How to rotate theta ticklabels in a matplotlib polar plot? - python

In a matplotlib polar plot, I would like to rotate each individual theta ticklabel by a different angle. However, I cannot find anything in the documentation to do that. Here's a simple plot to illustrate:
from matplotlib import pyplot as plt
import numpy as np
fig = plt.figure()
ax = plt.axes(polar=True)
ax.set_thetalim(0., np.pi/4.)
ax.set_rlim(0., 2.)
# set the size of theta ticklabels (works)
thetatick_locs = np.linspace(0.,45.,4)
thetatick_labels = [u'%i\u00b0'%np.round(x) for x in thetatick_locs]
ax.set_thetagrids(thetatick_locs, thetatick_labels, fontsize=16)
This adds labels at 0, 15, 30 and 45 degrees. What I'd like to do is rotate the 15 degree label by 15 degrees, the 30 degree label by 30 degrees, and so on, so that each label's text direction is radially outward. Since get_xticklabels on a PolarAxes instance seems to get the theta ticklabels, I tried:
for i,t in enumerate(ax.get_xticklabels()):
t.set_rotation(thetatick_locs[i])
However, that did nothing. Is there any other way of doing what I want? In general, I'm finding that the documentation for polar axes is not as thorough as for rectangular axes, probably because fewer people use it. So maybe there's already a way to do this.

Your current method works for cartesian coordinates but for polar coordinates, you can use the workaround solution presented earlier here. I have adapted that answer for you below. You can add the following code after setting the theta grids
fig.canvas.draw()
labels = []
for label, angle in zip(ax.get_xticklabels(), thetatick_locs):
x,y = label.get_position()
lab = ax.text(x,y, label.get_text(), transform=label.get_transform(),
ha=label.get_ha(), va=label.get_va())
lab.set_rotation(angle)
labels.append(lab)
ax.set_xticklabels([])
plt.show()

Related

How to draw few angles to compare them?

I have a csv database with number of angles (all of them from 0 to 360). I want kind of matplotlib diagram which show me distribution of all angles (for every row in csv).
Maybe you know how to realize that with any python library?
Or please show me how to draw at least two angles as vectors?
I was find only polar plot in matplotlib, that have degrees and its a circle. And I need something like this image (three angles shown and understandable for comparing) (draw lines by hand).
https://i.stack.imgur.com/Ls5zI.png
The polar plot is a bit strange, I managed to create the plot using a scatter plot set to polar. I haven't included any code to read in the angles from a csv, just note that should be converted to radians before plotting.
import numpy as np
import matplotlib.pyplot as plt
theta = np.radians(np.array([10, 20, 40]))
radius = np.ones(theta.size) # make a radius for each point of length 1
fig = plt.figure()
ax = plt.subplot(111, polar=True) # Create subplot in polar format
for t, r in zip(theta, radius):
ax.plot((0, t), (0, r))
fig.show()

Matplotlib plot has slanted lines

I'm trying to plot projections of coordinates onto a line, but for some reason, Matplotlib is plotting the projections in a slightly slanted manner. Ideally, I would like the (blue) projections to be perpendicular to the (green) line. Here's an image of how it looks with sample data:
As you can see, the angles between the blue lines and the green line are slightly obtuse instead of right. I tried playing around with the rotation parameter to the annotate function, but this did not help. The code for this plot is below, although the data might look a bit different since the random generator is not seeded:
import numpy as np
import matplotlib.pyplot as plt
prefs = {'color':'purple','edgecolors':'black'}
X = np.dot(np.random.rand(2,2), np.random.rand(2,50)).T
pts = np.linspace(-1,1)
v1_m = 0.8076549717643662
plt.scatter(X[:,0],X[:,1],**prefs)
plt.plot(pts, [v1_m*x for x in pts], color='lightgreen')
for x,y in X:
# slope of connecting line
# y = mx+b
m = -np.reciprocal(v1_m)
b = y-m*x
# find intersecting point
zx = b/(v1_m-m)
zy = v1_m*zx
# draw line
plt.annotate('',(zx,zy),(x,y),arrowprops=dict(linewidth=2,arrowstyle='-',color='lightblue'))
plt.show()
The problem lies in the unequal axes which makes it look like they are not at a right angle. Use plt.axis('equal') to have equal axis spans on x- and y-axis and a square figure with equal height and width. plt.axis('scaled') works the same way. As pointed out by #CedricZoppolo, you should set the equal aspect ratios before plt.show(). As per docs, setting the aspect ratio to "equal" means
same scaling from data to plot units for x and y
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(8,8))
# Your code here
plt.axis('equal')
plt.show()
Choosing a square figure is not necessary as it works also with rectangular figures as
fig = plt.figure(figsize=(8,6))
# Your code here
plt.axis('equal')
plt.show()
The blue lines not being perpendicular is due to axis not being equal.
You just need to add below line before plt.show()
plt.gca().set_aspect('equal')
Below you can see the resulted graph:

Add units to polar coordinate scatter plot in python

I have this polar scatter plot and I would like to show that distances from the origin are measured in centimeters by labelling the scale with a "cm." Any advice on how to do this?
import numpy as np
import matplotlib.pyplot as plt
r = R
theta = o
colors = theta
ax = plt.subplot(111, projection='polar')
c = plt.scatter(theta, r, cmap=plt.cm.hsv)
c.set_alpha(0.75)
plt.show()
Simply adding a label by use of plt.set_ylabel does not seem to work, sadly, as it always gets positioned at the origin. There is a simple way around it, though. You can introduce text with ax.text at an arbitrary position. My suggestion would be, to move the tick labels away from the data to make sure that the label won't be misunderstood and then to introduce the label as follows:
import numpy as np
import matplotlib.pyplot as plt
ax = plt.subplot(111, projection="polar")
ax.set_rlabel_position(270) # Moves the tick-labels
ax.text(0.52, 0.25, "cm", transform=ax.transAxes) # Adds text
plt.show()
The result looks like this:
I did something similar, that should work:
plt.yticks(np.arange(0,np.amax(r),3),["%.1f cm" % x for x in np.arange(0,np.amax(r),3)])
in np.arange(0,np.amax(r),3) the 0 is just minimum tick you want in the graph, the 3 is step you want ticks should be.

Aspect ratio in semi-log plot with Matplotlib

When I plot a function in matplotlib, the plot is framed by a rectangle. I want the ratio of the length and height of this rectangle to be given by the golden mean ,i.e., dx/dy=1.618033...
If the x and y scale are linear I found this solution using google
import numpy as np
import matplotlib.pyplot as pl
golden_mean = (np.sqrt(5)-1.0)/2.0
dy=pl.gca().get_ylim()[1]-pl.gca().get_ylim()[0]
dx=pl.gca().get_xlim()[1]-pl.gca().get_xlim()[0]
pl.gca().set_aspect((dx/dy)*golden_mean,adjustable='box')
If it is a log-log plot I came up with this solution
dy=np.abs(np.log10(pl.gca().get_ylim()[1])-np.log10(pl.gca().get_ylim()[0]))
dx=np.abs(np.log10(pl.gca().get_xlim()[1])-np.log10(pl.gca().get_xlim()[0]))
pl.gca().set_aspect((dx/dy)*golden_mean,adjustable='box')
However, for a semi-log plot, when I call set_aspect, I get
UserWarning: aspect is not supported for Axes with xscale=log, yscale=linear
Can anyone think of a work-around for this?
the most simple solution would be to log your data and then use the method for lin-lin.
you can then label the axes to let it look like a normal log-plot.
ticks = np.arange(min_logx, max_logx, 1)
ticklabels = [r"$10^{}$".format(tick) for tick in ticks]
pl.yticks(ticks, ticklabels)
if you have higher values than 10e9 you will need three pairs of braces, two pairs for the LaTeX braces and one for the .format()
ticklabels = [r"$10^{{{}}}$".format(tick) for tick in ticks]
Edit:
if you want also the ticks for 0.1ex ... 0.9ex, you want to use the minor ticks as well:
they need to be located at log10(1), log10(2), log10(3) ..., log10(10), log10(20) ...
you can create and set them with:
minor_ticks = []
for i in range(min_exponent, max_exponent):
for j in range(2,10):
minor_ticks.append(i+np.log10(j))
plt.gca().set_yticks(minor_labels, minor=True)

Matplotlib: Draw a vertical arrow in a log-log plot

I am not able to draw a simple, vertical arrow in the following log-log plot:
#!/usr/bin/python2
import matplotlib.pyplot as plt
import matplotlib as mpl
plt.yscale('log')
plt.xscale('log')
plt.ylim((1e-20,1e-10))
plt.xlim((1e-12,1))
plt.arrow(0.00006666, 1e-20, 0, 1e-8 - 1e-20, length_includes_head=True)
plt.savefig('test.pdf')
It just doesn't show. From the documentation it appears as if all the arguments, like width, height and so on relate to the scale of the axis. This is very counter-intuitive. I tried using twin() of the axisartist package to define an axis on top of mine with limits (0,1), (0,1) to have more control over the arrow's parameters, but I couldn't figure out how to have a completely independent axis on top of the primary one.
Any ideas?
I was looking for an answer to this question, and found a useful answer! You can specify any "mathtext" character (matplotlib's version of LaTeX) as a marker. Try:
plt.plot(x,y, 'ko', marker=r'$\downarrow$', markersize=20)
This will plot a downward pointing, black arrow at position (x,y) that looks good on any plot (even log-log).
See: matplotlib.org/users/mathtext.html#mathtext-tutorial for more symbols you can use.
Subplots approach
After creating the subplots do the following
Align the positions
Use set_axis_off() to turn the axis off (ticks, labels, etc)
Draw the arrow!
So a few lines gets whats you want!
E.g.
#!/usr/bin/python2
import matplotlib.pyplot as plt
hax = plt.subplot(1,2,1)
plt.yscale('log')
plt.xscale('log')
plt.ylim((1e-20,1e-10))
plt.xlim((1e-12,1))
hax2 = plt.subplot(1,2,2)
plt.arrow(0.1, 1, 0, 1, length_includes_head=True)
hax.set_position([0.1, 0.1, 0.8, 0.8])
hax2.set_position([0.1, 0.1, 0.8, 0.8])
hax2.set_axis_off()
plt.savefig('test.pdf')
Rescale data
Alternatively a possibly easier approach, though the axis labels may be tricky, is to rescale the data.
i.e.
import numpy
# Other import commands and data input
plt.plot(numpy.log10(x), numpy.log10(y)))
Not a great solution, but a decent result if you can handle the tick labels!
I know this thread has been dead for a long time now, but I figure posting my solution might be helpful for anyone else trying to figure out how to draw arrows on log-scale plots efficiently.
As an alternative to what others have already posted, you could use a transformation object to input the arrow coordinates not in the scale of the original axes but in the (linear) scale of the "axes coordinates". What I mean by axes coordinates are those that are normalized to [0,1] (horizontal range) by [0,1] (vertical range), where the point (0,0) would be the bottom-left corner and the point (1,1) would be the top-right, and so on. Then you could simply include an arrow by:
plt.arrow(0.1, 0.1, 0.9, 0.9, transform=plot1.transAxes, length_includes_head=True)
This gives an arrow that spans diagonally over 4/5 of the plot's horizontal and vertical range, from the bottom-left to the top-right (where plot1 is the subplot name).
If you want to do this in general, where exact coordinates (x0,y0) and (x1,y1) in the log-space can be specified for the arrow, this is not too difficult if you write two functions fx(x) and fy(y) that transform from the original coordinates to these "axes" coordinates. I've given an example of how the original code posted by the OP could be modified to implement this below (apologies for not including the images the code produces, I don't have the required reputation yet).
#!/usr/bin/python3
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
# functions fx and fy take log-scale coordinates to 'axes' coordinates
ax = 1E-12 # [ax,bx] is range of horizontal axis
bx = 1E0
def fx(x):
return (np.log(x) - np.log(ax))/(np.log(bx) - np.log(ax))
ay = 1E-20 # [ay,by] is range of vertical axis
by = 1E-10
def fy(y):
return (np.log(y) - np.log(ay))/(np.log(by) - np.log(ay))
plot1 = plt.subplot(111)
plt.xscale('log')
plt.yscale('log')
plt.xlim(ax, bx)
plt.ylim(ay, by)
# transformed coordinates for arrow from (1E-10,1E-18) to (1E-4,1E-16)
x0 = fx(1E-10)
y0 = fy(1E-18)
x1 = fx(1E-4) - fx(1E-10)
y1 = fy(1E-16) - fy(1E-18)
plt.arrow(
x0, y0, x1, y1, # input transformed arrow coordinates
transform = plot1.transAxes, # tell matplotlib to use axes coordinates
facecolor = 'black',
length_includes_head=True
)
plt.grid(True)
plt.savefig('test.pdf')

Categories