how to terminate a thread from within another thread [duplicate] - python

How can I start and stop a thread with my poor thread class?
It is in loop, and I want to restart it again at the beginning of the code. How can I do start-stop-restart-stop-restart?
My class:
import threading
class Concur(threading.Thread):
def __init__(self):
self.stopped = False
threading.Thread.__init__(self)
def run(self):
i = 0
while not self.stopped:
time.sleep(1)
i = i + 1
In the main code, I want:
inst = Concur()
while conditon:
inst.start()
# After some operation
inst.stop()
# Some other operation

You can't actually stop and then restart a thread since you can't call its start() method again after its run() method has terminated. However you can make one pause and then later resume its execution by using a threading.Condition variable to avoid concurrency problems when checking or changing its running state.
threading.Condition objects have an associated threading.Lock object and methods to wait for it to be released and will notify any waiting threads when that occurs. Here's an example derived from the code in your question which shows this being done. In the example code I've made the Condition variable a part of Thread subclass instances to better encapsulate the implementation and avoid needing to introduce additional global variables:
from __future__ import print_function
import threading
import time
class Concur(threading.Thread):
def __init__(self):
super(Concur, self).__init__()
self.iterations = 0
self.daemon = True # Allow main to exit even if still running.
self.paused = True # Start out paused.
self.state = threading.Condition()
def run(self):
self.resume()
while True:
with self.state:
if self.paused:
self.state.wait() # Block execution until notified.
# Do stuff...
time.sleep(.1)
self.iterations += 1
def pause(self):
with self.state:
self.paused = True # Block self.
def resume(self):
with self.state:
self.paused = False
self.state.notify() # Unblock self if waiting.
class Stopwatch(object):
""" Simple class to measure elapsed times. """
def start(self):
""" Establish reference point for elapsed time measurements. """
self.start_time = time.time()
return self
#property
def elapsed_time(self):
""" Seconds since started. """
try:
return time.time() - self.start_time
except AttributeError: # Wasn't explicitly started.
self.start_time = time.time()
return 0
MAX_RUN_TIME = 5 # Seconds.
concur = Concur()
stopwatch = Stopwatch()
print('Running for {} seconds...'.format(MAX_RUN_TIME))
concur.start()
while stopwatch.elapsed_time < MAX_RUN_TIME:
concur.resume()
# Can also do other concurrent operations here...
concur.pause()
# Do some other stuff...
# Show Concur thread executed.
print('concur.iterations: {}'.format(concur.iterations))

This is David Heffernan's idea fleshed-out. The example below runs for 1 second, then stops for 1 second, then runs for 1 second, and so on.
import time
import threading
import datetime as DT
import logging
logger = logging.getLogger(__name__)
def worker(cond):
i = 0
while True:
with cond:
cond.wait()
logger.info(i)
time.sleep(0.01)
i += 1
logging.basicConfig(level=logging.DEBUG,
format='[%(asctime)s %(threadName)s] %(message)s',
datefmt='%H:%M:%S')
cond = threading.Condition()
t = threading.Thread(target=worker, args=(cond, ))
t.daemon = True
t.start()
start = DT.datetime.now()
while True:
now = DT.datetime.now()
if (now-start).total_seconds() > 60: break
if now.second % 2:
with cond:
cond.notify()

The implementation of stop() would look like this:
def stop(self):
self.stopped = True
If you want to restart, then you can just create a new instance and start that.
while conditon:
inst = Concur()
inst.start()
#after some operation
inst.stop()
#some other operation
The documentation for Thread makes it clear that the start() method can only be called once for each instance of the class.
If you want to pause and resume a thread, then you'll need to use a condition variable.

Related

threading - sentinel value or Event to break loops

I can think of two ways to break out of a loop in a Python thread, minimal examples below:
1 - Use a sentinel value
from threading import Thread, Event
from time import sleep
class SimpleClass():
def do_something(self):
while self.sentinel:
sleep(1)
print('loop completed')
def start_thread(self):
self.sentinel = True
self.th = Thread(target=self.do_something)
self.th.start()
def stop_thread(self):
self.sentinel = False
self.th.join()
simpleinstance = SimpleClass()
simpleinstance.start_thread()
sleep(5)
simpleinstance.stop_thread()
2 - Use an Event
from threading import Thread, Event
from time import sleep
class SimpleThread(Thread):
def __init__(self):
super(SimpleThread, self).__init__()
self.stoprequest = Event()
def run(self):
while not self.stoprequest.isSet():
sleep(1)
print('loop completed')
def join(self, timeout=None):
self.stoprequest.set()
super(SimpleThread, self).join(timeout)
simpleinstance = SimpleThread()
simpleinstance.start()
sleep(5)
simpleinstance.join()
In the Python documentation, it discusses events but not the simpler 'sentinel value' approach (which I see used in many threading answers on Stack Overflow).
Is there any disadvantage to using the sentinel value?
Specifically, could it cause errors (I have never had one but I imagine if you tried to change the value of the sentinel at exactly the same moment it was being read for the while loop then something could break (or maybe the CPython GIL would save me in this case). What is considered best (safest) practice?
If you look at the source of Event, you can see that the function you are using don't have any more value for you:
class Event:
def __init__(self):
self._cond = Condition(Lock())
self._flag = False
def is_set(self):
return self._flag
def set(self):
with self._cond:
self._flag = True
self._cond.notify_all() # No more-value, because you are not using Event.wait
So in your case Event is just a fancy wrapper for a sentinel value with no actually use, that will also slow down your operation time by a really tiny amount.
Events are only useful if you use their wait method.

Lock with timeout in Python2.7

The accepted solution here doesn't work for all situations,
How to implement a Lock with a timeout in Python 2.7
(In particular the last thread who owns the lock calls cond.notify() when no one holds the conditional variable)
Then, I've tried a spin lock like this:
import threading
import time
class TimeLock(object):
def __init__(self):
self._lock = threading.Lock()
def acquire_lock(self, timeout = 0):
''' If timeout = 0, do a blocking lock
else, return False at [timeout] seconds
'''
if timeout == 0:
return self._lock.acquire() # Block for the lock
current_time = start_time = time.time()
while current_time < start_time + timeout:
if self._lock.acquire(False): # Contend for the lock, without blocking
return True
else:
time.sleep(1)
current_time = time.time()
# Time out
return False
def release_lock(self):
self._lock.release()
However after trying, the spin lock will almost always starve against the blocking lock.
Is there other solutions?
Turns out that python queues have a timeout feature in their
Queue module in 2.7
I can simulate a lock with time out by doing this
lock.acquire() -> Queue.get(block=True, timeout=timeout)
lock.release() -> Queue.put(1, block=False)

Python threading: can I sleep on two threading.Event()s simultaneously?

If I have two threading.Event() objects, and wish to sleep until either one of them is set, is there an efficient way to do that in python? Clearly I could do something with polling/timeouts, but I would like to really have the thread sleep until one is set, akin to how select is used for file descriptors.
So in the following implementation, what would an efficient non-polling implementation of wait_for_either look like?
a = threading.Event()
b = threading.Event()
wait_for_either(a, b)
Here is a non-polling non-excessive thread solution: modify the existing Events to fire a callback whenever they change, and handle setting a new event in that callback:
import threading
def or_set(self):
self._set()
self.changed()
def or_clear(self):
self._clear()
self.changed()
def orify(e, changed_callback):
e._set = e.set
e._clear = e.clear
e.changed = changed_callback
e.set = lambda: or_set(e)
e.clear = lambda: or_clear(e)
def OrEvent(*events):
or_event = threading.Event()
def changed():
bools = [e.is_set() for e in events]
if any(bools):
or_event.set()
else:
or_event.clear()
for e in events:
orify(e, changed)
changed()
return or_event
Sample usage:
def wait_on(name, e):
print "Waiting on %s..." % (name,)
e.wait()
print "%s fired!" % (name,)
def test():
import time
e1 = threading.Event()
e2 = threading.Event()
or_e = OrEvent(e1, e2)
threading.Thread(target=wait_on, args=('e1', e1)).start()
time.sleep(0.05)
threading.Thread(target=wait_on, args=('e2', e2)).start()
time.sleep(0.05)
threading.Thread(target=wait_on, args=('or_e', or_e)).start()
time.sleep(0.05)
print "Firing e1 in 2 seconds..."
time.sleep(2)
e1.set()
time.sleep(0.05)
print "Firing e2 in 2 seconds..."
time.sleep(2)
e2.set()
time.sleep(0.05)
The result of which was:
Waiting on e1...
Waiting on e2...
Waiting on or_e...
Firing e1 in 2 seconds...
e1 fired!or_e fired!
Firing e2 in 2 seconds...
e2 fired!
This should be thread-safe. Any comments are welcome.
EDIT: Oh and here is your wait_for_either function, though the way I wrote the code, it's best to make and pass around an or_event. Note that the or_event shouldn't be set or cleared manually.
def wait_for_either(e1, e2):
OrEvent(e1, e2).wait()
I think the standard library provides a pretty canonical solution to this problem that I don't see brought up in this question: condition variables. You have your main thread wait on a condition variable, and poll the set of events each time it is notified. It is only notified when one of the events is updated, so there is no wasteful polling. Here is a Python 3 example:
from threading import Thread, Event, Condition
from time import sleep
from random import random
event1 = Event()
event2 = Event()
cond = Condition()
def thread_func(event, i):
delay = random()
print("Thread {} sleeping for {}s".format(i, delay))
sleep(delay)
event.set()
with cond:
cond.notify()
print("Thread {} done".format(i))
with cond:
Thread(target=thread_func, args=(event1, 1)).start()
Thread(target=thread_func, args=(event2, 2)).start()
print("Threads started")
while not (event1.is_set() or event2.is_set()):
print("Entering cond.wait")
cond.wait()
print("Exited cond.wait ({}, {})".format(event1.is_set(), event2.is_set()))
print("Main thread done")
Example output:
Thread 1 sleeping for 0.31569427100177794s
Thread 2 sleeping for 0.486548134317051s
Threads started
Entering cond.wait
Thread 1 done
Exited cond.wait (True, False)
Main thread done
Thread 2 done
Note that wit no extra threads or unnecessary polling, you can wait for an arbitrary predicate to become true (e.g. for any particular subset of the events to be set). There's also a wait_for wrapper for the while (pred): cond.wait() pattern, which can make your code a bit easier to read.
One solution (with polling) would be to do sequential waits on each Event in a loop
def wait_for_either(a, b):
while True:
if a.wait(tunable_timeout):
break
if b.wait(tunable_timeout):
break
I think that if you tune the timeout well enough the results would be OK.
The best non-polling I can think of is to wait for each one in a different thread and set a shared Event whom you will wait after in the main thread.
def repeat_trigger(waiter, trigger):
waiter.wait()
trigger.set()
def wait_for_either(a, b):
trigger = threading.Event()
ta = threading.Thread(target=repeat_trigger, args=(a, trigger))
tb = threading.Thread(target=repeat_trigger, args=(b, trigger))
ta.start()
tb.start()
# Now do the union waiting
trigger.wait()
Pretty interesting, so I wrote an OOP version of the previous solution:
class EventUnion(object):
"""Register Event objects and wait for release when any of them is set"""
def __init__(self, ev_list=None):
self._trigger = Event()
if ev_list:
# Make a list of threads, one for each Event
self._t_list = [
Thread(target=self._triggerer, args=(ev, ))
for ev in ev_list
]
else:
self._t_list = []
def register(self, ev):
"""Register a new Event"""
self._t_list.append(Thread(target=self._triggerer, args=(ev, )))
def wait(self, timeout=None):
"""Start waiting until any one of the registred Event is set"""
# Start all the threads
map(lambda t: t.start(), self._t_list)
# Now do the union waiting
return self._trigger.wait(timeout)
def _triggerer(self, ev):
ev.wait()
self._trigger.set()
This is an old question, but I hope this helps someone coming from Google.
The accepted answer is fairly old and will cause an infinite loop for twice-"orified" events.
Here is an implementation using concurrent.futures
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
def wait_for_either(events, timeout=None, t_pool=None):
'''blocks untils one of the events gets set
PARAMETERS
events (list): list of threading.Event objects
timeout (float): timeout for events (used for polling)
t_pool (concurrent.futures.ThreadPoolExecutor): optional
'''
if any(event.is_set() for event in events):
# sanity check
pass
else:
t_pool = t_pool or ThreadPoolExecutor(max_workers=len(events))
tasks = []
for event in events:
tasks.append(t_pool.submit(event.wait))
concurrent.futures.wait(tasks, timeout=timeout, return_when='FIRST_COMPLETED')
# cleanup
for task in tasks:
try:
task.result(timeout=0)
except concurrent.futures.TimeoutError:
pass
Testing the function
import threading
import time
from datetime import datetime, timedelta
def bomb(myevent, sleep_s):
'''set event after sleep_s seconds'''
with lock:
print('explodes in ', datetime.now() + timedelta(seconds=sleep_s))
time.sleep(sleep_s)
myevent.set()
with lock:
print('BOOM!')
lock = threading.RLock() # so prints don't get jumbled
a = threading.Event()
b = threading.Event()
t_pool = ThreadPoolExecutor(max_workers=2)
threading.Thread(target=bomb, args=(event1, 5), daemon=True).start()
threading.Thread(target=bomb, args=(event2, 120), daemon=True).start()
with lock:
print('1 second timeout, no ThreadPool', datetime.now())
wait_for_either([a, b], timeout=1)
with lock:
print('wait_event_or done', datetime.now())
print('=' * 15)
with lock:
print('wait for event1', datetime.now())
wait_for_either([a, b], t_pool=t_pool)
with lock:
print('wait_event_or done', datetime.now())
Starting extra threads seems a clear solution, not very effecient though.
Function wait_events will block util any one of events is set.
def wait_events(*events):
event_share = Event()
def set_event_share(event):
event.wait()
event.clear()
event_share.set()
for event in events:
Thread(target=set_event_share(event)).start()
event_share.wait()
wait_events(event1, event2, event3)
Extending Claudiu's answer where you can either wait for:
event 1 OR event 2
event 1 AND even 2
from threading import Thread, Event, _Event
class ConditionalEvent(_Event):
def __init__(self, events_list, condition):
_Event.__init__(self)
self.event_list = events_list
self.condition = condition
for e in events_list:
self._setup(e, self._state_changed)
self._state_changed()
def _state_changed(self):
bools = [e.is_set() for e in self.event_list]
if self.condition == 'or':
if any(bools):
self.set()
else:
self.clear()
elif self.condition == 'and':
if all(bools):
self.set()
else:
self.clear()
def _custom_set(self,e):
e._set()
e._state_changed()
def _custom_clear(self,e):
e._clear()
e._state_changed()
def _setup(self, e, changed_callback):
e._set = e.set
e._clear = e.clear
e._state_changed = changed_callback
e.set = lambda: self._custom_set(e)
e.clear = lambda: self._custom_clear(e)
Example usage will be very similar as before
import time
e1 = Event()
e2 = Event()
# Example to wait for triggering of event 1 OR event 2
or_e = ConditionalEvent([e1, e2], 'or')
# Example to wait for triggering of event 1 AND event 2
and_e = ConditionalEvent([e1, e2], 'and')
Not pretty, but you can use two additional threads to multiplex the events...
def wait_for_either(a, b):
flag = False #some condition variable, event, or similar
class Event_Waiter(threading.Thread):
def __init__(self, event):
self.e = event
def run(self):
self.e.wait()
flag.set()
a_thread = Event_Waiter(a)
b_thread = Event_Waiter(b)
a.start()
b.start()
flag.wait()
Note, you may have to worry about accidentally getting both events if they arrive too quickly. The helper threads (a_thread and b_thread) should lock synchronize around trying to set flag and then should kill the other thread (possibly resetting that thread's event if it was consumed).
def wait_for_event_timeout(*events):
while not all([e.isSet() for e in events]):
#Check to see if the event is set. Timeout 1 sec.
ev_wait_bool=[e.wait(1) for e in events]
# Process if all events are set. Change all to any to process if any event set
if all(ev_wait_bool):
logging.debug('processing event')
else:
logging.debug('doing other work')
e1 = threading.Event()
e2 = threading.Event()
t3 = threading.Thread(name='non-block-multi',
target=wait_for_event_timeout,
args=(e1,e2))
t3.start()
logging.debug('Waiting before calling Event.set()')
time.sleep(5)
e1.set()
time.sleep(10)
e2.set()
logging.debug('Event is set')

Cancellable threading.Timer in Python

I am trying to write a method that counts down to a given time and unless a restart command is given, it will execute the task. But I don't think Python threading.Timer class allows for timer to be cancelable.
import threading
def countdown(action):
def printText():
print 'hello!'
t = threading.Timer(5.0, printText)
if (action == 'reset'):
t.cancel()
t.start()
I know the above code is wrong somehow. Would appreciate some kind guidance over here.
You would call the cancel method after you start the timer:
import time
import threading
def hello():
print "hello, world"
time.sleep(2)
t = threading.Timer(3.0, hello)
t.start()
var = 'something'
if var == 'something':
t.cancel()
You might consider using a while-loop on a Thread, instead of using a Timer.
Here is an example appropriated from Nikolaus Gradwohl's answer to another question:
import threading
import time
class TimerClass(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.event = threading.Event()
self.count = 10
def run(self):
while self.count > 0 and not self.event.is_set():
print self.count
self.count -= 1
self.event.wait(1)
def stop(self):
self.event.set()
tmr = TimerClass()
tmr.start()
time.sleep(3)
tmr.stop()
I'm not sure if I understand correctly. Do you want to write something like in this example?
>>> import threading
>>> t = None
>>>
>>> def sayHello():
... global t
... print "Hello!"
... t = threading.Timer(0.5, sayHello)
... t.start()
...
>>> sayHello()
Hello!
Hello!
Hello!
Hello!
Hello!
>>> t.cancel()
>>>
The threading.Timer class does have a cancel method, and although it won't cancel the thread, it will stop the timer from actually firing. What actually happens is that the cancel method sets a threading.Event, and the thread actually executing the threading.Timer will check that event after it's done waiting and before it actually executes the callback.
That said, timers are usually implemented without using a separate thread for each one. The best way to do it depends on what your program is actually doing (while waiting for this timer), but anything with an event loop, like GUI and network frameworks, all have ways to request a timer that is hooked into the eventloop.
Im not sure if best option but for me is woking like this:
t = timer_mgr(.....) append to list "timers.append(t)" and then after all created you can call:
for tm in timers:#threading.enumerate():
print "********", tm.cancel()
my timer_mgr() class is this:
class timer_mgr():
def __init__(self, st, t, hFunction, id, name):
self.is_list = (type(st) is list)
self.st = st
self.t = t
self.id = id
self.hFunction = hFunction
self.thread = threading.Timer(t, self.handle_function, [id])
self.thread.name = name
def handle_function(self, id):
if self.is_list:
print "run_at_time:", datetime.now()
self.hFunction(id)
dt = schedule_fixed_times(datetime.now(), self.st)
print "next:", dt
self.t = (dt-datetime.now()).total_seconds()
else:
self.t = self.st
print "run_every", self.t, datetime.now()
self.hFunction(id)
self.thread = threading.Timer(self.t, self.handle_function, [id])
self.thread.start()
def start(self):
self.thread.start()
def cancel(self):
self.thread.cancel()
Inspired by above post.
Cancelable and Resetting Timer in Python. It uses thread.
Features: Start, Stop, Restart, callback function.
Input: Timeout, sleep_chunk values, and callback_function.
Can use or inherit this class in any other program. Can also pass arguments to the callback function.
Timer should respond in middle also. Not just after completion of full sleep time. So instead of using one full sleep, using small chunks of sleep and kept checking event object in loop.
import threading
import time
class TimerThread(threading.Thread):
def __init__(self, timeout=3, sleep_chunk=0.25, callback=None, *args):
threading.Thread.__init__(self)
self.timeout = timeout
self.sleep_chunk = sleep_chunk
if callback == None:
self.callback = None
else:
self.callback = callback
self.callback_args = args
self.terminate_event = threading.Event()
self.start_event = threading.Event()
self.reset_event = threading.Event()
self.count = self.timeout/self.sleep_chunk
def run(self):
while not self.terminate_event.is_set():
while self.count > 0 and self.start_event.is_set():
# print self.count
# time.sleep(self.sleep_chunk)
# if self.reset_event.is_set():
if self.reset_event.wait(self.sleep_chunk): # wait for a small chunk of timeout
self.reset_event.clear()
self.count = self.timeout/self.sleep_chunk # reset
self.count -= 1
if self.count <= 0:
self.start_event.clear()
#print 'timeout. calling function...'
self.callback(*self.callback_args)
self.count = self.timeout/self.sleep_chunk #reset
def start_timer(self):
self.start_event.set()
def stop_timer(self):
self.start_event.clear()
self.count = self.timeout / self.sleep_chunk # reset
def restart_timer(self):
# reset only if timer is running. otherwise start timer afresh
if self.start_event.is_set():
self.reset_event.set()
else:
self.start_event.set()
def terminate(self):
self.terminate_event.set()
#=================================================================
def my_callback_function():
print 'timeout, do this...'
timeout = 6 # sec
sleep_chunk = .25 # sec
tmr = TimerThread(timeout, sleep_chunk, my_callback_function)
tmr.start()
quit = '0'
while True:
quit = raw_input("Proceed or quit: ")
if quit == 'q':
tmr.terminate()
tmr.join()
break
tmr.start_timer()
if raw_input("Stop ? : ") == 's':
tmr.stop_timer()
if raw_input("Restart ? : ") == 'r':
tmr.restart_timer()

Python Equivalent of setInterval()?

Does Python have a function similar to JavaScript's setInterval()?
I would like to have:
def set_interval(func, interval):
...
That will call func every interval time units.
This might be the correct snippet you were looking for:
import threading
def set_interval(func, sec):
def func_wrapper():
set_interval(func, sec)
func()
t = threading.Timer(sec, func_wrapper)
t.start()
return t
This is a version where you could start and stop.
It is not blocking.
There is also no glitch as execution time error is not added (important for long time execution with very short interval as audio for example)
import time, threading
StartTime=time.time()
def action() :
print('action ! -> time : {:.1f}s'.format(time.time()-StartTime))
class setInterval :
def __init__(self,interval,action) :
self.interval=interval
self.action=action
self.stopEvent=threading.Event()
thread=threading.Thread(target=self.__setInterval)
thread.start()
def __setInterval(self) :
nextTime=time.time()+self.interval
while not self.stopEvent.wait(nextTime-time.time()) :
nextTime+=self.interval
self.action()
def cancel(self) :
self.stopEvent.set()
# start action every 0.6s
inter=setInterval(0.6,action)
print('just after setInterval -> time : {:.1f}s'.format(time.time()-StartTime))
# will stop interval in 5s
t=threading.Timer(5,inter.cancel)
t.start()
Output is :
just after setInterval -> time : 0.0s
action ! -> time : 0.6s
action ! -> time : 1.2s
action ! -> time : 1.8s
action ! -> time : 2.4s
action ! -> time : 3.0s
action ! -> time : 3.6s
action ! -> time : 4.2s
action ! -> time : 4.8s
Just keep it nice and simple.
import threading
def setInterval(func,time):
e = threading.Event()
while not e.wait(time):
func()
def foo():
print "hello"
# using
setInterval(foo,5)
# output:
hello
hello
.
.
.
EDIT : This code is non-blocking
import threading
class ThreadJob(threading.Thread):
def __init__(self,callback,event,interval):
'''runs the callback function after interval seconds
:param callback: callback function to invoke
:param event: external event for controlling the update operation
:param interval: time in seconds after which are required to fire the callback
:type callback: function
:type interval: int
'''
self.callback = callback
self.event = event
self.interval = interval
super(ThreadJob,self).__init__()
def run(self):
while not self.event.wait(self.interval):
self.callback()
event = threading.Event()
def foo():
print "hello"
k = ThreadJob(foo,event,2)
k.start()
print "It is non-blocking"
Change Nailxx's answer a bit and you got the answer!
from threading import Timer
def hello():
print "hello, world"
Timer(30.0, hello).start()
Timer(30.0, hello).start() # after 30 seconds, "hello, world" will be printed
The sched module provides these abilities for general Python code. However, as its documentation suggests, if your code is multithreaded it might make more sense to use the threading.Timer class instead.
I think this is what you're after:
#timertest.py
import sched, time
def dostuff():
print "stuff is being done!"
s.enter(3, 1, dostuff, ())
s = sched.scheduler(time.time, time.sleep)
s.enter(3, 1, dostuff, ())
s.run()
If you add another entry to the scheduler at the end of the repeating method, it'll just keep going.
I use sched to create setInterval function gist
import functools
import sched, time
s = sched.scheduler(time.time, time.sleep)
def setInterval(sec):
def decorator(func):
#functools.wraps(func)
def wrapper(*argv, **kw):
setInterval(sec)(func)
func(*argv, **kw)
s.enter(sec, 1, wrapper, ())
return wrapper
s.run()
return decorator
#setInterval(sec=3)
def testInterval():
print ("test Interval ")
testInterval()
Simple setInterval utils
from threading import Timer
def setInterval(timer, task):
isStop = task()
if not isStop:
Timer(timer, setInterval, [timer, task]).start()
def hello():
print "do something"
return False # return True if you want to stop
if __name__ == "__main__":
setInterval(2.0, hello) # every 2 seconds, "do something" will be printed
The above method didn't quite do it for me as I needed to be able to cancel the interval. I turned the function into a class and came up with the following:
class setInterval():
def __init__(self, func, sec):
def func_wrapper():
self.t = threading.Timer(sec, func_wrapper)
self.t.start()
func()
self.t = threading.Timer(sec, func_wrapper)
self.t.start()
def cancel(self):
self.t.cancel()
Most of the answers above do not shut down the Thread properly. While using Jupyter notebook I noticed that when an explicit interrupt was sent, the threads were still running and worse, they would keep multiplying starting at 1 thread running,2, 4 etc. My method below is based on the answer by #doom but cleanly handles interrupts by running an infinite loop in the Main thread to listen for SIGINT and SIGTERM events
No drift
Cancelable
Handles SIGINT and SIGTERM very well
Doesnt make a new thread for every run
Feel free to suggest improvements
import time
import threading
import signal
# Record the time for the purposes of demonstration
start_time=time.time()
class ProgramKilled(Exception):
"""
An instance of this custom exception class will be thrown everytime we get an SIGTERM or SIGINT
"""
pass
# Raise the custom exception whenever SIGINT or SIGTERM is triggered
def signal_handler(signum, frame):
raise ProgramKilled
# This function serves as the callback triggered on every run of our IntervalThread
def action() :
print('action ! -> time : {:.1f}s'.format(time.time()-start_time))
# https://stackoverflow.com/questions/2697039/python-equivalent-of-setinterval
class IntervalThread(threading.Thread) :
def __init__(self,interval,action, *args, **kwargs) :
super(IntervalThread, self).__init__()
self.interval=interval
self.action=action
self.stopEvent=threading.Event()
self.start()
def run(self) :
nextTime=time.time()+self.interval
while not self.stopEvent.wait(nextTime-time.time()) :
nextTime+=self.interval
self.action()
def cancel(self) :
self.stopEvent.set()
def main():
# Handle SIGINT and SIFTERM with the help of the callback function
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
# start action every 1s
inter=IntervalThread(1,action)
print('just after setInterval -> time : {:.1f}s'.format(time.time()-start_time))
# will stop interval in 500s
t=threading.Timer(500,inter.cancel)
t.start()
# https://www.g-loaded.eu/2016/11/24/how-to-terminate-running-python-threads-using-signals/
while True:
try:
time.sleep(1)
except ProgramKilled:
print("Program killed: running cleanup code")
inter.cancel()
break
if __name__ == "__main__":
main()
In the above solutions if a situation arises where program is shutdown, there is no guarantee that it will shutdown gracefully,Its always recommended to shut a program via a soft kill, neither did most of them have a function to stop I found a nice article on medium written by Sankalp which solves both of these issues (run periodic tasks in python) refer the attached link to get a deeper insight.
In the below sample a library named signal is used to track the kill is soft kill or a hard kill
import threading, time, signal
from datetime import timedelta
WAIT_TIME_SECONDS = 1
class ProgramKilled(Exception):
pass
def foo():
print time.ctime()
def signal_handler(signum, frame):
raise ProgramKilled
class Job(threading.Thread):
def __init__(self, interval, execute, *args, **kwargs):
threading.Thread.__init__(self)
self.daemon = False
self.stopped = threading.Event()
self.interval = interval
self.execute = execute
self.args = args
self.kwargs = kwargs
def stop(self):
self.stopped.set()
self.join()
def run(self):
while not self.stopped.wait(self.interval.total_seconds()):
self.execute(*self.args, **self.kwargs)
if __name__ == "__main__":
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
job = Job(interval=timedelta(seconds=WAIT_TIME_SECONDS), execute=foo)
job.start()
while True:
try:
time.sleep(1)
except ProgramKilled:
print "Program killed: running cleanup code"
job.stop()
break
#output
#Tue Oct 16 17:47:51 2018
#Tue Oct 16 17:47:52 2018
#Tue Oct 16 17:47:53 2018
#^CProgram killed: running cleanup code
setInterval should be run on multiple thread, and not freeze the task when it running loop.
Here is my RUNTIME package that support multithread feature:
setTimeout(F,ms) : timming to fire function in independence thread.
delayF(F,ms) : similar setTimeout(F,ms).
setInterval(F,ms) : asynchronous loop
.pause, .resume : pause and resume the interval
clearInterval(interval) : clear the interval
It's short and simple. Note that python need lambda if you input direct the function, but lambda is not support command block, so you should define the function content before put it in the setInterval.
### DEMO PYTHON MULTITHREAD ASYNCHRONOUS LOOP ###
import time;
import threading;
import random;
def delay(ms):time.sleep(ms/1000); # Controil while speed
def setTimeout(R,delayMS):
t=threading.Timer(delayMS/1000,R)
t.start();
return t;
def delayF(R,delayMS):
t=threading.Timer(delayMS/1000,R)
t.start();
return t;
class THREAD:
def __init__(this):
this.R_onRun=None;
this.thread=None;
def run(this):
this.thread=threading.Thread(target=this.R_onRun);
this.thread.start();
def isRun(this): return this.thread.isAlive();
class setInterval :
def __init__(this,R_onRun,msInterval) :
this.ms=msInterval;
this.R_onRun=R_onRun;
this.kStop=False;
this.thread=THREAD();
this.thread.R_onRun=this.Clock;
this.thread.run();
def Clock(this) :
while not this.kStop :
this.R_onRun();
delay(this.ms);
def pause(this) :
this.kStop=True;
def stop(this) :
this.kStop=True;
def resume(this) :
if (this.kStop) :
this.kStop=False;
this.thread.run();
def clearInterval(Timer): Timer.stop();
# EXAMPLE
def p():print(random.random());
tm=setInterval(p,20);
tm2=setInterval(lambda:print("AAAAA"),20);
delayF(tm.pause,1000);
delayF(tm.resume,2000);
delayF(lambda:clearInterval(tm),3000);
Save to file .py and run it. You will see it print both random number and string "AAAAA". The print number thread will pause printing after 1 second and resume print again for 1 second then stop, while the print string keep printing text not corrupt.
In case you use OpenCV for graphic animation with those setInterval for boost animate speed, you must have 1 main thread to apply waitKey, otherwise the window will freeze no matter how slow delay or you applied waitKey in sub thread:
def p:... # Your drawing task
setInterval(p,1); # Subthread1 running draw
setInterval(p,1); # Subthread2 running draw
setInterval(p,1); # Subthread3 running draw
while True: cv2.waitKey(10); # Main thread which waitKey have effect
You can also try out this method:
import time
while True:
time.sleep(5)
print("5 seconds has passed")
So it will print "5 seconds has passed" every 5 seconds.
The function sleep() suspends execution for the given number of seconds. The argument may be a floating point number to indicate a more precise sleep time.
Recently, I have the same issue as you. And I find these soluation:
1. you can use the library: threading.Time(this have introduction above)
2. you can use the library: sched(this have introduction above too)
3. you can use the library: Advanced Python Scheduler(Recommend)
Some answers above that uses func_wrapper and threading.Timer indeed work, except that it spawns a new thread every time an interval is called, which is causing memory problems.
The basic example below roughly implemented a similar mechanism by putting interval on a separate thread. It sleeps at the given interval. Before jumping into code, here are some of the limitations that you need to be aware of:
JavaScript is single threaded, so when the function inside setInterval is fired, nothing else will be working at the same time (excluding worker thread, but let's talk general use case of setInterval. Therefore, threading is safe. But here in this implementation, you may encounter race conditions unless using a threading.rLock.
The implementation below uses time.sleep to simulate intervals, but adding the execution time of func, the total time for this interval may be greater than what you expect. So depending on use cases, you may want to "sleep less" (minus time taken for calling func)
I only roughly tested this, and you should definitely not use global variables the way I did, feel free to tweak it so that it fits in your system.
Enough talking, here is the code:
# Python 2.7
import threading
import time
class Interval(object):
def __init__(self):
self.daemon_alive = True
self.thread = None # keep a reference to the thread so that we can "join"
def ticktock(self, interval, func):
while self.daemon_alive:
time.sleep(interval)
func()
num = 0
def print_num():
global num
num += 1
print 'num + 1 = ', num
def print_negative_num():
global num
print '-num = ', num * -1
intervals = {} # keep track of intervals
g_id_counter = 0 # roughly generate ids for intervals
def set_interval(interval, func):
global g_id_counter
interval_obj = Interval()
# Put this interval on a new thread
t = threading.Thread(target=interval_obj.ticktock, args=(interval, func))
t.setDaemon(True)
interval_obj.thread = t
t.start()
# Register this interval so that we can clear it later
# using roughly generated id
interval_id = g_id_counter
g_id_counter += 1
intervals[interval_id] = interval_obj
# return interval id like it does in JavaScript
return interval_id
def clear_interval(interval_id):
# terminate this interval's while loop
intervals[interval_id].daemon_alive = False
# kill the thread
intervals[interval_id].thread.join()
# pop out the interval from registry for reusing
intervals.pop(interval_id)
if __name__ == '__main__':
num_interval = set_interval(1, print_num)
neg_interval = set_interval(3, print_negative_num)
time.sleep(10) # Sleep 10 seconds on main thread to let interval run
clear_interval(num_interval)
clear_interval(neg_interval)
print "- Are intervals all cleared?"
time.sleep(3) # check if both intervals are stopped (not printing)
print "- Yup, time to get beers"
Expected output:
num + 1 = 1
num + 1 = 2
-num = -2
num + 1 = 3
num + 1 = 4
num + 1 = 5
-num = -5
num + 1 = 6
num + 1 = 7
num + 1 = 8
-num = -8
num + 1 = 9
num + 1 = 10
-num = -10
Are intervals all cleared?
Yup, time to get beers
My Python 3 module jsinterval.py will be helpful! Here it is:
"""
Threaded intervals and timeouts from JavaScript
"""
import threading, sys
__all__ = ['TIMEOUTS', 'INTERVALS', 'setInterval', 'clearInterval', 'setTimeout', 'clearTimeout']
TIMEOUTS = {}
INTERVALS = {}
last_timeout_id = 0
last_interval_id = 0
class Timeout:
"""Class for all timeouts."""
def __init__(self, func, timeout):
global last_timeout_id
last_timeout_id += 1
self.timeout_id = last_timeout_id
TIMEOUTS[str(self.timeout_id)] = self
self.func = func
self.timeout = timeout
self.threadname = 'Timeout #%s' %self.timeout_id
def run(self):
func = self.func
delx = self.__del__
def func_wrapper():
func()
delx()
self.t = threading.Timer(self.timeout/1000, func_wrapper)
self.t.name = self.threadname
self.t.start()
def __repr__(self):
return '<JS Timeout set for %s seconds, launching function %s on timeout reached>' %(self.timeout, repr(self.func))
def __del__(self):
self.t.cancel()
class Interval:
"""Class for all intervals."""
def __init__(self, func, interval):
global last_interval_id
self.interval_id = last_interval_id
INTERVALS[str(self.interval_id)] = self
last_interval_id += 1
self.func = func
self.interval = interval
self.threadname = 'Interval #%s' %self.interval_id
def run(self):
func = self.func
interval = self.interval
def func_wrapper():
timeout = Timeout(func_wrapper, interval)
self.timeout = timeout
timeout.run()
func()
self.t = threading.Timer(self.interval/1000, func_wrapper)
self.t.name = self.threadname
self.t.run()
def __repr__(self):
return '<JS Interval, repeating function %s with interval %s>' %(repr(self.func), self.interval)
def __del__(self):
self.timeout.__del__()
def setInterval(func, interval):
"""
Create a JS Interval: func is the function to repeat, interval is the interval (in ms)
of executing the function.
"""
temp = Interval(func, interval)
temp.run()
idx = int(temp.interval_id)
del temp
return idx
def clearInterval(interval_id):
try:
INTERVALS[str(interval_id)].__del__()
del INTERVALS[str(interval_id)]
except KeyError:
sys.stderr.write('No such interval "Interval #%s"\n' %interval_id)
def setTimeout(func, timeout):
"""
Create a JS Timeout: func is the function to timeout, timeout is the timeout (in ms)
of executing the function.
"""
temp = Timeout(func, timeout)
temp.run()
idx = int(temp.timeout_id)
del temp
return idx
def clearTimeout(timeout_id):
try:
TIMEOUTS[str(timeout_id)].__del__()
del TIMEOUTS[str(timeout_id)]
except KeyError:
sys.stderr.write('No such timeout "Timeout #%s"\n' %timeout_id)
CODE EDIT:
Fixed the memory leak (spotted by #benjaminz). Now ALL threads are cleaned up upon end. Why does this leak happen? It happens because of the implicit (or even explicit) references. In my case, TIMEOUTS and INTERVALS. Timeouts self-clean automatically (after this patch) because they use function wrapper which calls the function and then self-kills. But how does this happen? Objects can't be deleted from memory unless all references are deleted too or gc module is used. Explaining: there's no way to create (in my code) unwanted references to timeouts/intervals. They have only ONE referrer: the TIMEOUTS/INTERVALS dicts. And, when interrupted or finished (only timeouts can finish uninterrupted) they delete the only existing reference to themselves: their corresponding dict element. Classes are perfectly encapsulated using __all__, so no space for memory leaks.
Here is a low time drift solution that uses a thread to periodically signal an Event object. The thread's run() does almost nothing while waiting for a timeout; hence the low time drift.
# Example of low drift (time) periodic execution of a function.
import threading
import time
# Thread that sets 'flag' after 'timeout'
class timerThread (threading.Thread):
def __init__(self , timeout , flag):
threading.Thread.__init__(self)
self.timeout = timeout
self.stopFlag = False
self.event = threading.Event()
self.flag = flag
# Low drift run(); there is only the 'if'
# and 'set' methods between waits.
def run(self):
while not self.event.wait(self.timeout):
if self.stopFlag:
break
self.flag.set()
def stop(self):
stopFlag = True
self.event.set()
# Data.
printCnt = 0
# Flag to print.
printFlag = threading.Event()
# Create and start the timer thread.
printThread = timerThread(3 , printFlag)
printThread.start()
# Loop to wait for flag and print time.
while True:
global printCnt
# Wait for flag.
printFlag.wait()
# Flag must be manually cleared.
printFlag.clear()
print(time.time())
printCnt += 1
if printCnt == 3:
break;
# Stop the thread and exit.
printThread.stop()
printThread.join()
print('Done')
fall asleep until the next interval of seconds length starts: (not concurrent)
def sleep_until_next_interval(self, seconds):
now = time.time()
fall_asleep = seconds - now % seconds
time.sleep(fall_asleep)
while True:
sleep_until_next_interval(10) # 10 seconds - worktime
# work here
simple and no drift.
I have written my code to make a very very flexible setInterval in python. Here you are:
import threading
class AlreadyRunning(Exception):
pass
class IntervalNotValid(Exception):
pass
class setInterval():
def __init__(this, func=None, sec=None, args=[]):
this.running = False
this.func = func # the function to be run
this.sec = sec # interval in second
this.Return = None # The returned data
this.args = args
this.runOnce = None # asociated with run_once() method
this.runOnceArgs = None # asociated with run_once() method
if (func is not None and sec is not None):
this.running = True
if (not callable(func)):
raise TypeError("non-callable object is given")
if (not isinstance(sec, int) and not isinstance(sec, float)):
raise TypeError("A non-numeric object is given")
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
def start(this):
if (not this.running):
if (not this.isValid()):
raise IntervalNotValid("The function and/or the " +
"interval hasn't provided or invalid.")
this.running = True
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
else:
raise AlreadyRunning("Tried to run an already run interval")
def stop(this):
this.running = False
def isValid(this):
if (not callable(this.func)):
return False
cond1 = not isinstance(this.sec, int)
cond2 = not isinstance(this.sec, float)
if (cond1 and cond2):
return False
return True
def loop(this):
if (this.running):
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
function_, Args_ = this.func, this.args
if (this.runOnce is not None): # someone has provide the run_once
runOnce, this.runOnce = this.runOnce, None
result = runOnce(*(this.runOnceArgs))
this.runOnceArgs = None
# if and only if the result is False. not accept "None"
# nor zero.
if (result is False):
return # cancel the interval right now
this.Return = function_(*Args_)
def change_interval(this, sec):
cond1 = not isinstance(sec, int)
cond2 = not isinstance(sec, float)
if (cond1 and cond2):
raise TypeError("A non-numeric object is given")
# prevent error when providing interval to a blueprint
if (this.running):
this.TIMER.cancel()
this.sec = sec
# prevent error when providing interval to a blueprint
# if the function hasn't provided yet
if (this.running):
this.TIMER = threading.Timer(this.sec, this.loop)
this.TIMER.start()
def change_next_interval(this, sec):
if (not isinstance(sec, int) and not isinstance(sec, float)):
raise TypeError("A non-numeric object is given")
this.sec = sec
def change_func(this, func, args=[]):
if (not callable(func)):
raise TypeError("non-callable object is given")
this.func = func
this.args = args
def run_once(this, func, args=[]):
this.runOnce = func
this.runOnceArgs = args
def get_return(this):
return this.Return
You can get many features and flexibility. Running this code won't freeze your code, you can change the interval at run time, you can change the function at run time, you can pass arguments, you can get the returned object from your function, and many more. You can make your tricks too!
here's a very simple and basic example to use it:
import time
def interval(name="world"):
print(f"Hello {name}!")
# function named interval will be called every two seconds
# output: "Hello world!"
interval1 = setInterval(interval, 2)
# function named interval will be called every 1.5 seconds
# output: "Hello Jane!"
interval2 = setInterval(interval, 1.5, ["Jane"])
time.sleep(5) #stop all intervals after 5 seconds
interval1.stop()
interval2.stop()
Check out my Github project to see more examples and follow next updates :D
https://github.com/Hzzkygcs/setInterval-python
Here's something easy peazy:
import time
delay = 10 # Seconds
def setInterval():
print('I print in intervals!')
time.sleep(delay)
setInterval()
Things work differently in Python: you need to either sleep() (if you want to block the current thread) or start a new thread. See http://docs.python.org/library/threading.html
From Python Documentation:
from threading import Timer
def hello():
print "hello, world"
t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed

Categories