Does matplotlib change np.int to float automatically in x-axis? - python

I wonder why matplotlib changes the np.int to float in drawing especially in x-axis. Is that normal behavior of matplotlib or there might be something wrong in my jupyter status?
import numpy as np
import matplotlib.pyplot as plt
ys = np.arange(4)
print(ys)
fig, ax = plt.subplots(1,1, figsize=(16,5))
xs = np.arange(1,5,dtype=np.int)
print(xs)
ax.plot(xs, ys, marker='o')
ax.set_xlabel("dtype = int", fontsize=15)
ax.set_ylabel("y-values", fontsize=15)
plt.show()

It's just the tick locator, you can set it to integers only. See here for details:
import matplotlib as mpl
ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(integer=True))

Related

How do I remove double ticks (leaving a single set) on a color bar in matplotlib's imshow? [duplicate]

I'm making some interactive plots and I would like to add a colorbar legend. I don't want the colorbar to be in its own axes, so I want to add it to the existing axes. I'm having difficulties doing this, as most of the example code I have found creates a new axes for the colorbar.
I have tried the following code using matplotlib.colorbar.ColorbarBase, which adds a colorbar to an existing axes, but it gives me strange results and I can't figure out how to specify attributes of the colorbar (for instance, where on the axes it is placed and what size it is)
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.cm import coolwarm
import numpy as np
x = np.random.uniform(1, 10, 10)
y = np.random.uniform(1, 10, 10)
v = np.random.uniform(1, 10, 10)
fig, ax = plt.subplots()
s = ax.scatter(x, y, c=v, cmap=coolwarm)
matplotlib.colorbar.ColorbarBase(ax=ax, cmap=coolwarm, values=sorted(v),
orientation="horizontal")
Using fig.colorbar instead ofmatplotlib.colorbar.ColorbarBase still doesn't give me quite what I want, and I still don't know how to adjust the attributes of the colorbar.
fig.colorbar(s, ax=ax, cax=ax)
Let's say I want to have the colorbar in the top left corner, stretching about halfway across the top of the plot. How would I go about doing that?
Am I better off writing a custom function for this, maybe using LineCollection?
This technique is usually used for multiple axis in a figure. In this context it is often required to have a colorbar that corresponds in size with the result from imshow. This can be achieved easily with the axes grid tool kit:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
data = np.arange(100, 0, -1).reshape(10, 10)
fig, ax = plt.subplots()
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
im = ax.imshow(data, cmap='bone')
fig.colorbar(im, cax=cax, orientation='vertical')
plt.show()
The colorbar has to have its own axes. However, you can create an axes that overlaps with the previous one. Then use the cax kwarg to tell fig.colorbar to use the new axes.
For example:
import numpy as np
import matplotlib.pyplot as plt
data = np.arange(100, 0, -1).reshape(10, 10)
fig, ax = plt.subplots()
cax = fig.add_axes([0.27, 0.8, 0.5, 0.05])
im = ax.imshow(data, cmap='gist_earth')
fig.colorbar(im, cax=cax, orientation='horizontal')
plt.show()
Couldn't add this as a comment, but in case anyone is interested in using the accepted answer with subplots, the divider should be formed on specific axes object (rather than on the numpy.ndarray returned from plt.subplots)
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
data = np.arange(100, 0, -1).reshape(10, 10)
fig, ax = plt.subplots(ncols=2, nrows=2)
for row in ax:
for col in row:
im = col.imshow(data, cmap='bone')
divider = make_axes_locatable(col)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
plt.show()

Filling subplot with colormap - Matplotlib LogNorm does work in python 3 anymore

I had pretty nice plots looking like this created a while ago in python 2.7.
Now it appears that LogNorm does not work anymore.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
fig = plt.figure()
ax = fig.add_subplot(111)
# creating logspaced values for colorbar
x = np.logspace(-8,-3,6)
yarr = np.vstack((x,))
print(yarr)
# check if yarr is really logspaced
ax.plot(yarr, [1e1]*len(yarr), 'w.-')
# fill box with colorbar - this does not work anymore
ax.imshow(yarr, extent=(1e-8, 1e-3, 1, 1e4), norm=LogNorm(vmin=1e-8, vmax=1e-3))
ax.set_xscale("log")
ax.set_yscale("log")
Output now
Thanks in advance.
It was pointed out to me that it is a problem of matplotlib:
https://github.com/matplotlib/matplotlib/issues/7661/
import numpy as np
import matplotlib.pyplot as plt
tmp = np.arange(199).reshape(1, 199)
y = np.logspace(0, -4, 2)
x = np.logspace(-8, -3, 200)
fig, ax = plt.subplots()
ax.set_xscale('log')
ax.set_yscale('log')
ax.pcolormesh(x, y, tmp)
plt.show()
This solves the problem.

Plot very small values with matplotlib in jupyter

I am trying to plot some extremely small values with matplotlib in jupyter notebook (on a macbook pro). However, regardless if I set the y-axis limits, all I get is a flat line. What I am after is something like the example (png) below with regard to y-axis notation. I also tried the same example outside of jupyter and I still get the same results. Here's the code suggested by Andrew Walker on my previous question:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(13,6))
ax = fig.add_subplot(111)
plt.hold(True)
xs = np.linspace(0, 1, 101)
ys = 1e-300 * np.exp(-(xs-0.5)**2/0.01)
ax.plot(xs, ys, marker='.')
Here's what I get:
And here's what I'm after:
The easiest thing to do is to just plot your values multiplied by 10^300, and then change the y-axis label:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(13,6))
ax = fig.add_subplot(111)
plt.hold(True)
xs = np.linspace(0, 1, 101)
ys = np.exp(-(xs-0.5)**2/0.01)
ax.plot(xs, ys, marker='.')
ax.set_ylabel(r'Value [x 10^{-300}]')
You can use the set_ylim method on your axes object to do what you need, simply change your code to this and it would do what you need:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(13,6))
ax = fig.add_subplot(111)
plt.hold(True)
xs = np.linspace(0, 1, 101)
ys = 1e-300 * np.exp(-(xs-0.5)**2/0.01)
ax.set_ylim([0,10^-299])
ax.plot(xs, ys, marker='.')
you may like to check This link for more info on this subject.

How to remove gaps between subplots in matplotlib

The code below produces gaps between the subplots. How do I remove the gaps between the subplots and make the image a tight grid?
import matplotlib.pyplot as plt
for i in range(16):
i = i + 1
ax1 = plt.subplot(4, 4, i)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
ax1.set_aspect('equal')
plt.subplots_adjust(wspace=None, hspace=None)
plt.show()
The problem is the use of aspect='equal', which prevents the subplots from stretching to an arbitrary aspect ratio and filling up all the empty space.
Normally, this would work:
import matplotlib.pyplot as plt
ax = [plt.subplot(2,2,i+1) for i in range(4)]
for a in ax:
a.set_xticklabels([])
a.set_yticklabels([])
plt.subplots_adjust(wspace=0, hspace=0)
The result is this:
However, with aspect='equal', as in the following code:
import matplotlib.pyplot as plt
ax = [plt.subplot(2,2,i+1) for i in range(4)]
for a in ax:
a.set_xticklabels([])
a.set_yticklabels([])
a.set_aspect('equal')
plt.subplots_adjust(wspace=0, hspace=0)
This is what we get:
The difference in this second case is that you've forced the x- and y-axes to have the same number of units/pixel. Since the axes go from 0 to 1 by default (i.e., before you plot anything), using aspect='equal' forces each axis to be a square. Since the figure is not a square, pyplot adds in extra spacing between the axes horizontally.
To get around this problem, you can set your figure to have the correct aspect ratio. We're going to use the object-oriented pyplot interface here, which I consider to be superior in general:
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(8,8)) # Notice the equal aspect ratio
ax = [fig.add_subplot(2,2,i+1) for i in range(4)]
for a in ax:
a.set_xticklabels([])
a.set_yticklabels([])
a.set_aspect('equal')
fig.subplots_adjust(wspace=0, hspace=0)
Here's the result:
You can use gridspec to control the spacing between axes. There's more information here.
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
plt.figure(figsize = (4,4))
gs1 = gridspec.GridSpec(4, 4)
gs1.update(wspace=0.025, hspace=0.05) # set the spacing between axes.
for i in range(16):
# i = i + 1 # grid spec indexes from 0
ax1 = plt.subplot(gs1[i])
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
ax1.set_aspect('equal')
plt.show()
Without resorting gridspec entirely, the following might also be used to remove the gaps by setting wspace and hspace to zero:
import matplotlib.pyplot as plt
plt.clf()
f, axarr = plt.subplots(4, 4, gridspec_kw = {'wspace':0, 'hspace':0})
for i, ax in enumerate(f.axes):
ax.grid('on', linestyle='--')
ax.set_xticklabels([])
ax.set_yticklabels([])
plt.show()
plt.close()
Resulting in:
With recent matplotlib versions you might want to try Constrained Layout. This does (or at least did) not work with plt.subplot() however, so you need to use plt.subplots() instead:
fig, axs = plt.subplots(4, 4, constrained_layout=True)
Have you tried plt.tight_layout()?
with plt.tight_layout()
without it:
Or: something like this (use add_axes)
left=[0.1,0.3,0.5,0.7]
width=[0.2,0.2, 0.2, 0.2]
rectLS=[]
for x in left:
for y in left:
rectLS.append([x, y, 0.2, 0.2])
axLS=[]
fig=plt.figure()
axLS.append(fig.add_axes(rectLS[0]))
for i in [1,2,3]:
axLS.append(fig.add_axes(rectLS[i],sharey=axLS[-1]))
axLS.append(fig.add_axes(rectLS[4]))
for i in [1,2,3]:
axLS.append(fig.add_axes(rectLS[i+4],sharex=axLS[i],sharey=axLS[-1]))
axLS.append(fig.add_axes(rectLS[8]))
for i in [5,6,7]:
axLS.append(fig.add_axes(rectLS[i+4],sharex=axLS[i],sharey=axLS[-1]))
axLS.append(fig.add_axes(rectLS[12]))
for i in [9,10,11]:
axLS.append(fig.add_axes(rectLS[i+4],sharex=axLS[i],sharey=axLS[-1]))
If you don't need to share axes, then simply axLS=map(fig.add_axes, rectLS)
Another method is to use the pad keyword from plt.subplots_adjust(), which also accepts negative values:
import matplotlib.pyplot as plt
ax = [plt.subplot(2,2,i+1) for i in range(4)]
for a in ax:
a.set_xticklabels([])
a.set_yticklabels([])
plt.subplots_adjust(pad=-5.0)
Additionally, to remove the white at the outer fringe of all subplots (i.e. the canvas), always save with plt.savefig(fname, bbox_inches="tight").

Positioning the colorbar

I have a matplotlib plot with a colorbar attached. I want to position the colorbar so that it is horizontal, and underneath my plot.
I have almost done this via the following:
plt.colorbar(orientation="horizontal",fraction=0.07,anchor=(1.0,0.0))
But the colorbar is still overlapping with the plot slightly (and the labels of the x axis). I want to move the colorbar further down, but I can't figure out how to do it.
using padding pad
In order to move the colorbar relative to the subplot, one may use the pad argument to fig.colorbar.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, ax = plt.subplots(figsize=(4,4))
im = ax.imshow(np.random.rand(11,16))
ax.set_xlabel("x label")
fig.colorbar(im, orientation="horizontal", pad=0.2)
plt.show()
using an axes divider
One can use an instance of make_axes_locatable to divide the axes and create a new axes which is perfectly aligned to the image plot. Again, the pad argument would allow to set the space between the two axes.
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np; np.random.seed(1)
fig, ax = plt.subplots(figsize=(4,4))
im = ax.imshow(np.random.rand(11,16))
ax.set_xlabel("x label")
divider = make_axes_locatable(ax)
cax = divider.new_vertical(size="5%", pad=0.7, pack_start=True)
fig.add_axes(cax)
fig.colorbar(im, cax=cax, orientation="horizontal")
plt.show()
using subplots
One can directly create two rows of subplots, one for the image and one for the colorbar. Then, setting the height_ratios as gridspec_kw={"height_ratios":[1, 0.05]} in the figure creation, makes one of the subplots much smaller in height than the other and this small subplot can host the colorbar.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, cax) = plt.subplots(nrows=2,figsize=(4,4),
gridspec_kw={"height_ratios":[1, 0.05]})
im = ax.imshow(np.random.rand(11,16))
ax.set_xlabel("x label")
fig.colorbar(im, cax=cax, orientation="horizontal")
plt.show()
Edit: Updated for matplotlib version >= 3.
Three great ways to do this have already been shared in this answer.
The matplotlib documentation advises to use inset_locator. This would work as follows:
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import numpy as np
rng = np.random.default_rng(1)
fig, ax = plt.subplots(figsize=(4,4))
im = ax.imshow(rng.random((11, 16)))
ax.set_xlabel("x label")
axins = inset_axes(ax,
width="100%",
height="5%",
loc='lower center',
borderpad=-5
)
fig.colorbar(im, cax=axins, orientation="horizontal")

Categories