Reading bytes from file python And converting to String - python

I have a file including some data like : \xe1\x8a\xa0\xe1\x88\x9b\xe1\x88\xad\xe1\x8a\x9b
How do i read this and write the string format(አማርኛ) in another file? And also vice versa?
[\xe1\x8a\xa0\xe1\x88\x9b\xe1\x88\xad\xe1\x8a\x9b == አማርኛ ]

That is a byte string, so you need to decode it to a utf-8 Unicode string.
b'\xe1\x8a\xa0\xe1\x88\x9b\xe1\x88\xad\xe1\x8a\x9b'.decode('utf8')
result: 'አማርኛ'
And to encode it back to byte string:
'አማርኛ'.encode()
result: b'\xe1\x8a\xa0\xe1\x88\x9b\xe1\x88\xad\xe1\x8a\x9b'

Basicly you have a byte string, you can do what you are talking about with the functions encode() and decode() respectively, in the example below, i will start by printing the byte string. And then i'm taking the byte string and decoding it to utf-8 (default value in all python versions above 2.7 if you don't specify a version yourself)
f = open("input.txt","rb")
x = f.read()
print(x) # b'\xe1\x8a\xa0\xe1\x88\x9b\xe1\x88\xad\xe1\x8a\x9b'
print(x.decode()) # አማርኛ
If you want to do the inverse operation, you can achieve this by just encoding back the decoded byte array! (Do note that the open function i'm using the arguments "rb" that stands for (following the wiki) "Opens a file for reading only in binary format."

Related

How to write strings in Unicode to a text file in Python? [duplicate]

I'm having some brain failure in understanding reading and writing text to a file (Python 2.4).
# The string, which has an a-acute in it.
ss = u'Capit\xe1n'
ss8 = ss.encode('utf8')
repr(ss), repr(ss8)
("u'Capit\xe1n'", "'Capit\xc3\xa1n'")
print ss, ss8
print >> open('f1','w'), ss8
>>> file('f1').read()
'Capit\xc3\xa1n\n'
So I type in Capit\xc3\xa1n into my favorite editor, in file f2.
Then:
>>> open('f1').read()
'Capit\xc3\xa1n\n'
>>> open('f2').read()
'Capit\\xc3\\xa1n\n'
>>> open('f1').read().decode('utf8')
u'Capit\xe1n\n'
>>> open('f2').read().decode('utf8')
u'Capit\\xc3\\xa1n\n'
What am I not understanding here? Clearly there is some vital bit of magic (or good sense) that I'm missing. What does one type into text files to get proper conversions?
What I'm truly failing to grok here, is what the point of the UTF-8 representation is, if you can't actually get Python to recognize it, when it comes from outside. Maybe I should just JSON dump the string, and use that instead, since that has an asciiable representation! More to the point, is there an ASCII representation of this Unicode object that Python will recognize and decode, when coming in from a file? If so, how do I get it?
>>> print simplejson.dumps(ss)
'"Capit\u00e1n"'
>>> print >> file('f3','w'), simplejson.dumps(ss)
>>> simplejson.load(open('f3'))
u'Capit\xe1n'
Rather than mess with .encode and .decode, specify the encoding when opening the file. The io module, added in Python 2.6, provides an io.open function, which allows specifying the file's encoding.
Supposing the file is encoded in UTF-8, we can use:
>>> import io
>>> f = io.open("test", mode="r", encoding="utf-8")
Then f.read returns a decoded Unicode object:
>>> f.read()
u'Capit\xe1l\n\n'
In 3.x, the io.open function is an alias for the built-in open function, which supports the encoding argument (it does not in 2.x).
We can also use open from the codecs standard library module:
>>> import codecs
>>> f = codecs.open("test", "r", "utf-8")
>>> f.read()
u'Capit\xe1l\n\n'
Note, however, that this can cause problems when mixing read() and readline().
In the notation u'Capit\xe1n\n' (should be just 'Capit\xe1n\n' in 3.x, and must be in 3.0 and 3.1), the \xe1 represents just one character. \x is an escape sequence, indicating that e1 is in hexadecimal.
Writing Capit\xc3\xa1n into the file in a text editor means that it actually contains \xc3\xa1. Those are 8 bytes and the code reads them all. We can see this by displaying the result:
# Python 3.x - reading the file as bytes rather than text,
# to ensure we see the raw data
>>> open('f2', 'rb').read()
b'Capit\\xc3\\xa1n\n'
# Python 2.x
>>> open('f2').read()
'Capit\\xc3\\xa1n\n'
Instead, just input characters like á in the editor, which should then handle the conversion to UTF-8 and save it.
In 2.x, a string that actually contains these backslash-escape sequences can be decoded using the string_escape codec:
# Python 2.x
>>> print 'Capit\\xc3\\xa1n\n'.decode('string_escape')
Capitán
The result is a str that is encoded in UTF-8 where the accented character is represented by the two bytes that were written \\xc3\\xa1 in the original string. To get a unicode result, decode again with UTF-8.
In 3.x, the string_escape codec is replaced with unicode_escape, and it is strictly enforced that we can only encode from a str to bytes, and decode from bytes to str. unicode_escape needs to start with a bytes in order to process the escape sequences (the other way around, it adds them); and then it will treat the resulting \xc3 and \xa1 as character escapes rather than byte escapes. As a result, we have to do a bit more work:
# Python 3.x
>>> 'Capit\\xc3\\xa1n\n'.encode('ascii').decode('unicode_escape').encode('latin-1').decode('utf-8')
'Capitán\n'
Now all you need in Python3 is open(Filename, 'r', encoding='utf-8')
[Edit on 2016-02-10 for requested clarification]
Python3 added the encoding parameter to its open function. The following information about the open function is gathered from here: https://docs.python.org/3/library/functions.html#open
open(file, mode='r', buffering=-1,
encoding=None, errors=None, newline=None,
closefd=True, opener=None)
Encoding is the name of the encoding used to decode or encode the
file. This should only be used in text mode. The default encoding is
platform dependent (whatever locale.getpreferredencoding()
returns), but any text encoding supported by Python can be used.
See the codecs module for the list of supported encodings.
So by adding encoding='utf-8' as a parameter to the open function, the file reading and writing is all done as utf8 (which is also now the default encoding of everything done in Python.)
So, I've found a solution for what I'm looking for, which is:
print open('f2').read().decode('string-escape').decode("utf-8")
There are some unusual codecs that are useful here. This particular reading allows one to take UTF-8 representations from within Python, copy them into an ASCII file, and have them be read in to Unicode. Under the "string-escape" decode, the slashes won't be doubled.
This allows for the sort of round trip that I was imagining.
This works for reading a file with UTF-8 encoding in Python 3.2:
import codecs
f = codecs.open('file_name.txt', 'r', 'UTF-8')
for line in f:
print(line)
# -*- encoding: utf-8 -*-
# converting a unknown formatting file in utf-8
import codecs
import commands
file_location = "jumper.sub"
file_encoding = commands.getoutput('file -b --mime-encoding %s' % file_location)
file_stream = codecs.open(file_location, 'r', file_encoding)
file_output = codecs.open(file_location+"b", 'w', 'utf-8')
for l in file_stream:
file_output.write(l)
file_stream.close()
file_output.close()
Aside from codecs.open(), io.open() can be used in both 2.x and 3.x to read and write text files. Example:
import io
text = u'á'
encoding = 'utf8'
with io.open('data.txt', 'w', encoding=encoding, newline='\n') as fout:
fout.write(text)
with io.open('data.txt', 'r', encoding=encoding, newline='\n') as fin:
text2 = fin.read()
assert text == text2
To read in an Unicode string and then send to HTML, I did this:
fileline.decode("utf-8").encode('ascii', 'xmlcharrefreplace')
Useful for python powered http servers.
Well, your favorite text editor does not realize that \xc3\xa1 are supposed to be character literals, but it interprets them as text. That's why you get the double backslashes in the last line -- it's now a real backslash + xc3, etc. in your file.
If you want to read and write encoded files in Python, best use the codecs module.
Pasting text between the terminal and applications is difficult, because you don't know which program will interpret your text using which encoding. You could try the following:
>>> s = file("f1").read()
>>> print unicode(s, "Latin-1")
Capitán
Then paste this string into your editor and make sure that it stores it using Latin-1. Under the assumption that the clipboard does not garble the string, the round trip should work.
You have stumbled over the general problem with encodings: How can I tell in which encoding a file is?
Answer: You can't unless the file format provides for this. XML, for example, begins with:
<?xml encoding="utf-8"?>
This header was carefully chosen so that it can be read no matter the encoding. In your case, there is no such hint, hence neither your editor nor Python has any idea what is going on. Therefore, you must use the codecs module and use codecs.open(path,mode,encoding) which provides the missing bit in Python.
As for your editor, you must check if it offers some way to set the encoding of a file.
The point of UTF-8 is to be able to encode 21-bit characters (Unicode) as an 8-bit data stream (because that's the only thing all computers in the world can handle). But since most OSs predate the Unicode era, they don't have suitable tools to attach the encoding information to files on the hard disk.
The next issue is the representation in Python. This is explained perfectly in the comment by heikogerlach. You must understand that your console can only display ASCII. In order to display Unicode or anything >= charcode 128, it must use some means of escaping. In your editor, you must not type the escaped display string but what the string means (in this case, you must enter the umlaut and save the file).
That said, you can use the Python function eval() to turn an escaped string into a string:
>>> x = eval("'Capit\\xc3\\xa1n\\n'")
>>> x
'Capit\xc3\xa1n\n'
>>> x[5]
'\xc3'
>>> len(x[5])
1
As you can see, the string "\xc3" has been turned into a single character. This is now an 8-bit string, UTF-8 encoded. To get Unicode:
>>> x.decode('utf-8')
u'Capit\xe1n\n'
Gregg Lind asked: I think there are some pieces missing here: the file f2 contains: hex:
0000000: 4361 7069 745c 7863 335c 7861 316e Capit\xc3\xa1n
codecs.open('f2','rb', 'utf-8'), for example, reads them all in a separate chars (expected) Is there any way to write to a file in ASCII that would work?
Answer: That depends on what you mean. ASCII can't represent characters > 127. So you need some way to say "the next few characters mean something special" which is what the sequence "\x" does. It says: The next two characters are the code of a single character. "\u" does the same using four characters to encode Unicode up to 0xFFFF (65535).
So you can't directly write Unicode to ASCII (because ASCII simply doesn't contain the same characters). You can write it as string escapes (as in f2); in this case, the file can be represented as ASCII. Or you can write it as UTF-8, in which case, you need an 8-bit safe stream.
Your solution using decode('string-escape') does work, but you must be aware how much memory you use: Three times the amount of using codecs.open().
Remember that a file is just a sequence of bytes with 8 bits. Neither the bits nor the bytes have a meaning. It's you who says "65 means 'A'". Since \xc3\xa1 should become "à" but the computer has no means to know, you must tell it by specifying the encoding which was used when writing the file.
The \x.. sequence is something that's specific to Python. It's not a universal byte escape sequence.
How you actually enter in UTF-8-encoded non-ASCII depends on your OS and/or your editor. Here's how you do it in Windows. For OS X to enter a with an acute accent you can just hit option + E, then A, and almost all text editors in OS X support UTF-8.
You can also improve the original open() function to work with Unicode files by replacing it in place, using the partial function. The beauty of this solution is you don't need to change any old code. It's transparent.
import codecs
import functools
open = functools.partial(codecs.open, encoding='utf-8')
I was trying to parse iCal using Python 2.7.9:
from icalendar import Calendar
But I was getting:
Traceback (most recent call last):
File "ical.py", line 92, in parse
print "{}".format(e[attr])
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe1' in position 7: ordinal not in range(128)
and it was fixed with just:
print "{}".format(e[attr].encode("utf-8"))
(Now it can print liké á böss.)
I found the most simple approach by changing the default encoding of the whole script to be 'UTF-8':
import sys
reload(sys)
sys.setdefaultencoding('utf8')
any open, print or other statement will just use utf8.
Works at least for Python 2.7.9.
Thx goes to https://markhneedham.com/blog/2015/05/21/python-unicodeencodeerror-ascii-codec-cant-encode-character-uxfc-in-position-11-ordinal-not-in-range128/ (look at the end).

Base64 encoding issue in Python

I need to save a params file in python and this params file contains some parameters that I won't leave on plain text, so I codify the entire file to base64 (I know that this isn't the most secure encoding of the world but it works for the kind of data that I need to use).
With the encoding, everything works well. I encode the content of my file (a simply txt with a proper extension) and save the file. The problem comes with the decode. I print the text coded before save the file and the text coded from the file saved and there are exactly the same, but for a reason I don't know, the decode of the text of the file saved returns me this error UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8d in position 1: invalid start byte and the decode of the text before save the file works well.
Any idea to resolve this issue?
This is my code, I have tried converting all to bytes, to string, and everything...
params = open('params.bpr','r').read()
paramsencoded = base64.b64encode(bytes(params,'utf-8'))
print(paramsencoded)
paramsdecoded = str(base64.b64decode(str(paramsencoded,'utf-8')),'utf-8')
newparams = open('paramsencoded.bpr','w+',encoding='utf-8')
newparams.write(str(paramsencoded))
newparams.close()
params2 = open('paramsencoded.bpr',encoding='utf-8').read()
print(params2)
paramsdecoded = str(base64.b64decode(str(paramsencoded,'utf-8')),'utf-8')
paramsdecoded = base64.b64decode(str(params2))
print(str(paramsdecoded,'utf-8'))
Your error lies in your handling of the bytes object returned by base64.b64encode(), you called str() on the object:
newparams.write(str(paramsencoded))
That doesn't decode the bytes object:
>>> bytesvalue = b'abc='
>>> str(bytesvalue)
"b'abc='"
Note the b'...' notation. You produced the representation of the bytes object, which is a string containing Python syntax that can reproduce the value for debugging purposes (you can copy that string value and paste it into Python to re-create the same bytes value).
This may not be that easy to notice at first, as base64.b64encode() otherwise only produces output with printable ASCII bytes.
But your decoding problem originates from there, because when decoding the value read back from the file includes the b' characters at the start. Those first two characters are interpreted as Base64 data too; the b is a valid Base64 character, and the ' is ignored by the parser:
>>> bytesvalue = b'hello world'
>>> base64.b64encode(bytesvalue)
b'aGVsbG8gd29ybGQ='
>>> str(base64.b64encode(bytesvalue))
"b'aGVsbG8gd29ybGQ='"
>>> base64.b64decode(str(base64.b64encode(bytesvalue))) # with str()
b'm\xa1\x95\xb1\xb1\xbc\x81\xdd\xbd\xc9\xb1\x90'
>>> base64.b64decode(base64.b64encode(bytesvalue)) # without str()
b'hello world'
Note how the output is completely different, because the Base64 decoding is now starting from the wrong place, as b is the first 6 bits of the first byte (making the first decoded byte a 6C, 6D, 6E or 6F bytes, so m,n, o or p ASCII).
You could properly decode the value (using paramsencoded.decode('ascii') or str(paramsencoded, 'ascii')) but you should't treat any of this data as text.
Instead, open your files in binary mode. Reading and writing then operates with bytes objects, and the base64.b64encode() and base64.b64decode() functions also operate on bytes, making for a perfect match:
with open('params.bpr', 'rb') as params_source:
params = params_source.read() # bytes object
params_encoded = base64.b64encode(params)
print(params_encoded.decode('ascii')) # base64 data is always ASCII data
params_decoded = base64.b64decode(params_encoded)
with open('paramsencoded.bpr', 'wb') as new_params:
newparams.write(params_encoded) # write binary data
with open('paramsencoded.bpr', 'rb') as new_params:
params_written = new_params.read()
print(params_written.decode('ascii')) # still Base64 data, so decode as ASCII
params_decoded = base64.b64decode(params_written) # decode the bytes value
print(params_decoded.decode('utf8')) # assuming the original source was UTF-8
I explicitly use bytes.decode(codec) rather than str(..., codec) to avoid accidental str(...) calls.

How to open an ascii-encoded file as UTF8?

My files are in US-ASCII and a command like a = file( 'main.html') and a.read() loads them as an ASCII text. How do I get it to load as UTF8?
The problem I am tring to solve is:
UnicodeEncodeError: 'ascii' codec can't encode character u'\xae' in position 38: ordinal not in range(128)
I was using the content of the files for templating as in template_str.format(attrib=val). But the string to interpolate is of a superset of ASCII.
Our team's version control and text editors does not care about the encoding. So how do I handle it in the code?
You are trying to opening files without specifying an encoding, which means that python uses the default value (ASCII).
You need to decode the byte-string explicitly, using the .decode() function:
template_str = template_str.decode('utf8')
Your val variable you tried to interpolate into your template is itself a unicode value, and python wants to automatically convert your byte-string template (read from the file) into a unicode value too, so that it can combine both, and it'll use the default encoding to do so.
Did I mention already you should read Joel Spolsky's article on Unicode and the Python Unicode HOWTO? They'll help you understand what happened here.
A solution working in Python2:
import codecs
fo = codecs.open('filename.txt', 'r', 'ascii')
content = fo.read() ## returns unicode
assert type(content) == unicode
fo.close()
utf8_content = content.encode('utf-8')
assert type(utf8_content) == str
I suppose that you are sure that your files are encoded in ASCII. Are you? :) As ASCII is included in UTF-8, you can decode this data using UTF-8 without expecting problems. However, when you are sure that the data is just ASCII, you should decode the data using just ASCII and not UTF-8.
"How do I get it to load as UTF8?"
I believe you mean "How do I get it to load as unicode?". Just decode the data using the ASCII codec and, in Python 2.x, the resulting data will be of type unicode. In Python 3, the resulting data will be of type str.
You will have to read about this topic in order to learn how to perform this kind of decoding in Python. Once understood, it is very simple.

Converting from utf-16 to utf-8 in Python 3

I'm programming in Python 3 and I'm having a small problem which I can't find any reference to it on the net.
As far as I understand the default string in is utf-16, but I must work with utf-8, I can't find the command that will convert from the default one to utf-8.
I'd appreciate your help very much.
In Python 3 there are two different datatypes important when you are working with string manipulation. First there is the string class, an object that represents unicode code points. Important to get is that this string is not some bytes, but really a sequence of characters. Secondly, there is the bytes class, which is just a sequence of bytes, often representing an string stored in an encoding (like utf-8 or iso-8859-15).
What does this mean for you? As far as I understand you want to read and write utf-8 files. Let's make a program that replaces all 'ć' with 'ç' characters
def main():
# Let's first open an output file. See how we give an encoding to let python know, that when we print something to the file, it should be encoded as utf-8
with open('output_file', 'w', encoding='utf-8') as out_file:
# read every line. We give open() the encoding so it will return a Unicode string.
for line in open('input_file', encoding='utf-8'):
#Replace the characters we want. When you define a string in python it also is automatically a unicode string. No worries about encoding there. Because we opened the file with the utf-8 encoding, the print statement will encode the whole string to utf-8.
print(line.replace('ć', 'ç'), out_file)
So when should you use bytes? Not often. An example I could think of would be when you read something from a socket. If you have this in an bytes object, you could make it a unicode string by doing bytes.decode('encoding') and visa versa with str.encode('encoding'). But as said, probably you won't need it.
Still, because it is interesting, here the hard way, where you encode everything yourself:
def main():
# Open the file in binary mode. So we are going to write bytes to it instead of strings
with open('output_file', 'wb') as out_file:
# read every line. Again, we open it binary, so we get bytes
for line_bytes in open('input_file', 'rb'):
#Convert the bytes to a string
line_string = bytes.decode('utf-8')
#Replace the characters we want.
line_string = line_string.replace('ć', 'ç')
#Make a bytes to print
out_bytes = line_string.encode('utf-8')
#Print the bytes
print(out_bytes, out_file)
Good reading about this topic (string encodings) is http://www.joelonsoftware.com/articles/Unicode.html. Really recommended read!
Source: http://docs.python.org/release/3.0.1/whatsnew/3.0.html#text-vs-data-instead-of-unicode-vs-8-bit
(P.S. As you see, I didn't mention utf-16 in this post. I actually don't know whether python uses this as internal decoding or not, but it is totally irrelevant. At the moment you are working with a string, you work with characters (code points), not bytes.

Unicode (UTF-8) reading and writing to files in Python

I'm having some brain failure in understanding reading and writing text to a file (Python 2.4).
# The string, which has an a-acute in it.
ss = u'Capit\xe1n'
ss8 = ss.encode('utf8')
repr(ss), repr(ss8)
("u'Capit\xe1n'", "'Capit\xc3\xa1n'")
print ss, ss8
print >> open('f1','w'), ss8
>>> file('f1').read()
'Capit\xc3\xa1n\n'
So I type in Capit\xc3\xa1n into my favorite editor, in file f2.
Then:
>>> open('f1').read()
'Capit\xc3\xa1n\n'
>>> open('f2').read()
'Capit\\xc3\\xa1n\n'
>>> open('f1').read().decode('utf8')
u'Capit\xe1n\n'
>>> open('f2').read().decode('utf8')
u'Capit\\xc3\\xa1n\n'
What am I not understanding here? Clearly there is some vital bit of magic (or good sense) that I'm missing. What does one type into text files to get proper conversions?
What I'm truly failing to grok here, is what the point of the UTF-8 representation is, if you can't actually get Python to recognize it, when it comes from outside. Maybe I should just JSON dump the string, and use that instead, since that has an asciiable representation! More to the point, is there an ASCII representation of this Unicode object that Python will recognize and decode, when coming in from a file? If so, how do I get it?
>>> print simplejson.dumps(ss)
'"Capit\u00e1n"'
>>> print >> file('f3','w'), simplejson.dumps(ss)
>>> simplejson.load(open('f3'))
u'Capit\xe1n'
Rather than mess with .encode and .decode, specify the encoding when opening the file. The io module, added in Python 2.6, provides an io.open function, which allows specifying the file's encoding.
Supposing the file is encoded in UTF-8, we can use:
>>> import io
>>> f = io.open("test", mode="r", encoding="utf-8")
Then f.read returns a decoded Unicode object:
>>> f.read()
u'Capit\xe1l\n\n'
In 3.x, the io.open function is an alias for the built-in open function, which supports the encoding argument (it does not in 2.x).
We can also use open from the codecs standard library module:
>>> import codecs
>>> f = codecs.open("test", "r", "utf-8")
>>> f.read()
u'Capit\xe1l\n\n'
Note, however, that this can cause problems when mixing read() and readline().
In the notation u'Capit\xe1n\n' (should be just 'Capit\xe1n\n' in 3.x, and must be in 3.0 and 3.1), the \xe1 represents just one character. \x is an escape sequence, indicating that e1 is in hexadecimal.
Writing Capit\xc3\xa1n into the file in a text editor means that it actually contains \xc3\xa1. Those are 8 bytes and the code reads them all. We can see this by displaying the result:
# Python 3.x - reading the file as bytes rather than text,
# to ensure we see the raw data
>>> open('f2', 'rb').read()
b'Capit\\xc3\\xa1n\n'
# Python 2.x
>>> open('f2').read()
'Capit\\xc3\\xa1n\n'
Instead, just input characters like á in the editor, which should then handle the conversion to UTF-8 and save it.
In 2.x, a string that actually contains these backslash-escape sequences can be decoded using the string_escape codec:
# Python 2.x
>>> print 'Capit\\xc3\\xa1n\n'.decode('string_escape')
Capitán
The result is a str that is encoded in UTF-8 where the accented character is represented by the two bytes that were written \\xc3\\xa1 in the original string. To get a unicode result, decode again with UTF-8.
In 3.x, the string_escape codec is replaced with unicode_escape, and it is strictly enforced that we can only encode from a str to bytes, and decode from bytes to str. unicode_escape needs to start with a bytes in order to process the escape sequences (the other way around, it adds them); and then it will treat the resulting \xc3 and \xa1 as character escapes rather than byte escapes. As a result, we have to do a bit more work:
# Python 3.x
>>> 'Capit\\xc3\\xa1n\n'.encode('ascii').decode('unicode_escape').encode('latin-1').decode('utf-8')
'Capitán\n'
Now all you need in Python3 is open(Filename, 'r', encoding='utf-8')
[Edit on 2016-02-10 for requested clarification]
Python3 added the encoding parameter to its open function. The following information about the open function is gathered from here: https://docs.python.org/3/library/functions.html#open
open(file, mode='r', buffering=-1,
encoding=None, errors=None, newline=None,
closefd=True, opener=None)
Encoding is the name of the encoding used to decode or encode the
file. This should only be used in text mode. The default encoding is
platform dependent (whatever locale.getpreferredencoding()
returns), but any text encoding supported by Python can be used.
See the codecs module for the list of supported encodings.
So by adding encoding='utf-8' as a parameter to the open function, the file reading and writing is all done as utf8 (which is also now the default encoding of everything done in Python.)
So, I've found a solution for what I'm looking for, which is:
print open('f2').read().decode('string-escape').decode("utf-8")
There are some unusual codecs that are useful here. This particular reading allows one to take UTF-8 representations from within Python, copy them into an ASCII file, and have them be read in to Unicode. Under the "string-escape" decode, the slashes won't be doubled.
This allows for the sort of round trip that I was imagining.
This works for reading a file with UTF-8 encoding in Python 3.2:
import codecs
f = codecs.open('file_name.txt', 'r', 'UTF-8')
for line in f:
print(line)
# -*- encoding: utf-8 -*-
# converting a unknown formatting file in utf-8
import codecs
import commands
file_location = "jumper.sub"
file_encoding = commands.getoutput('file -b --mime-encoding %s' % file_location)
file_stream = codecs.open(file_location, 'r', file_encoding)
file_output = codecs.open(file_location+"b", 'w', 'utf-8')
for l in file_stream:
file_output.write(l)
file_stream.close()
file_output.close()
Aside from codecs.open(), io.open() can be used in both 2.x and 3.x to read and write text files. Example:
import io
text = u'á'
encoding = 'utf8'
with io.open('data.txt', 'w', encoding=encoding, newline='\n') as fout:
fout.write(text)
with io.open('data.txt', 'r', encoding=encoding, newline='\n') as fin:
text2 = fin.read()
assert text == text2
To read in an Unicode string and then send to HTML, I did this:
fileline.decode("utf-8").encode('ascii', 'xmlcharrefreplace')
Useful for python powered http servers.
Well, your favorite text editor does not realize that \xc3\xa1 are supposed to be character literals, but it interprets them as text. That's why you get the double backslashes in the last line -- it's now a real backslash + xc3, etc. in your file.
If you want to read and write encoded files in Python, best use the codecs module.
Pasting text between the terminal and applications is difficult, because you don't know which program will interpret your text using which encoding. You could try the following:
>>> s = file("f1").read()
>>> print unicode(s, "Latin-1")
Capitán
Then paste this string into your editor and make sure that it stores it using Latin-1. Under the assumption that the clipboard does not garble the string, the round trip should work.
You have stumbled over the general problem with encodings: How can I tell in which encoding a file is?
Answer: You can't unless the file format provides for this. XML, for example, begins with:
<?xml encoding="utf-8"?>
This header was carefully chosen so that it can be read no matter the encoding. In your case, there is no such hint, hence neither your editor nor Python has any idea what is going on. Therefore, you must use the codecs module and use codecs.open(path,mode,encoding) which provides the missing bit in Python.
As for your editor, you must check if it offers some way to set the encoding of a file.
The point of UTF-8 is to be able to encode 21-bit characters (Unicode) as an 8-bit data stream (because that's the only thing all computers in the world can handle). But since most OSs predate the Unicode era, they don't have suitable tools to attach the encoding information to files on the hard disk.
The next issue is the representation in Python. This is explained perfectly in the comment by heikogerlach. You must understand that your console can only display ASCII. In order to display Unicode or anything >= charcode 128, it must use some means of escaping. In your editor, you must not type the escaped display string but what the string means (in this case, you must enter the umlaut and save the file).
That said, you can use the Python function eval() to turn an escaped string into a string:
>>> x = eval("'Capit\\xc3\\xa1n\\n'")
>>> x
'Capit\xc3\xa1n\n'
>>> x[5]
'\xc3'
>>> len(x[5])
1
As you can see, the string "\xc3" has been turned into a single character. This is now an 8-bit string, UTF-8 encoded. To get Unicode:
>>> x.decode('utf-8')
u'Capit\xe1n\n'
Gregg Lind asked: I think there are some pieces missing here: the file f2 contains: hex:
0000000: 4361 7069 745c 7863 335c 7861 316e Capit\xc3\xa1n
codecs.open('f2','rb', 'utf-8'), for example, reads them all in a separate chars (expected) Is there any way to write to a file in ASCII that would work?
Answer: That depends on what you mean. ASCII can't represent characters > 127. So you need some way to say "the next few characters mean something special" which is what the sequence "\x" does. It says: The next two characters are the code of a single character. "\u" does the same using four characters to encode Unicode up to 0xFFFF (65535).
So you can't directly write Unicode to ASCII (because ASCII simply doesn't contain the same characters). You can write it as string escapes (as in f2); in this case, the file can be represented as ASCII. Or you can write it as UTF-8, in which case, you need an 8-bit safe stream.
Your solution using decode('string-escape') does work, but you must be aware how much memory you use: Three times the amount of using codecs.open().
Remember that a file is just a sequence of bytes with 8 bits. Neither the bits nor the bytes have a meaning. It's you who says "65 means 'A'". Since \xc3\xa1 should become "à" but the computer has no means to know, you must tell it by specifying the encoding which was used when writing the file.
The \x.. sequence is something that's specific to Python. It's not a universal byte escape sequence.
How you actually enter in UTF-8-encoded non-ASCII depends on your OS and/or your editor. Here's how you do it in Windows. For OS X to enter a with an acute accent you can just hit option + E, then A, and almost all text editors in OS X support UTF-8.
You can also improve the original open() function to work with Unicode files by replacing it in place, using the partial function. The beauty of this solution is you don't need to change any old code. It's transparent.
import codecs
import functools
open = functools.partial(codecs.open, encoding='utf-8')
I was trying to parse iCal using Python 2.7.9:
from icalendar import Calendar
But I was getting:
Traceback (most recent call last):
File "ical.py", line 92, in parse
print "{}".format(e[attr])
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe1' in position 7: ordinal not in range(128)
and it was fixed with just:
print "{}".format(e[attr].encode("utf-8"))
(Now it can print liké á böss.)
I found the most simple approach by changing the default encoding of the whole script to be 'UTF-8':
import sys
reload(sys)
sys.setdefaultencoding('utf8')
any open, print or other statement will just use utf8.
Works at least for Python 2.7.9.
Thx goes to https://markhneedham.com/blog/2015/05/21/python-unicodeencodeerror-ascii-codec-cant-encode-character-uxfc-in-position-11-ordinal-not-in-range128/ (look at the end).

Categories