OpenCv Python Operation on image,is there a way to do that? - python

Is there something in opencv to accomplish the following code?
import cv2
import numpy as np
img = cv2.imread('test.png')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
rows,cols,depth = img.shape
for j in range(1,cols-1):
for i in range(rows):
if gray[i,j] != 255 and gray[i,j-1] == 255 and gray[i,j+1] == 255:#this is the condition I want to perform on entire image pixel by pixel
img[i,j]=(255,255,255)
cv2.imshow('image',img)
cv2.waitKey(0)
I did a look at filter2d without lucky. My idea was to perform with different kernels to accomplish the condition in the code above.
I'm not a master of opencv so every advice is welcome
Thanks

Here is one way to do that in Python/OpenCV by creating masks for each of the 3 conditions and then combining the masks before apply to the image.
Read the input
Convert to gray
Threshold at 254 to capture only white pixels
For the center pixel, invert the threshold image as maskC
For the right pixel, roll the threshold image to the left by one pixel as maskR
For the left pixel, roll the threshold image to the right by one pixel as maskL
Do two bit-wise ANDs to combine the 3 masks into one
Apply the resulting mask to the image
Save the result
Input:
import cv2
import numpy as np
# read input
img = cv2.imread('barn.jpg')
# convert to gray
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# threshold at 255 to capture only values at 255
thresh = cv2.threshold(gray, 254, 255, cv2.THRESH_BINARY)[1]
# create center pixel mask: white if not 255
maskC = 255 - thresh
# create right pixel mask: white if equals 255
# roll the threshold image left by 1 to align the right pixel with the center pixel
maskL = np.roll(thresh, -1, axis=1)
# create left pixel mask: white if equals 255
# roll the threshold image right by 1 to align the right pixel with the center pixel
maskR = np.roll(thresh, 1, axis=1)
# combine masks
mask = cv2.bitwise_and(maskC, maskL)
mask = cv2.bitwise_and(mask, maskR)
# apply mask to image
result = img.copy()
result[mask==255] = (255,255,255)
# save result
cv2.imwrite('barn_mask.jpg', mask)
cv2.imwrite('barn_processed.jpg', result)
cv2.imshow('thresh',thresh)
cv2.imshow('mask',mask)
cv2.imshow('result',result)
cv2.waitKey(0)
There are too few pixels to see in the processed image, so I will just show the mask.
To demonstrate that this is correct, here is the original code modified to show the pattern of points.
import cv2
import numpy as np
img = cv2.imread('barn.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
rows,cols,depth = img.shape
pattern = np.zeros_like(img)
for j in range(1,cols-1):
for i in range(rows):
if gray[i,j] != 255 and gray[i,j-1] == 255 and gray[i,j+1] == 255:#this is the condition I want to perform on entire image pixel by pixel
pattern[i,j]=(255,255,255)
img[i,j]=(255,255,255)
cv2.imwrite('barn_pattern_true.png', pattern)
cv2.imwrite('barn_processed_true.png', img)
cv2.imshow('pattern',pattern)
cv2.imshow('result',img)
cv2.waitKey(0)
Pattern image:

Related

How to replace a checked pattern in a PNG image with transparent in Python?

I am trying to remove the checkered background (which represents transparent background in Adobe Illustrator and Photoshop) with transparent color (alpha channel) in some PNGs with Python script.
First, I use template matching:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv2.imread('testimages/fake1.png', cv2.IMREAD_UNCHANGED)
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('pattern.png', 0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
if len(img_rgb[0][0]) == 3:
# add alpha channel
rgba = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2RGBA)
rgba[:, :, 3] = 255 # default not transparent
img_rgb = rgba
# replace the area with a transparent rectangle
cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (255, 255, 255, 0), -1)
cv2.imwrite('result.png', img_rgb)
Source Image: fake1.png
Pattern Template: pattern.png
Output: result.png (the gray area is actually transparent; enlarge a bit for viewing easier)
I know this approach has problems, as the in some cases, the template cannot be identified fully, as part of the pattern is hidden by the graphics in the PNG image.
My question is: How can I match such a pattern perfectly using OpenCV? via FFT Filtering?
References:
How particular pixel to transparent in opencv python?
Detecting a pattern in an image and retrieving its position
https://python.plainenglish.io/how-to-remove-image-background-using-python-6f7ffa8eab15
https://answers.opencv.org/question/232506/make-the-background-of-the-image-transparent-using-a-mask/
https://dsp.stackexchange.com/questions/36679/which-image-filter-can-be-applied-to-remove-gridded-pattern-from-corrupt-jpegs
Here is one way to do that in Python/OpenCV simply by thresholding on the checks color range.
Input:
import cv2
import numpy as np
# read input
img = cv2.imread("fake.png")
# threshold on checks
low = (230,230,230)
high = (255,255,255)
mask = cv2.inRange(img, low, high)
# invert alpha
alpha = 255 - mask
# convert img to BGRA
result = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
result[:,:,3] = alpha
# save output
cv2.imwrite('fake_transparent.png', result)
cv2.imshow('img', img)
cv2.imshow('mask', mask)
cv2.imshow('result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Download the resulting image to see that it is actually transparent.
Here is one way to use DFT to process the image in Python/OpenCV/Numpy. One does need to know the size of the checkerboard pattern (light or dark square size).
Read the input
Separate channels
Apply DFT to each channel
Shift origin from top left to center of each channel
Extract magnitude and phase images from each channel
Define the checkerboard pattern size
Create a black and white checkerboard image of the same size
Apply similar DFT processing to the checkerboard image
Get the spectrum from the log(magnitude)
Threshold the spectrum to form a mask
Zero out the DC center point in the mask
OPTION: If needed apply morphology dilate to thicken the white dots. But does not seem to be needed here
Invert the mask so the background is white and the dots are black
Convert the mask to range 0 to 1 and make 2 channels
Apply the two-channel mask to the center shifted DFT channels
Shift the center back to the top left in each masked image
Do the IDFT to get back from complex domain to real domain on each channel
Merge the resulting channels back to a BGR image as the final reconstituted image
Save results
Input:
import numpy as np
import cv2
import math
# read input
# note: opencv fft only works on grayscale
img = cv2.imread('fake.png')
hh, ww = img.shape[:2]
# separate channels
b,g,r = cv2.split(img)
# convert images to floats and do dft saving as complex output
dft_b = cv2.dft(np.float32(b), flags = cv2.DFT_COMPLEX_OUTPUT)
dft_g = cv2.dft(np.float32(g), flags = cv2.DFT_COMPLEX_OUTPUT)
dft_r = cv2.dft(np.float32(r), flags = cv2.DFT_COMPLEX_OUTPUT)
# apply shift of origin from upper left corner to center of image
dft_b_shift = np.fft.fftshift(dft_b)
dft_g_shift = np.fft.fftshift(dft_g)
dft_r_shift = np.fft.fftshift(dft_r)
# extract magnitude and phase images
mag_b, phase_b = cv2.cartToPolar(dft_b_shift[:,:,0], dft_b_shift[:,:,1])
mag_g, phase_g = cv2.cartToPolar(dft_g_shift[:,:,0], dft_g_shift[:,:,1])
mag_r, phase_r = cv2.cartToPolar(dft_r_shift[:,:,0], dft_r_shift[:,:,1])
# set check size (size of either dark or light square)
check_size = 15
# create checkerboard pattern
white = np.full((check_size,check_size), 255, dtype=np.uint8)
black = np.full((check_size,check_size), 0, dtype=np.uint8)
checks1 = np.hstack([white,black])
checks2 = np.hstack([black,white])
checks3 = np.vstack([checks1,checks2])
numht = math.ceil(hh / (2*check_size))
numwd = math.ceil(ww / (2*check_size))
checks = np.tile(checks3, (numht,numwd))
checks = checks[0:hh, 0:ww]
# apply dft to checkerboard pattern
dft_c = cv2.dft(np.float32(checks), flags = cv2.DFT_COMPLEX_OUTPUT)
dft_c_shift = np.fft.fftshift(dft_c)
mag_c, phase_c = cv2.cartToPolar(dft_c_shift[:,:,0], dft_c_shift[:,:,1])
# get spectrum from magnitude (add tiny amount to avoid divide by zero error)
spec = np.log(mag_c + 0.00000001)
# theshold spectrum
mask = cv2.threshold(spec, 1, 255, cv2.THRESH_BINARY)[1]
# mask DC point (center spot)
centx = int(ww/2)
centy = int(hh/2)
dot = np.zeros((3,3), dtype=np.uint8)
mask[centy-1:centy+2, centx-1:centx+2] = dot
# If needed do morphology dilate by small amount.
# But does not seem to be needed in this case
# invert mask
mask = 255 - mask
# apply mask to real and imaginary components
mask1 = (mask/255).astype(np.float32)
mask2 = cv2.merge([mask1,mask1])
complex_b = dft_b_shift*mask2
complex_g = dft_g_shift*mask2
complex_r = dft_r_shift*mask2
# shift origin from center to upper left corner
complex_ishift_b = np.fft.ifftshift(complex_b)
complex_ishift_g = np.fft.ifftshift(complex_g)
complex_ishift_r = np.fft.ifftshift(complex_r)
# do idft with normalization saving as real output and crop to original size
img_notch_b = cv2.idft(complex_ishift_b, flags=cv2.DFT_SCALE+cv2.DFT_REAL_OUTPUT)
img_notch_b = img_notch_b.clip(0,255).astype(np.uint8)
img_notch_b = img_notch_b[0:hh, 0:ww]
img_notch_g = cv2.idft(complex_ishift_g, flags=cv2.DFT_SCALE+cv2.DFT_REAL_OUTPUT)
img_notch_g = img_notch_g.clip(0,255).astype(np.uint8)
img_notch_g = img_notch_g[0:hh, 0:ww]
img_notch_r = cv2.idft(complex_ishift_r, flags=cv2.DFT_SCALE+cv2.DFT_REAL_OUTPUT)
img_notch_r = img_notch_r.clip(0,255).astype(np.uint8)
img_notch_r = img_notch_r[0:hh, 0:ww]
# combine b,g,r components
img_notch = cv2.merge([img_notch_b, img_notch_g, img_notch_r])
# write result to disk
cv2.imwrite("fake_checks.png", checks)
cv2.imwrite("fake_spectrum.png", (255*spec).clip(0,255).astype(np.uint8))
cv2.imwrite("fake_mask.png", mask)
cv2.imwrite("fake_notched.png", img_notch)
# show results
cv2.imshow("ORIGINAL", img)
cv2.imshow("CHECKS", checks)
cv2.imshow("SPECTRUM", spec)
cv2.imshow("MASK", mask)
cv2.imshow("NOTCH", img_notch)
cv2.waitKey(0)
cv2.destroyAllWindows()
Checkerboard image:
Spectrum of checkerboard:
Mask:
Result (notch filtered image):
The checkerboard pattern in the result is mitigated from the original, but still there upon close inspection.
From here one needs to threshold on the white background and invert to make an image for the alpha channel. Then convert the image to 4 BGRA and insert the alpha channel into the BGRA image as I described in my other answer below.
since you're working on PNG's with transparent backgrounds, it would probably be equally viable to instead of trying to detect the checkered background, you try to extract the stuff that isn't checkered. This could probably be achieved using a color check on all pixels. You could use opencv's inRange() function. I'll link a StackOverflow link below that tries to detect dark spots on a image.
Inrange example

How to find Blue, Green, Red color of detected shapes

import cv2
import numpy as np
img = cv2.imread('img.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray,127,255,1)
contours,h = cv2.findContours(thresh,1,2)
for cnt in contours:
approx = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True)
if len(approx)==3:
print('Triangle')
elif len(approx)==4:
print('Sq')
elif len(approx)==5:
print('Pen')
elif len(approx) ==6:
print('Hex')
else:
print('Cir')
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
**How to we can find the color of detected shapes in just BRG colors.This code is able to find shapes but I do not have any idea to detect color of this detected shapes. **
There is certain RGB values of the certain color.
There are some websites on which you can upload the image and it give you the exact RGB values of the color you want.
You can write condition where you define the some range of the color which you got from the website, if the color in the image lies in the range you defined then its your color.
Here is one way in Python/OpenCV. Given that you know the contours or polygons, you can create a mask for a given contour. Then use the mask to find all the pixels in the image corresponding to the mask white pixels. The get the mean of those pixels.
Input:
For simplicity here, I simply threshold on the gray level version of the green to make a mask.
import cv2
import numpy as np
# Read image
img = cv2.imread('rgb.png')
# convert to gray
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Define graylevel lower and uppper limits for green
lower = 145
upper = 155
# Create mask
mask = cv2.inRange(gray, lower, upper)
# get mean color
region = img[np.where(mask == 255)]
mean = np.mean(region, axis=0)
print(mean)
# save results
cv2.imwrite('rgb_gray.png', gray)
cv2.imwrite('rgb_mask.png', mask)
cv2.imshow('gray', gray)
cv2.imshow('mask', mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
Gray image:
Mask:
Mean color:
[ 0. 255. 0.]
Which is green as expected.

Expanding background color to connected components(Flood fill) - Image Processing

kinda stuck trying to figure out how I can expand the background color inwards.
I have this image that has been generated through a mask after noisy background subtraction.
I am trying to make it into this:
So far I have tried to this, but to no avail:
import cv2
from PIL import Image
import numpy as np
Image.open("example_of_misaligned_frame.png") # open poor frame
img_copy = np.asanyarray(img).copy()
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX) # find contours
# create bounding box around blob and figure out the row.cols to iterate over
x,y,w,h = cv2.boundingRect(max(contours, key = cv2.contourArea))
# flood fill the entire region with back, hoping that off-white region gets filled due to connected components.
for row in range(y, y+h):
for col in range(x, x+w):
cv2.floodFill(img_copy, None, seedPoint=(col,row), newVal=0)
This results in a completely black image :(
Any help, pointing me in the right direction, is greatly appreciated.
You can solve it by using floodFill twice:
First time - fill the black pixels with Off-White color.
Second time - fill the Off-White pixels with black color.
There is still an issue for finding the RGB values of the Off-White color.
I found an improvised solution for finding the Off-White color (I don't know the exact rules for what color is considered to be background).
Here is a working code sample:
import cv2
import numpy as np
#Image.open("example_of_misaligned_frame.png") # open poor frame
img = cv2.imread("example_of_misaligned_frame.png")
#img_copy = np.asanyarray(img).copy()
img_copy = img.copy()
#Improvised way to find the Off White color (it's working because the Off White has the maximum color components values).
tmp = cv2.dilate(img, np.ones((50,50), np.uint8), iterations=10)
# Color of Off-White pixel
offwhite = tmp[0, 0, :]
# Convert to tuple
offwhite = tuple((int(offwhite[0]), int(offwhite[1]), int(offwhite[2])))
# Fill black pixels with off-white color
cv2.floodFill(img_copy, None, seedPoint=(0,0), newVal=offwhite)
# Fill off-white pixels with black color
cv2.floodFill(img_copy, None, seedPoint=(0,0), newVal=0, loDiff=(2, 2, 2, 2), upDiff=(2, 2, 2, 2))
cv2.imshow("img_copy", img_copy)
cv2.waitKey(0)
cv2.destroyAllWindows()
Result of cv2.dilate:
Result of first cv2.floodFill:
Result of second cv2.floodFill:
In Python/OpenCV, you can simply extract a binary mask from your flood filled process image and erode that mask. Then reapply it to the input or to your flood filled result.
Input:
import cv2
# read image
img = cv2.imread("masked_image.png")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# make anything not black into white
gray[gray!=0] = 255
# erode mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (51,51))
mask = cv2.morphologyEx(gray, cv2.MORPH_ERODE, kernel)
# make mask into 3 channels
mask = cv2.merge([mask,mask,mask])
# apply new mask to img
result = img.copy()
result = cv2.bitwise_and(img, mask)
# write result to disk
cv2.imwrite("masked_image_original_mask.png", gray)
cv2.imwrite("masked_image_eroded_mask.png", mask)
cv2.imwrite("masked_image_eroded_image.png", result)
# display it
cv2.imshow("IMAGE", img)
cv2.imshow("MASK", mask)
cv2.imshow("RESULT", result)
cv2.waitKey(0)
Mask:
Eroded Mask:
Result:
Adjust the size of the circular (elliptical) morphology kernel as desired for more or less erosion.

How to multiply two image in Python? [duplicate]

How can I apply mask to a color image in latest python binding (cv2)? In previous python binding the simplest way was to use cv.Copy e.g.
cv.Copy(dst, src, mask)
But this function is not available in cv2 binding. Is there any workaround without using boilerplate code?
Here, you could use cv2.bitwise_and function if you already have the mask image.
For check the below code:
img = cv2.imread('lena.jpg')
mask = cv2.imread('mask.png',0)
res = cv2.bitwise_and(img,img,mask = mask)
The output will be as follows for a lena image, and for rectangular mask.
Well, here is a solution if you want the background to be other than a solid black color. We only need to invert the mask and apply it in a background image of the same size and then combine both background and foreground. A pro of this solution is that the background could be anything (even other image).
This example is modified from Hough Circle Transform. First image is the OpenCV logo, second the original mask, third the background + foreground combined.
# http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghcircles/py_houghcircles.html
import cv2
import numpy as np
# load the image
img = cv2.imread('E:\\FOTOS\\opencv\\opencv_logo.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# detect circles
gray = cv2.medianBlur(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY), 5)
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=50, minRadius=0, maxRadius=0)
circles = np.uint16(np.around(circles))
# draw mask
mask = np.full((img.shape[0], img.shape[1]), 0, dtype=np.uint8) # mask is only
for i in circles[0, :]:
cv2.circle(mask, (i[0], i[1]), i[2], (255, 255, 255), -1)
# get first masked value (foreground)
fg = cv2.bitwise_or(img, img, mask=mask)
# get second masked value (background) mask must be inverted
mask = cv2.bitwise_not(mask)
background = np.full(img.shape, 255, dtype=np.uint8)
bk = cv2.bitwise_or(background, background, mask=mask)
# combine foreground+background
final = cv2.bitwise_or(fg, bk)
Note: It is better to use the opencv methods because they are optimized.
import cv2 as cv
im_color = cv.imread("lena.png", cv.IMREAD_COLOR)
im_gray = cv.cvtColor(im_color, cv.COLOR_BGR2GRAY)
At this point you have a color and a gray image. We are dealing with 8-bit, uint8 images here. That means the images can have pixel values in the range of [0, 255] and the values have to be integers.
Let's do a binary thresholding operation. It creates a black and white masked image. The black regions have value 0 and the white regions 255
_, mask = cv.threshold(im_gray, thresh=180, maxval=255, type=cv.THRESH_BINARY)
im_thresh_gray = cv.bitwise_and(im_gray, mask)
The mask can be seen below on the left. The image on its right is the result of applying bitwise_and operation between the gray image and the mask. What happened is, the spatial locations where the mask had a pixel value zero (black), became pixel value zero in the result image. The locations where the mask had pixel value 255 (white), the resulting image retained its original gray value.
To apply this mask to our original color image, we need to convert the mask into a 3 channel image as the original color image is a 3 channel image.
mask3 = cv.cvtColor(mask, cv.COLOR_GRAY2BGR) # 3 channel mask
Then, we can apply this 3 channel mask to our color image using the same bitwise_and function.
im_thresh_color = cv.bitwise_and(im_color, mask3)
mask3 from the code is the image below on the left, and im_thresh_color is on its right.
You can plot the results and see for yourself.
cv.imshow("original image", im_color)
cv.imshow("binary mask", mask)
cv.imshow("3 channel mask", mask3)
cv.imshow("im_thresh_gray", im_thresh_gray)
cv.imshow("im_thresh_color", im_thresh_color)
cv.waitKey(0)
The original image is lenacolor.png that I found here.
Answer given by Abid Rahman K is not completely correct. I also tried it and found very helpful but got stuck.
This is how I copy image with a given mask.
x, y = np.where(mask!=0)
pts = zip(x, y)
# Assuming dst and src are of same sizes
for pt in pts:
dst[pt] = src[pt]
This is a bit slow but gives correct results.
EDIT:
Pythonic way.
idx = (mask!=0)
dst[idx] = src[idx]
The other methods described assume a binary mask. If you want to use a real-valued single-channel grayscale image as a mask (e.g. from an alpha channel), you can expand it to three channels and then use it for interpolation:
assert len(mask.shape) == 2 and issubclass(mask.dtype.type, np.floating)
assert len(foreground_rgb.shape) == 3
assert len(background_rgb.shape) == 3
alpha3 = np.stack([mask]*3, axis=2)
blended = alpha3 * foreground_rgb + (1. - alpha3) * background_rgb
Note that mask needs to be in range 0..1 for the operation to succeed. It is also assumed that 1.0 encodes keeping the foreground only, while 0.0 means keeping only the background.
If the mask may have the shape (h, w, 1), this helps:
alpha3 = np.squeeze(np.stack([np.atleast_3d(mask)]*3, axis=2))
Here np.atleast_3d(mask) makes the mask (h, w, 1) if it is (h, w) and np.squeeze(...) reshapes the result from (h, w, 3, 1) to (h, w, 3).

How to discard the edges of an image using opencv?

I'm pre-processing some images in order to remove the background from my area of ​​interest. However, the images on my bench have rounded edges due to the focus of the camera. How do I discard these rounded edges and be able to remove only my object of interest from the image? The code below I can remove the background of the image, but it does not work right due to the edges around.
import numpy as np
import cv2
#Read the image and perform threshold and get its height and weight
img = cv2.imread('IMD408.bmp')
h, w = img.shape[:2]
# Transform to gray colorspace and blur the image.
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)
# Make a fake rectangle arround the image that will seperate the main contour.
cv2.rectangle(blur, (0,0), (w,h), (255,255,255), 10)
# Perform Otsu threshold.
_,thresh = cv2.threshold(blur,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
# Create a mask for bitwise operation
mask = np.zeros((h, w), np.uint8)
# Search for contours and iterate over contours. Make threshold for size to
# eliminate others.
contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
for i in contours:
cnt = cv2.contourArea(i)
if 1000000 >cnt > 100000:
cv2.drawContours(mask, [i],-1, 255, -1)
# Perform the bitwise operation.
res = cv2.bitwise_and(img, img, mask=mask)
# Display the result.
cv2.imwrite('IMD408.png', res)
cv2.imshow('img', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
input image:
Exit:
Error:
Since you mentioned that all the images have the same hue, then this should work well for them. Steps is to do some white balancing which will increase the contrast a bit.
Get the greyscale.
Threshold the grayscale image. Values less than 127 are set to 255 (white). This will give you a binary image, which will become a mask for the original image.
Apply the mask
You might have to play around with the thresholding if you want better results, here is the link for that. But this should get you started. I'm using a different OpenCV version compared to you might have to tweak the code a bit.
import cv2
def equaliseWhiteBalance(image):
''' Return equilised WB of an image '''
wb = cv2.xphoto.createSimpleWB() #Create WB Object
imgWB = wb.balanceWhite(img) #Balance White on image
r,g,b = cv2.split(imgWB) #Get individual r,g,b channels
r_equ = cv2.equalizeHist(r) #Equalise RED channel
g_equ = cv2.equalizeHist(g) #Equalise GREEN channel
b_equ = cv2.equalizeHist(b) #Equalise BLUE channel
img_equ_WB = cv2.merge([r_equ,g_equ,b_equ]) #Merge equalised channels
return imgWB
#Read the image
img = cv2.imread('IMD408.bmp')
result = img.copy()
#Get whiteBalance of image
imgWB = equaliseWhiteBalance(img)
cv2.imshow('img', imgWB)
cv2.waitKey(0)
# Get gray image
gray = cv2.cvtColor(imgWB,cv2.COLOR_RGB2GRAY)
cv2.imshow('img', gray)
cv2.waitKey(0)
# Perform threshold
_, thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
cv2.imshow('img', thresh)
cv2.waitKey(0)
# Apply mask
result[thresh!=0] = (255,255,255)
cv2.imshow('img', result)
cv2.waitKey(0)
If all the dark corner vignettes have different sizes per image, then I suggest looking for centroid of contours on the binary (mask) image. Centroids with a 'short' distance to any corner of your image will be the dark vignettes, so their value can be changed from black to white.

Categories