dependent on the input format.
import PlatypusFactory
p = PlatypusFactory()
p.allow_parthenogenesis = option_allow_parthenogenesis
p.max_population = option_max_population
# The platypus factory knows about its own options, but not those of the WidgetFrobnosticator
# or vice versa. This makes each class easier to read and implement.
Maybe you should organize your code more into classes and objects? As I was writing this, Jimmy showed a class-instance based answer, so here is a pure class-based answer. This would be most useful if you only ever wanted a single behavior; if there is any chance at all you might want different defaults some of the time, you should use ordinary object-oriented programming in Python, i.e. pass around class instances with the property p set in the instance, not the class.
class Aclass(object):
p = None
#classmethod
def init_p(cls, value):
p = value
#classmethod
def meth1(cls):
# some code
res = cls.meth2()
# some more code w/ res
#classmethod
def meth2(cls):
# do something with p
pass
from a import Aclass as ac
ac.init_p(some_command_line_argument_value)
ac.meth1()
ac.meth2()
If "a" is a real object and not just a set of independent helper methods, you can create an "p" member variable in "a" and set it when you instantiate an "a" object. Then your main class will not need to pass "p" into meth1 and meth2 once "a" has been instantiated.
[Caution: my answer isn't specific to python.]
I remember that Code Complete called this kind of parameter a "tramp parameter". Googling for "tramp parameter" doesn't return many results, however.
Some alternatives to tramp parameters might include:
Put the data in a global variable
Put the data in a static variable of a class (similar to global data)
Put the data in an instance variable of a class
Pseudo-global variable: hidden behind a singleton, or some dependency injection mechanism
Personally, I don't mind a tramp parameter as long as there's no more than one; i.e. your example is OK for me, but I wouldn't like ...
import a
p1 = some_command_line_argument_value
p2 = another_command_line_argument_value
p3 = a_further_command_line_argument_value
a.meth1(p1, p2, p3)
... instead I'd prefer ...
import a
p = several_command_line_argument_values
a.meth1(p)
... because if meth2 decides that it wants more data than before, I'd prefer if it could extract this extra data from the original parameter which it's already being passed, so that I don't need to edit meth1.
With objects, parameter lists should normally be very small, since most appropriate information is a property of the object itself. The standard way to handle this is to configure the object properties and then call the appropriate methods of that object. In this case set p as an attribute of a. Your meth2 should also complain if p is not set.
Your example is reminiscent of the code smell Message Chains. You may find the corresponding refactoring, Hide Delegate, informative.
I'm writing a program that uses genetic techniques to evolve equations.
I want to be able to submit the function 'mainfunc' to the Parallel Python 'submit' function.
The function 'mainfunc' calls two or three methods defined in the Utility class.
They instantiate other classes and call various methods.
I think what I want is all of it in one NAMESPACE.
So I've instantiated some (maybe it should be all) of the classes inside the function 'mainfunc'.
I call the Utility method 'generate()'. If we were to follow it's chain of execution
it would involve all of the classes and methods in the code.
Now, the equations are stored in a tree. Each time a tree is generated, mutated or cross
bred, the nodes need to be given a new key so they can be accessed from a dictionary attribute of the tree. The class 'KeySeq' generates these keys.
In Parallel Python, I'm going to send multiple instances of 'mainfunc' to the 'submit' function of PP. Each has to be able to access 'KeySeq'. It would be nice if they all accessed the same instance of KeySeq so that none of the nodes on the returned trees had the same key, but I could get around that if necessary.
So: my question is about stuffing EVERYTHING into mainfunc.
Thanks
(Edit) If I don't include everything in mainfunc, I have to try to tell PP about dependent functions, etc by passing various arguements in various places. I'm trying to avoid that.
(late Edit) if ks.next() is called inside the 'generate() function, it returns the error 'NameError: global name 'ks' is not defined'
class KeySeq:
"Iterator to produce sequential \
integers for keys in dict"
def __init__(self, data = 0):
self.data = data
def __iter__(self):
return self
def next(self):
self.data = self.data + 1
return self.data
class One:
'some code'
class Two:
'some code'
class Three:
'some code'
class Utilities:
def generate(x):
'___________'
def obfiscate(y):
'___________'
def ruminate(z):
'__________'
def mainfunc(z):
ks = KeySeq()
one = One()
two = Two()
three = Three()
utilities = Utilities()
list_of_interest = utilities.generate(5)
return list_of_interest
result = mainfunc(params)
It's fine to structure your program that way. A lot of command line utilities follow the same pattern:
#imports, utilities, other functions
def main(arg):
#...
if __name__ == '__main__':
import sys
main(sys.argv[1])
That way you can call the main function from another module by importing it, or you can run it from the command line.
If you want all of the instances of mainfunc to use the same KeySeq object, you can use the default parameter value trick:
def mainfunc(ks=KeySeq()):
key = ks.next()
As long as you don't actually pass in a value of ks, all calls to mainfunc will use the instance of KeySeq that was created when the function was defined.
Here's why, in case you don't know: A function is an object. It has attributes. One of its attributes is named func_defaults; it's a tuple containing the default values of all of the arguments in its signature that have defaults. When you call a function and don't provide a value for an argument that has a default, the function retrieves the value from func_defaults. So when you call mainfunc without providing a value for ks, it gets the KeySeq() instance out of the func_defaults tuple. Which, for that instance of mainfunc, is always the same KeySeq instance.
Now, you say that you're going to send "multiple instances of mainfunc to the submit function of PP." Do you really mean multiple instances? If so, the mechanism I'm describing won't work.
But it's tricky to create multiple instances of a function (and the code you've posted doesn't). For example, this function does return a new instance of g every time it's called:
>>> def f():
def g(x=[]):
return x
return g
>>> g1 = f()
>>> g2 = f()
>>> g1().append('a')
>>> g2().append('b')
>>> g1()
['a']
>>> g2()
['b']
If I call g() with no argument, it returns the default value (initially an empty list) from its func_defaults tuple. Since g1 and g2 are different instances of the g function, their default value for the x argument is also a different instance, which the above demonstrates.
If you'd like to make this more explicit than using a tricky side-effect of default values, here's another way to do it:
def mainfunc():
if not hasattr(mainfunc, "ks"):
setattr(mainfunc, "ks", KeySeq())
key = mainfunc.ks.next()
Finally, a super important point that the code you've posted overlooks: If you're going to be doing parallel processing on shared data, the code that touches that data needs to implement locking. Look at the callback.py example in the Parallel Python documentation and see how locking is used in the Sum class, and why.
Your concept of classes in Python is not sound I think. Perhaps, it would be a good idea to review the basics. This link will help.
Python Basics - Classes