Find the mean of columns with matching column names - python

I have a dataframe similar to the following but with thousands of rows and columns:
x y ghb_00hr_rep1 ghb_00hr_rep2 ghb_00hr_rep3 ghl_06hr_rep1 ghl_06hr_rep2
x y 2 3 2 1 3
x y 5 7 6 2 1
I would like my output to look like this:
ghb_00hr hl_06hr
2.3 2
6 1.5
My goal is to find the average of the matching columns. I have come up with this: temp = df.groupby(name, axis=1).agg('mean') But I am not sure how to define 'name' as the matching columns.
My previous strategy was the following:
name = pd.Series(['_'.join(i.split('_')[:-1])
for i in df.columns[3:]],
index = df.columns[3:]
)
temp = df.groupby(name, axis=1).agg('mean')
avg = pd.concat([df.iloc[:, :3], temp],
axis=1
)
However the number of 'replicates' ranges from 1-4 so grouping by index location isn't an option.
Not sure if there is a better way to do this or if I am on the right track.

An option is to groupby level=0:
(df.set_index(['name','x','y'])
.groupby(level=0, axis=1)
.mean().reset_index()
)
Output:
name x y ghb_00hr ghl_06hr
0 gene1 x y 2.333333 2.0
1 gene2 x y 6.000000 1.5
Update: for the modified question:
d = df.filter(like='gh')
# or d = df.iloc[:, 2:]
# depending on your columns of interest
names = d.columns.str.rsplit('_', n=1).str[0]
d.groupby(names, axis=1).mean()
Output:
ghb_00hr ghl_06hr
0 2.333333 2.0
1 6.000000 1.5

You can convert df.columns to set then iterate:
df = pd.DataFrame([[1, 2, 3, 4, 5, 6]], columns=['a', 'a', 'a', 'b', 'b', 'b'])
for column in set(df.columns):
print(column, df[common_name].mean(axis=1))
will outputs
a 0 2.0
dtype: float64
b 0 5.0
dtype: float64
Use sorted if the order matters:
for column in sorted(set(df.columns)):
From here you can get the output in pretty much any format you want.

Related

Fill NA values in dataframe by mapping a double indexed groupby object [duplicate]

This should be straightforward, but the closest thing I've found is this post:
pandas: Filling missing values within a group, and I still can't solve my problem....
Suppose I have the following dataframe
df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3], 'name': ['A','A', 'B','B','B','B', 'C','C','C']})
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
and I'd like to fill in "NaN" with mean value in each "name" group, i.e.
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
I'm not sure where to go after:
grouped = df.groupby('name').mean()
Thanks a bunch.
One way would be to use transform:
>>> df
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
>>> df["value"] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
>>> df
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
fillna + groupby + transform + mean
This seems intuitive:
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
The groupby + transform syntax maps the groupwise mean to the index of the original dataframe. This is roughly equivalent to #DSM's solution, but avoids the need to define an anonymous lambda function.
#DSM has IMO the right answer, but I'd like to share my generalization and optimization of the question: Multiple columns to group-by and having multiple value columns:
df = pd.DataFrame(
{
'category': ['X', 'X', 'X', 'X', 'X', 'X', 'Y', 'Y', 'Y'],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],
'other_value': [10, np.nan, np.nan, 20, 30, 10, 30, np.nan, 30],
'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3],
}
)
... gives ...
category name other_value value
0 X A 10.0 1.0
1 X A NaN NaN
2 X B NaN NaN
3 X B 20.0 2.0
4 X B 30.0 3.0
5 X B 10.0 1.0
6 Y C 30.0 3.0
7 Y C NaN NaN
8 Y C 30.0 3.0
In this generalized case we would like to group by category and name, and impute only on value.
This can be solved as follows:
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
Notice the column list in the group-by clause, and that we select the value column right after the group-by. This makes the transformation only be run on that particular column. You could add it to the end, but then you will run it for all columns only to throw out all but one measure column at the end. A standard SQL query planner might have been able to optimize this, but pandas (0.19.2) doesn't seem to do this.
Performance test by increasing the dataset by doing ...
big_df = None
for _ in range(10000):
if big_df is None:
big_df = df.copy()
else:
big_df = pd.concat([big_df, df])
df = big_df
... confirms that this increases the speed proportional to how many columns you don't have to impute:
import pandas as pd
from datetime import datetime
def generate_data():
...
t = datetime.now()
df = generate_data()
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
print(datetime.now()-t)
# 0:00:00.016012
t = datetime.now()
df = generate_data()
df["value"] = df.groupby(['category', 'name'])\
.transform(lambda x: x.fillna(x.mean()))['value']
print(datetime.now()-t)
# 0:00:00.030022
On a final note you can generalize even further if you want to impute more than one column, but not all:
df[['value', 'other_value']] = df.groupby(['category', 'name'])['value', 'other_value']\
.transform(lambda x: x.fillna(x.mean()))
Shortcut:
Groupby + Apply + Lambda + Fillna + Mean
>>> df['value1']=df.groupby('name')['value'].apply(lambda x:x.fillna(x.mean()))
>>> df.isnull().sum().sum()
0
This solution still works if you want to group by multiple columns to replace missing values.
>>> df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, np.nan,np.nan, 4, 3],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],'class':list('ppqqrrsss')})
>>> df['value']=df.groupby(['name','class'])['value'].apply(lambda x:x.fillna(x.mean()))
>>> df
value name class
0 1.0 A p
1 1.0 A p
2 2.0 B q
3 2.0 B q
4 3.0 B r
5 3.0 B r
6 3.5 C s
7 4.0 C s
8 3.0 C s
I'd do it this way
df.loc[df.value.isnull(), 'value'] = df.groupby('group').value.transform('mean')
The featured high ranked answer only works for a pandas Dataframe with only two columns. If you have a more columns case use instead:
df['Crude_Birth_rate'] = df.groupby("continent").Crude_Birth_rate.transform(
lambda x: x.fillna(x.mean()))
To summarize all above concerning the efficiency of the possible solution
I have a dataset with 97 906 rows and 48 columns.
I want to fill in 4 columns with the median of each group.
The column I want to group has 26 200 groups.
The first solution
start = time.time()
x = df_merged[continuous_variables].fillna(df_merged.groupby('domain_userid')[continuous_variables].transform('median'))
print(time.time() - start)
0.10429811477661133 seconds
The second solution
start = time.time()
for col in continuous_variables:
df_merged.loc[df_merged[col].isnull(), col] = df_merged.groupby('domain_userid')[col].transform('median')
print(time.time() - start)
0.5098445415496826 seconds
The next solution I only performed on a subset since it was running too long.
start = time.time()
for col in continuous_variables:
x = df_merged.head(10000).groupby('domain_userid')[col].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
11.685635566711426 seconds
The following solution follows the same logic as above.
start = time.time()
x = df_merged.head(10000).groupby('domain_userid')[continuous_variables].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
42.630549907684326 seconds
So it's quite important to choose the right method.
Bear in mind that I noticed once a column was not a numeric the times were going up exponentially (makes sense as I was computing the median).
def groupMeanValue(group):
group['value'] = group['value'].fillna(group['value'].mean())
return group
dft = df.groupby("name").transform(groupMeanValue)
I know that is an old question. But I am quite surprised by the unanimity of apply/lambda answers here.
Generally speaking, that is the second worst thing to do after iterating rows, from timing point of view.
What I would do here is
df.loc[df['value'].isna(), 'value'] = df.groupby('name')['value'].transform('mean')
Or using fillna
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
I've checked with timeit (because, again, unanimity for apply/lambda based solution made me doubt my instinct). And that is indeed 2.5 faster than the most upvoted solutions.
To fill all the numeric null values with the mean grouped by "name"
num_cols = df.select_dtypes(exclude='object').columns
df[num_cols] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
df.fillna(df.groupby(['name'], as_index=False).mean(), inplace=True)
You can also use "dataframe or table_name".apply(lambda x: x.fillna(x.mean())).

Summing multiple columns using a regular expression to select which columns to sum

I would like to perform the following:"
test = pd.DataFrame({'A1':[1,1,1,1],
'A2':[1,2,2,1],
'A3':[1,1,1,1],
'B1':[1,1,1,1],
'B2':[pd.NA, 1,1,1]})
result = pd.DataFrame({'A': test.filter(regex='A').sum(axis=1),
'B': test.filter(regex='B').sum(axis=1)})
I was wondering whether there is a better method to do this, when we have more columns and more "regex"-matches.
Use dict comprehension instead multiple repeat code like:
L = ['A','B']
df = pd.DataFrame({x: test.filter(regex=x).sum(axis=1) for x in L})
Or if possible simplify solution by select only first letters use:
df = test.groupby(lambda x: x[0], axis=1).sum()
print (df)
A B
0 3 1.0
1 4 2.0
2 4 2.0
3 3 2.0
If regexes should ne joined by | and gt all columns substrings use:
vals = test.columns.str.extract('(A|B)', expand=False)
print (vals)
Index(['A', 'A', 'A', 'B', 'B'], dtype='object')
df = test.groupby(vals, axis=1).sum()
print (df)
A B
0 3 1.0
1 4 2.0
2 4 2.0
3 3 2.0

Fillna in pandas with respect to similar line [duplicate]

This should be straightforward, but the closest thing I've found is this post:
pandas: Filling missing values within a group, and I still can't solve my problem....
Suppose I have the following dataframe
df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3], 'name': ['A','A', 'B','B','B','B', 'C','C','C']})
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
and I'd like to fill in "NaN" with mean value in each "name" group, i.e.
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
I'm not sure where to go after:
grouped = df.groupby('name').mean()
Thanks a bunch.
One way would be to use transform:
>>> df
name value
0 A 1
1 A NaN
2 B NaN
3 B 2
4 B 3
5 B 1
6 C 3
7 C NaN
8 C 3
>>> df["value"] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
>>> df
name value
0 A 1
1 A 1
2 B 2
3 B 2
4 B 3
5 B 1
6 C 3
7 C 3
8 C 3
fillna + groupby + transform + mean
This seems intuitive:
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
The groupby + transform syntax maps the groupwise mean to the index of the original dataframe. This is roughly equivalent to #DSM's solution, but avoids the need to define an anonymous lambda function.
#DSM has IMO the right answer, but I'd like to share my generalization and optimization of the question: Multiple columns to group-by and having multiple value columns:
df = pd.DataFrame(
{
'category': ['X', 'X', 'X', 'X', 'X', 'X', 'Y', 'Y', 'Y'],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],
'other_value': [10, np.nan, np.nan, 20, 30, 10, 30, np.nan, 30],
'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3],
}
)
... gives ...
category name other_value value
0 X A 10.0 1.0
1 X A NaN NaN
2 X B NaN NaN
3 X B 20.0 2.0
4 X B 30.0 3.0
5 X B 10.0 1.0
6 Y C 30.0 3.0
7 Y C NaN NaN
8 Y C 30.0 3.0
In this generalized case we would like to group by category and name, and impute only on value.
This can be solved as follows:
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
Notice the column list in the group-by clause, and that we select the value column right after the group-by. This makes the transformation only be run on that particular column. You could add it to the end, but then you will run it for all columns only to throw out all but one measure column at the end. A standard SQL query planner might have been able to optimize this, but pandas (0.19.2) doesn't seem to do this.
Performance test by increasing the dataset by doing ...
big_df = None
for _ in range(10000):
if big_df is None:
big_df = df.copy()
else:
big_df = pd.concat([big_df, df])
df = big_df
... confirms that this increases the speed proportional to how many columns you don't have to impute:
import pandas as pd
from datetime import datetime
def generate_data():
...
t = datetime.now()
df = generate_data()
df['value'] = df.groupby(['category', 'name'])['value']\
.transform(lambda x: x.fillna(x.mean()))
print(datetime.now()-t)
# 0:00:00.016012
t = datetime.now()
df = generate_data()
df["value"] = df.groupby(['category', 'name'])\
.transform(lambda x: x.fillna(x.mean()))['value']
print(datetime.now()-t)
# 0:00:00.030022
On a final note you can generalize even further if you want to impute more than one column, but not all:
df[['value', 'other_value']] = df.groupby(['category', 'name'])['value', 'other_value']\
.transform(lambda x: x.fillna(x.mean()))
Shortcut:
Groupby + Apply + Lambda + Fillna + Mean
>>> df['value1']=df.groupby('name')['value'].apply(lambda x:x.fillna(x.mean()))
>>> df.isnull().sum().sum()
0
This solution still works if you want to group by multiple columns to replace missing values.
>>> df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, np.nan,np.nan, 4, 3],
'name': ['A','A', 'B','B','B','B', 'C','C','C'],'class':list('ppqqrrsss')})
>>> df['value']=df.groupby(['name','class'])['value'].apply(lambda x:x.fillna(x.mean()))
>>> df
value name class
0 1.0 A p
1 1.0 A p
2 2.0 B q
3 2.0 B q
4 3.0 B r
5 3.0 B r
6 3.5 C s
7 4.0 C s
8 3.0 C s
I'd do it this way
df.loc[df.value.isnull(), 'value'] = df.groupby('group').value.transform('mean')
The featured high ranked answer only works for a pandas Dataframe with only two columns. If you have a more columns case use instead:
df['Crude_Birth_rate'] = df.groupby("continent").Crude_Birth_rate.transform(
lambda x: x.fillna(x.mean()))
To summarize all above concerning the efficiency of the possible solution
I have a dataset with 97 906 rows and 48 columns.
I want to fill in 4 columns with the median of each group.
The column I want to group has 26 200 groups.
The first solution
start = time.time()
x = df_merged[continuous_variables].fillna(df_merged.groupby('domain_userid')[continuous_variables].transform('median'))
print(time.time() - start)
0.10429811477661133 seconds
The second solution
start = time.time()
for col in continuous_variables:
df_merged.loc[df_merged[col].isnull(), col] = df_merged.groupby('domain_userid')[col].transform('median')
print(time.time() - start)
0.5098445415496826 seconds
The next solution I only performed on a subset since it was running too long.
start = time.time()
for col in continuous_variables:
x = df_merged.head(10000).groupby('domain_userid')[col].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
11.685635566711426 seconds
The following solution follows the same logic as above.
start = time.time()
x = df_merged.head(10000).groupby('domain_userid')[continuous_variables].transform(lambda x: x.fillna(x.median()))
print(time.time() - start)
42.630549907684326 seconds
So it's quite important to choose the right method.
Bear in mind that I noticed once a column was not a numeric the times were going up exponentially (makes sense as I was computing the median).
def groupMeanValue(group):
group['value'] = group['value'].fillna(group['value'].mean())
return group
dft = df.groupby("name").transform(groupMeanValue)
I know that is an old question. But I am quite surprised by the unanimity of apply/lambda answers here.
Generally speaking, that is the second worst thing to do after iterating rows, from timing point of view.
What I would do here is
df.loc[df['value'].isna(), 'value'] = df.groupby('name')['value'].transform('mean')
Or using fillna
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
I've checked with timeit (because, again, unanimity for apply/lambda based solution made me doubt my instinct). And that is indeed 2.5 faster than the most upvoted solutions.
To fill all the numeric null values with the mean grouped by "name"
num_cols = df.select_dtypes(exclude='object').columns
df[num_cols] = df.groupby("name").transform(lambda x: x.fillna(x.mean()))
df.fillna(df.groupby(['name'], as_index=False).mean(), inplace=True)
You can also use "dataframe or table_name".apply(lambda x: x.fillna(x.mean())).

Loop through dataframe (cols and rows) and replace data

I have:
df = pd.DataFrame([[1, 2,3], [2, 4,6],[3, 6,9]], columns=['A', 'B','C'])
and I need to calculate de difference between the i+1 and i value of each row and column, and store it again in the same column. The output needed would be:
Out[2]:
A B C
0 1 2 3
1 1 2 3
2 1 2 3
I have tried to do this, but I finally get a list with all values appended, and I need to have them stored separately (in lists, or in the same dataframe).
Is there a way to do it?
difs=[]
for column in df:
for i in range(len(df)-1):
a = df[column]
b = a[i+1]-a[i]
difs.append(b)
for x in difs:
for column in df:
df[column]=x
You can use pandas function shift to achieve your intended goal. This is what it does (more on it on the docs):
Shift index by desired number of periods with an optional time freq.
for col in df:
df[col] = df[col] - df[col].shift(1).fillna(0)
df
Out[1]:
A B C
0 1.0 2.0 3.0
1 1.0 2.0 3.0
2 1.0 2.0 3.0
Added
In case you want to use the loop, probably a good approach is to use iterrows (more on it here) as it provides (index, Series) pairs.
difs = []
for i, row in df.iterrows():
if i == 0:
x = row.values.tolist() ## so we preserve the first row
else:
x = (row.values - df.loc[i-1, df.columns]).values.tolist()
difs.append(x)
difs
Out[1]:
[[1, 2, 3], [1, 2, 3], [1, 2, 3]]
## Create new / replace old dataframe
cols = [col for col in df.columns]
new_df = pd.DataFrame(difs, columns=cols)
new_df
Out[2]:
A B C
0 1.0 2.0 3.0
1 1.0 2.0 3.0
2 1.0 2.0 3.0

Pandas divide multiple mutliindex columns

I've got a dataframe that looks like this:
and I'd like to divide the x columns by the y columns, but at the moment I get the following result:
Full example:
import pandas as pd
# create example dataframe
data = {'x': [2, 4, 6], 'y': [1, 2, 3]}
df = pd.DataFrame(data)
df = pd.concat([df, df*10], axis=1, keys=['apple', 'orange'])
# slice just x and y columns
x = df.loc[:, (slice(None), 'x')]
y = df.loc[:, (slice(None), 'y')]
# divide (this doesn't work)
result = x / y
Ideally I'd like to add the result back as a separate column:
Is there an elegant way to do this?
Your solution working if same second level created by rename:
new = (x.rename(columns={'x':'x/y'}) / y.rename(columns={'y':'x/y'})
print (new)
apple orange
x/y x/y
0 2.0 2.0
1 2.0 2.0
2 2.0 2.0
Or is possible use DataFrame.xs - be default is removed selected level, so divid working nice (because same columns in x and y DataFrame), so is necessary create second level by MultiIndex.from_product:
x = df.xs('x', axis=1, level=1)
y = df.xs('y', axis=1, level=1)
new = x / y
new.columns = pd.MultiIndex.from_product([new.columns, ['x/y']])
print (new)
apple orange
x/y x/y
0 2.0 2.0
1 2.0 2.0
2 2.0 2.0
And then use concat with DataFrame.sort_index and DataFrame.reindex:
df = pd.concat([df, new], axis=1).sort_index(axis=1).reindex(['x','x/y','y'], axis=1, level=1)
print (df)
apple orange
x x/y y x x/y y
0 2 2.0 1 20 2.0 10
1 4 2.0 2 40 2.0 20
2 6 2.0 3 60 2.0 30

Categories