I have a list of dictionary as below. I need to iterate the list of dictionary and remove the content of the parameters and set as an empty dictionary in sections dictionary.
input = [
{
"category":"Configuration",
"sections":[
{
"section_name":"Global",
"parameters":{
"name":"first",
"age":"second"
}
},
{
"section_name":"Operator",
"parameters":{
"adrress":"first",
"city":"first"
}
}
]
},
{
"category":"Module",
"sections":[
{
"section_name":"Global",
"parameters":{
"name":"first",
"age":"second"
}
}
]
}
]
Expected Output:
[
{
"category":"Configuration",
"sections":[
{
"section_name":"Global",
"parameters":{}
},
{
"section_name":"Operator",
"parameters":{}
}
]
},
{
"category":"Module",
"sections":[
{
"section_name":"Global",
"parameters":{}
}
]
}
]
My current code looks like below:
category_list = []
for categories in input:
sections_list = []
category_name_dict = {"category": categories["category"]}
for sections_dict in categories["sections"]:
section = {}
section["section_name"] = sections_dict['section_name']
section["parameters"] = {}
sections_list.append(section)
category_name_dict["sections"] = sections_list
category_list.append(category_name_dict)
Is there any elegant and more performant way to do compute this logic. Keys such as category, sections, section_name, and parameters are constants.
The easier way is not to rebuild the dictionary without the parameters, just clear it in every section:
for value in values:
for section in value['sections']:
section['parameters'] = {}
Code demo
Elegance is in the eye of the beholder, but rather than creating empty lists and dictionaries then filling them why not do it in one go with a list comprehension:
category_list = [
{
**category,
"sections": [
{
**section,
"parameters": {},
}
for section in category["sections"]
],
}
for category in input
]
This is more efficient and (in my opinion) makes it clearer that the intention is to change a single key.
Related
categories = [
{
"CategoryUId": "f34cc7a8-ac38-4f1f-a637-08bd034d74f3",
"SubCategory": [
{
"SubCategoryUId": "9b37dbf3-4b4d-4bbb-8bc4-2ce036b69042"
},
{
"SubCategoryUId": "d4131c98-9823-4354-b587-c736cd77df4d"
}
]
},
{
"CategoryUId": "460366f6-c8ef-4e4e-80a7-4ace9c59122c",
"SubCategory": [
{
"SubCategoryUId": "ed6dbfb9-bc1a-4161-b040-f9aba55c995a"
},
{
"SubCategoryUId": "06246a88-fe8a-42fa-aba6-3393af463397"
},
{
"SubCategoryUId": "2f37fd26-fae5-4dc4-9f10-4e87a2f5ae68"
}
]
}
]
A basic example where is categories is a list of dictionaries.
for item in categories:
categoryUId = item['CategoryUId']
for value in item['SubCategory']:
subcategory = value['SubCategoryUId']
subcategoryList.append(subcategory)
dict = {categoryUId : subcategoryList}
I am going through some random python exercises, is it possible to use lambda function or the List comprehension for the above mentioned code snippet.
Please assist me with an approach.
It seems this is the outcome you expected:
out = {d['CategoryUId']: [v['SubCategoryUId'] for v in d['SubCategory']] for d in categories}
The above code with a lambda in map (extremely ugly though; do not recommend):
out = dict(map(lambda d: (d['CategoryUId'], [*map(lambda v:v['SubCategoryUId'], d['SubCategory'])]), categories))
Output:
{'f34cc7a8-ac38-4f1f-a637-08bd034d74f3': ['9b37dbf3-4b4d-4bbb-8bc4-2ce036b69042',
'd4131c98-9823-4354-b587-c736cd77df4d'],
'460366f6-c8ef-4e4e-80a7-4ace9c59122c': ['ed6dbfb9-bc1a-4161-b040-f9aba55c995a',
'06246a88-fe8a-42fa-aba6-3393af463397',
'2f37fd26-fae5-4dc4-9f10-4e87a2f5ae68']}
So I have a flattened tree in JSON like this, as array of objects:
[{
aid: "id3",
data: ["id1", "id2"]
},
{
aid: "id1",
data: ["id3", "id2"]
},
{
aid: "id2",
nested_data: {aid: "id4", atype: "nested", data: ["id1", "id3"]},
data: []
}]
I want to gather that tree and resolve ids into data with recursion loops into something like this (say we start from "id3"):
{
"aid":"id3",
"payload":"1",
"data":[
{
"id1":{
"aid":"id1",
"data":[
{
"id3":null
},
{
"id2":null
}
]
}
},
{
"id2":{
"aid":"id2",
"nested_data":{
"aid":"id4",
"atype":"nested",
"data":[
{
"id1":null
},
{
"id3":null
}
]
},
"data":[
]
}
}
]
}
So that we would get breadth-first search and resolve some field into "value": "object with that field" on first entrance and "value": Null
How to do such a thing in python 3?
Apart from all the problems that your structure has in terms of syntax (identifiers must be within quotes, etc.), the code below will provide you with the requested answer.
But you should carefully think about what you are doing, and have the following into account:
Using the relations expressed in the flat structure that you provide will mean that you will have an endless recursion since you have items that include other items that in turn include the first ones (like id3 including id1, which in turn include id3. So, you have to define stop criteria, or be sure that this does not occur in your flat structure.
Your initial flat structure is better to be in the form of a dictionary, instead of a list of pairs {id, data}. That is why the first thing the code below does is to transform this.
Your final, desired structure contains a lot of redundancies in terms of information contained. Consider simplifying it.
Finally, you mentioned nothing about the "nested_data" nodes, and how they should be treated. I simply assumed that in case that exist, further expansion is required.
Please, consider trying to provide a bit of context in your questions, some real data examples (I believe the data provided is not real data, therefore the inconsistencies and redundancies), and try yourself and provide your efforts; that's the only way to learn.
from pprint import pprint
def reformat_flat_info(flat):
reformatted = {}
for o in flat:
key = o["aid"]
del o["aid"]
reformatted[key] = o
return reformatted
def expand_data(aid, flat, lvl=0):
obj = flat[aid]
if obj is None: return {aid: obj}
obj.update({"aid": aid})
if lvl > 1:
return {aid: None}
for nid,id in enumerate(obj["data"]):
obj["data"][nid] = expand_data(id, flat, lvl=lvl+1)
if "nested_data" in obj:
for nid,id in enumerate(obj["nested_data"]["data"]):
obj["nested_data"]["data"][nid] = expand_data(id, flat, lvl=lvl+1)
return {aid: obj}
# Provide the flat information structure
flat_info = [
{
"aid": "id3",
"data": ["id1", "id2"]
}, {
"aid": "id1",
"data": ["id3", "id2"]
}, {
"aid": "id2",
"nested_data": {"aid": "id4", "atype": "nested", "data": ["id1", "id3"]},
"data": []
}
]
pprint(flat_info)
print('-'*80)
# Reformat the flat information structure
new_flat_info = reformat_flat_info(flat=flat_info)
pprint(new_flat_info)
print('-'*80)
# Generate the result
starting_id = "id3"
result = expand_data(aid=starting_id, flat=new_flat_info)
pprint(result)
I have a JSON file where I need to replace the UUID and update it with another one. I'm having trouble replacing the deeply nested keys and values.
Below is my JSON file that I need to read in python, replace the keys and values and update the file.
JSON file - myfile.json
{
"name": "Shipping box"
"company":"Detla shipping"
"description":"---"
"details" : {
"boxes":[
{
"box_name":"alpha",
"id":"a3954710-5075-4f52-8eb4-1137be51bf14"
},
{
"box_name":"beta",
"id":"31be3763-3d63-4e70-a9b6-d197b5cb6929"
}
]
}
"container": [
"a3954710-5075-4f52-8eb4-1137be51bf14":[],
"31be3763-3d63-4e70-a9b6-d197b5cb6929":[]
]
"data":[
{
"data_series":[],
"other":50
},
{
"data_series":[],
"other":40
},
{
"data_series":
{
"a3954710-5075-4f52-8eb4-1137be51bf14":
{
{
"dimentions":[2,10,12]
}
},
"31be3763-3d63-4e70-a9b6-d197b5cb6929":
{
{
"dimentions":[3,9,12]
}
}
},
"other":50
}
]
}
I want achieve something like the following-
"details" : {
"boxes":[
{
"box_name":"alpha"
"id":"replace_uuid"
},
}
.
.
.
"data":[ {
"data_series":
{
"replace_uuid":
{
{
"dimentions":[2,10,12]
}
}
]
In such a type of deeply nested dictionary, how can we replace all the occurrence of keys and values with another string, here replace_uuid?
I tried with pop() and dotty_dict but I wasn't able to replace the nested list.
I was able to achieve it in the following way-
def uuid_change(): #generate a random uuid
new_uuid = uuid.uuid4()
return str(new_uuid)
dict = json.load(f)
for uid in dict[details][boxes]:
old_id = uid['id']
replace_id = uuid_change()
uid['id'] = replace_id
for i in range(n):
for uid1 in dict['container'][i].keys()
if uid1 == old_id:
dict['container'][i][replace_id]
= dict['container'][i].pop(uid1) #replace the key
for uid2 in dict['data'][2]['data_series'].keys()
if uid2 == old_id:
dict['data'][2]['data_series'][replace_id]
= dict['data'][2]['data_series'].pop(uid2) #replace the key
I am using python2.7
I have a json i pull that is always changing when i request it.
I need to pull out Animal_Target_DisplayName under Term7 Under Relation6 in my dict.
The problem is sometimes the object Relation6 is in another part of the Json, it could be leveled deeper or in another order.
I am trying to create code that can just export the values of the key Animal_Target_DisplayName but nothing is working. It wont even loop down the nested dict.
Now this can work if i just pull it out using something like ['view']['Term0'][0]['Relation6'] but remember the JSON is never returned in the same structure.
Code i am using to get the values of the key Animal_Target_DisplayName but it doesnt seem to loop through my dict and find all the values with that key.
array = []
for d in dict.values():
row = d['Animal_Target_DisplayName']
array.append(row)
JSON Below:
dict = {
"view":{
"Term0":[
{
"Id":"b0987b91-af12-4fe3-a56f-152ac7a4d84d",
"DisplayName":"Dog",
"FullName":"Dog",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0000-000000031131",
}
]
},
{
"Id":"ee74a59d-fb74-4052-97ba-9752154f015d",
"DisplayName":"Dog2",
"FullName":"Dog",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0000-000000031131",
}
]
},
{
"Id":"eb548eae-da6f-41e8-80ea-7e9984f56af6",
"DisplayName":"Dog3",
"FullName":"Dog3",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0000-000000031131",
}
]
},
{
"Id":"cfac6dd4-0efa-4417-a2bf-0333204f8a42",
"DisplayName":"Animal Set",
"FullName":"Animal Set",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0001-000400000001",
}
],
"StringAttribute2":[
{
"StringAttribute_00000000-0000-0000-0000-000000003114_Id":"00a701a8-be4c-4b76-a6e5-3b0a4085bcc8",
"StringAttribute_00000000-0000-0000-0000-000000003114_Value":"Desc"
}
],
"StringAttribute3":[
{
"StringAttribute_00000000-0000-0000-0000-000000000262_Id":"a81adfb4-7528-4673-8c95-953888f3b43a",
"StringAttribute_00000000-0000-0000-0000-000000000262_Value":"meow"
}
],
"BooleanAttribute4":[
{
"BooleanAttribute_00000000-0000-0000-0001-000500000001_Id":"932c5f97-c03f-4a1a-a0c5-a518f5edef5e",
"BooleanAttribute_00000000-0000-0000-0001-000500000001_Value":"true"
}
],
"SingleValueListAttribute5":[
{
"SingleValueListAttribute_00000000-0000-0000-0001-000500000031_Id":"ef51dedd-6f25-4408-99a6-5a6cfa13e198",
"SingleValueListAttribute_00000000-0000-0000-0001-000500000031_Value":"Blah"
}
],
"Relation6":[
{
"Animal_Id":"2715ca09-3ced-4b74-a418-cef4a95dddf1",
"Term7":[
{
"Animal_Target_Id":"88fd0090-4ea8-4ae6-b7f0-1b13e5cf3d74",
"Animal_Target_DisplayName":"Animaltheater",
"Animal_Target_FullName":"Animaltheater"
}
]
},
{
"Animal_Id":"6068fe78-fc8e-4542-9aee-7b4b68760dcd",
"Term7":[
{
"Animal_Target_Id":"4e87a614-2a8b-46c0-90f3-8a0cf9bda66c",
"Animal_Target_DisplayName":"Animaltitle",
"Animal_Target_FullName":"Animaltitle"
}
]
},
{
"Animal_Id":"754ec0e6-19b6-4b6b-8ba1-573393268257",
"Term7":[
{
"Animal_Target_Id":"a8986ed5-3ec8-44f3-954c-71cacb280ace",
"Animal_Target_DisplayName":"Animalcustomer",
"Animal_Target_FullName":"Animalcustomer"
}
]
},
{
"Animal_Id":"86b3ffd1-4d54-4a98-b25b-369060651bd6",
"Term7":[
{
"Animal_Target_Id":"89d02067-ebe8-4b87-9a1f-a6a0bdd40ec4",
"Animal_Target_DisplayName":"Animalfact_transaction",
"Animal_Target_FullName":"Animalfact_transaction"
}
]
},
{
"Animal_Id":"ea2e1b76-f8bc-46d9-8ebc-44ffdd60f213",
"Term7":[
{
"Animal_Target_Id":"e398cd32-1e73-46bd-8b8f-d039986d6de0",
"Animal_Target_DisplayName":"Animalfact_transaction",
"Animal_Target_FullName":"Animalfact_transaction"
}
]
}
],
"Relation10":[
{
"TargetRelation_b8b178ff-e957-47db-a4e7-6e5b789d6f03_Id":"aff80bd0-a282-4cf5-bdcc-2bad35ddec1d",
"Term11":[
{
"AnimalId":"3ac22167-eb91-469a-9d94-315aa301f55a",
"AnimalDisplayName":"Animal",
"AnimalFullName":"Animal"
}
]
}
],
"Tag12":[
{
"Tag_Id":"75968ea6-4c9f-43c9-80f7-dfc41b24ec8f",
"Tag_Name":"AnimalAnimaltitle"
},
{
"Tag_Id":"b1adbc00-aeef-415b-82b6-a3159145c60d",
"Tag_Name":"Animal2"
},
{
"Tag_Id":"5f78e4dc-2b37-41e0-a0d3-cec773af2397",
"Tag_Name":"AnimalDisplayName"
}
]
}
]
}
}
The output i am trying to get is a list of all the values from key Animal_Target_DisplayName like this ['Animaltheater','Animaltitle', 'Animalcustomer', 'Animalfact_transaction', 'Animalfact_transaction'] but we need to remember the nested structure of this json always changes but the keys for it are always the same.
I guess your only option is running through the entire dict and get the values of Animal_Target_DisplayName key, I propose the following recursive solution:
def run_json(dict_):
animal_target_sons = []
if type(dict_) is list:
for element in dict_:
animal_target_sons.append(run_json(element))
elif type(dict_) is dict:
for key in dict_:
if key=="Animal_Target_DisplayName":
animal_target_sons.append([dict_[key]])
else:
animal_target_sons.append(run_json(dict_[key]))
return [x for sublist in animal_target_sons for x in sublist]
run_json(dict_)
Then calling run_json returns a list with what you want. By the way, I recommend you to rename your json from dict to, for example dict_, since dict is a reserved word of Python for the dictionary type.
Since you're getting JSON, why not make use of the json module? That will do the parsing for you and allow you to use dictionary functions+features to get the information you need.
#!/usr/bin/python2.7
from __future__ import print_function
import json
# _somehow_ get your JSON in as a string. I'm calling it "jstr" for this
# example.
# Use the module to parse it
jdict = json.loads(jstr)
# our dict has keys...
# view -> Term0 -> keys-we're-interested-in
templist = jdict["view"]["Term0"]
results = {}
for _el in range(len(templist)):
if templist[_el]["FullName"] == "Animal Set":
# this is the one we're interested in - and it's another list
moretemp = templist[_el]["Relation6"]
for _k in range(len(moretemp)):
term7 = moretemp[_k]["Term7"][0]
displayName = term7["Animal_Target_DisplayName"]
fullName = term7["Animal_Target_FullName"]
results[fullName] = displayName
print("{0}".format(results))
Then you can dump the results dict plain, or with pretty-printing:
>>> print(json.dumps(results, indent=4))
{
"Animaltitle2": "Animaltitle2",
"Animalcustomer3": "Animalcustomer3",
"Animalfact_transaction4": "Animalfact_transaction4",
"Animaltheater1": "Animaltheater1"
}
I have a list - memory_per_instance - which looks like the following:
[
{
'mem_used': '14868480',
'rsrc_name': 'node-5b5cf484-g582f'
},
{
'mem_used': '106618880',
'rsrc_name': 'infrastructure-656cf59bbb-xc6bb'
},
{
'mem_used': '27566080',
'rsrc_name': 'infrastructuret-l6fl'
},
{
'mem_used': '215556096',
'rsrc_name': 'node-62lnc'
}
]
Now, here we can see that there is 2 resources groups node and infrastructure.
I would like to create a array of which the final product contains the name of the resource (node or infrastructure) and the mem_used would be the sum of the mem_used.
I was already already able to differentiate the two groups from it, with regex.
From now, how can I create an array - memory_per_group - with a result such has
[
{
'mem_used': '230424576',
'rsrc_name': 'node'
},
{
'mem_used': '134184960',
'rsrc_name': 'infrastructure'
},
]
I could store the name of the rsrc in a tmp variable, so something like:
memory_per_pod_group = []
for item in memory_per_pod_instance:
tmp_rsrc = item['rsrc_name']
if(item['rsrc_name'] == tmp_rsrc):
memory_per_pod_group.append({'rsrc_name':get_group(tmp_rsrc, pod_hash_map), 'mem_used':mem_used})
memory_per_pod_instance.remove(item)
pprint.pprint(memory_per_pod_group)
But then, I would iterate through the list a non-negligeable amount of time.
Would there be a way to be more efficient ?
Well, sure. You only need one iteration:
data = [
{
'mem_used': '14868480',
'rsrc_name': 'node-5b5cf484-g582f'
},
{
'mem_used': '106618880',
'rsrc_name': 'infrastructure-656cf59bbb-xc6bb'
},
{
'mem_used': '27566080',
'rsrc_name': 'infrastructuret-l6fl'
},
{
'mem_used': '215556096',
'rsrc_name': 'node-62lnc'
}
]
def get_group(item):
rsrc_name = item['rsrc_name']
index = rsrc_name.index('-');
return rsrc_name[0:index]
def summary(list):
data = {};
for item in list:
group = get_group(item)
if not (group in data):
data[group] = 0
data[group] += int(item['mem_used'])
result = []
for rsrc_name, mem_used in data.items():
result.append({ 'rsrc_name': rsrc_name, 'mem_used': str(mem_used) })
return result
if __name__ == '__main__':
print(summary(data))
Result:
[{'mem_used': 230424576, 'rsrc_name': 'node'}, {'mem_used': 106618880, 'rsrc_name': 'infrastructure'}, {'mem_used': 27566080, 'rsrc_name': 'infrastructuret'}]
Note, that get_group might be too simple for your use case. The result has three groups since one of the resources has key 'infrastructuret' with a "t" at the end.
You could just iterate trough it a single time and checking with a simple startswith and then appending directly to the dictionary key that you want with a simple increment.
Something like
memory_total = { 'node': 0, 'instance': 0 };
for item in memory_per_instance:
if item['rsrc_name'].startsWith('node'):
memory_total['node'] += item['mem_used']
if item['rsrc_name'].startsWith('infrastructure'):
memory_total['instance'] += item['mem_used']