I am working on a multi axes plot. I have troubble in setting the ylims of each sub plot.
I am not providing the data as the problem is related to setting the axes only.
Here is the code:
ax1 = plt.subplot(411)
plt.plot(x,y1,'-r')
ax2 = plt.subplot(412,sharex=ax1)
plt.plot(x,y2,'-g')
ax3 = plt.subplot(413,sharex=ax1)
plt.plot(x,y3,'-k')
ax4 = plt.subplot(414,sharex=ax1)
plt.plot(x,y4,'-b')
ax1.get_shared_x_axes().join(ax1,ax2,ax3,ax4)
#make x axis on upper invisible
plt.setp(ax1.get_xaxis(), visible=False)
plt.setp(ax2.get_xaxis(), visible=False)
ax1.spines['bottom'].set_visible(False)
ax1.set_ylim([20,40])
ax2.spines['top'].set_visible(False)
ax2.spines['bottom'].set_visible(False)
ax2.set_ylim([0,0.8])
ax3.spines['top'].set_visible(False)
ax3.spines['bottom'].set_visible(False)
ax4.spines['top'].set_visible(False)
ax1.grid(axis="y")
ax2.grid(axis="y")
ax3.grid(axis="y")
ax4.grid(axis="y")
plt.subplots_adjust(hspace=0.01)
ax4.set_xlabel('Time (s)')
plt.subplots_adjust(left=0.12, right=0.97, top=0.95, bottom=0.15)
plt.show()
Existing output: We see the ylim of subplot1 has been reset. But, ax2 and ax3 y limits did not change.
From #QuangHoang in the comments:
I think your code work, notice how 0.5 is not on top of ax2, that small distance would account for the space from 0.5 to 0.8.
Related
I just specify the x and y axis limitations but the numbers' order is wrong. how can I fix this?
here is my code:
fig, ax = plt.subplots(figsize=(20,10))
ax.plot(df.finish_price, label="Stock Values", color = 'blue')
plt.ylabel("Price", color='b')
# Generate a new Axes instance, on the twin-X axes (same position)
ax2 = ax.twinx()
ax2.plot(df.sentiment, label= 'Sentiment', color='green')
ax2.tick_params(axis='y', labelcolor='green')
plt.ylim(bottom = -1)
plt.ylim(top=1)
plt.xlabel("Days")
plt.ylabel("Sentiment", color='g')
fig.legend()
plt.show()
and here is the result:
as you can see the numbers' order on the right y-axis is wrong.
How can I set the labels on the extra axes?
The ticks and labels should be the same on all 4 axes. I'm doing something wrong... Thanks!
import matplotlib.pyplot as plt
plt.rcParams['text.usetex'] = True
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
plt.show()
# create reusable ticks and labels
ticks = [0,1/2,3.14159/4,3.14159/2,1]
labels = [r"$0$", r"$\displaystyle\frac{1}{2}$", r"$\displaystyle\frac{\pi}{4}$", r"$\displaystyle\frac{\pi}{2}$", r"$1$"]
# Version 1: twinx() + xaxis.set_ticks()
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax1.xaxis.set_ticks(ticks, labels=labels)
ax1.yaxis.set_ticks(ticks, labels=labels)
ax2.xaxis.set_ticks(ticks, labels=labels)
ax3.yaxis.set_ticks(ticks, labels=labels)
plt.show()
# Version 2: twinx() + set_xticklabels)()
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax1.set_xticks(ticks)
ax1.set_xticklabels(labels)
ax1.set_yticks(ticks)
ax1.set_yticklabels(labels)
ax2.set_xticks(ticks)
ax2.set_xticklabels(labels)
ax3.set_yticks(ticks)
ax3.set_yticklabels(labels)
plt.show()
Confused: How come ax1 has both xaxis and yaxis, while ax2, ax3 do not appear to?
A unintuitive solution based on matplotlib.axes.Axes.twinx:
Create a new Axes with an invisible x-axis and an independent y-axis
positioned opposite to the original one (i.e. at right).
This means unintuitively (at least for me) you have to switch x/y at the .twin call.
unintuitively not concerning the general matplotlib twinx functionality, but concerning such a manual ticks and label assignment
To highlight that a bit more I used ax2_x and ax3_y in the code.
Disclaimer: Not sure if that will break your plot intention when data is added.
Probably at least you have to take special care with the data assignment to those twin axes - keeping that "axis switch" in mind.
Also keep that axis switch" in mind when assigning different ticks and labels to the x/y axis.
But for now I think that's the plot you were looking for:
Code:
import matplotlib.pyplot as plt
plt.rcParams['text.usetex'] = True
# create reusable ticks and labels
ticks = [0,1/2,3.14159/4,3.14159/2,1]
labels = [r"$0$", r"$\displaystyle\frac{1}{2}$", r"$\displaystyle\frac{\pi}{4}$", r"$\displaystyle\frac{\pi}{2}$", r"$1$"]
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax1.xaxis.set_ticks(ticks, labels=labels)
ax1.yaxis.set_ticks(ticks, labels=labels)
ax2_x = ax1.twiny() # switch
ax3_y = ax1.twinx() # switch
ax2_x.xaxis.set_ticks(ticks, labels=labels)
ax3_y.yaxis.set_ticks(ticks, labels=labels)
plt.show()
Or switch the x/yaxis.set_ticks - with the same effect:
On second thought, I assume that's the preferred way to do it, especially when data comes into play.
ax2_x = ax1.twinx()
ax3_y = ax1.twiny()
ax2_x.yaxis.set_ticks(ticks, labels=labels) # switch
ax3_y.xaxis.set_ticks(ticks, labels=labels) # switch
In case you don't intend to use the twin axis functionality (that means having different data with different scaling assigned to those axis) but 'only' want the ticks and labels on all 4 axis for better plot readability:
Solution based on answer of ImportanceOfBeingErnest with the same plot result:
import matplotlib.pyplot as plt
plt.rcParams['text.usetex'] = True
# create reusable ticks and labels
ticks = [0,1/2,3.14159/4,3.14159/2,1]
labels = [r"$0$", r"$\displaystyle\frac{1}{2}$", r"$\displaystyle\frac{\pi}{4}$", r"$\displaystyle\frac{\pi}{2}$", r"$1$"]
plt.figure(figsize=(5,5))
f, ax1 = plt.subplots()
ax1.xaxis.set_ticks(ticks, labels=labels)
ax1.yaxis.set_ticks(ticks, labels=labels)
ax1.tick_params(axis="x", bottom=True, top=True, labelbottom=True, labeltop=True)
ax1.tick_params(axis="y", left=True, right=True, labelleft=True, labelright=True)
plt.show()
ax2 = ax1.twinx() shares the x-axis with ax1.
ax3 = ax1.twiny() shares the y-axis with ax1.
As a result, the two lines where you set ax2.xaxis and ax3.yaxis's ticks and ticklabels are redundant with the changes you already applied on ax1.
import matplotlib.pyplot as plt
plt.rcParams['text.usetex'] = False # My computer doesn't have LaTeX, don't mind me.
# Create reusable ticks and labels.
ticks = [0, 1/2, 3.14159/4, 3.14159/2, 1]
labels = [r"$0$", r"$\frac{1}{2}$", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$1$"]
# Set the ticks and ticklabels for each axis.
fig = plt.figure(figsize=(5,5))
ax1 = fig.add_subplot()
ax2 = ax1.twinx()
ax3 = ax1.twiny()
for axis in (ax1.xaxis,
ax1.yaxis,
ax2.yaxis,
ax3.xaxis):
axis.set_ticks(ticks)
axis.set_ticklabels(labels)
fig.show()
Notice that if I comment out the work on ax2 and ax3, we get exactly what you have in your question:
for axis in (ax1.xaxis, ax1.yaxis,
# ax2.yaxis,
# ax3.xaxis,
):
axis.set_ticks(ticks)
axis.set_ticklabels(labels)
Now let's ruin ax1 via modifications on ax2, just to show that the bound between twins works well:
ax2.xaxis.set_ticks(range(10))
ax2.xaxis.set_ticklabels(tuple("abcdefghij"))
I cannot solve my problem. I am using matplotlib and I am plotting histogram and theoretical pdf, but I am not able to set the 0 values on both y-axes on the same level.
This is my code and the plot I get:
fig, ax1 = plt.subplots()
ax1.plot(x, pdf_g, label="Norm")
ax2 = ax1.twinx()
ax2.hist(df['col'])
plt.show()
How do I show a plot with twin axes such that the aspect of the top and right axes are 'equal'. For example, the following code will produce a square plot
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.plot([0,1],[0,1])
But this changes as soon as you use the twinx function.
ax2 = ax.twinx()
ax2.set_ylim([0,2])
ax3 = ax.twiny()
ax3.set_xlim([0,2])
Using set_aspect('equal') on ax2 and ax3 seems to force it the the aspect of ax, but set_aspect(0.5) doesn't seem to change anything either.
Put simply, I would like the plot to be square, the bottom and left axes to run from 0 to 1 and the top and right axes to run from 0 to 2.
Can you set the aspect between two twined axes? I've tried stacking the axes:
ax3 = ax2.twiny()
ax3.set_aspect('equal')
I've also tried using the adjustable keyword in set_aspect:
ax.set_aspect('equal', adjustable:'box-forced')
The closest I can get is:
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.set_aspect('equal', adjustable='box-forced')
ax.plot([0,1],[0,1])
ax2=ax.twinx()
ax3 = ax2.twiny()
ax3.set_aspect(1, adjustable='box-forced')
ax2.set_ylim([0,2])
ax3.set_xlim([0,2])
ax.set_xlim([0,1])
ax.set_ylim([0,1])
Which produces:
I would like to remove the extra space to the right and left of the plot
It seems overly complicated to use two different twin axes to get two independent set of axes. If the aim is to create one square plot with one axis on each side of the plot, you may use two axes, both at the same position but with different scales. Both can then be set to have equal aspect ratios.
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.plot([0,1],[0,1])
ax2 = fig.add_axes(ax.get_position())
ax2.set_facecolor("None")
ax2.set_aspect('equal')
ax2.plot([2,0],[0,2], color="red")
ax2.tick_params(bottom=0, top=1, left=0, right=1,
labelbottom=0, labeltop=1, labelleft=0, labelright=1)
plt.show()
I'd like to plot a series with x and y error bars, then plot a second series with x and y error bars on a second y axis all on the same subplot. Can this be done with matplotlib?
import matplotlib.pyplot as plt
plt.figure()
ax1 = plt.errorbar(voltage, dP, xerr=voltageU, yerr=dPU)
ax2 = plt.errorbar(voltage, current, xerr=voltageU, yerr=currentU)
plt.show()
Basically, I'd like to put ax2 on a second axis and have the scale on the right side.
Thanks!
twinx() is your friend for adding a secondary y-axis, e.g.:
import matplotlib.pyplot as pl
import numpy as np
pl.figure()
ax1 = pl.gca()
ax1.errorbar(np.arange(10), np.arange(10), xerr=np.random.random(10), yerr=np.random.random(10), color='g')
ax2 = ax1.twinx()
ax2.errorbar(np.arange(10), np.arange(10)+5, xerr=np.random.random(10), yerr=np.random.random(10), color='r')
There is not a lot of documentation except for:
matplotlib.pyplot.twinx(ax=None)
Make a second axes that shares the x-axis. The new axes will overlay ax (or the current axes if ax is None). The ticks for ax2 will be placed on the right, and the ax2 instance is returned.
I was struggling to share the x-axis, but thank you #Bart you saved me!
The simple solution is use twiny instead of twinx
ax1.errorbar(layers, scores_means[str(epoch)][h,:],np.array(scores_stds[str(epoch)][h,:]))
# Make the y-axis label, ticks and tick labels match the line color.
ax1.set_xlabel('depth', color='b')
ax1.tick_params('x', colors='b')
ax2 = ax1.twiny()
ax2.errorbar(hidden_dim, scores_means[str(epoch)][:,l], np.array(scores_stds[str(epoch)][:,l]))
ax2.set_xlabel('width', color='r')
ax2.tick_params('x', colors='r')
fig.tight_layout()
plt.show()