Python DataFrame : Split data in rows based on custom value? - python

I have a dataframe with column a. I need to get data after second _.
a
0 abc_def12_0520_123
1 def_ghij123_0120_456
raw_data = {'a': ['abc_def12_0520_123', 'def_ghij123_0120_456']}
df = pd.DataFrame(raw_data, columns = ['a'])
Output:
a b
0 abc_def12_0520_123 0520_123
1 def_ghij123_0120_456 0120_456
What I have tried:
df['b'] = df.number.str.replace('\D+', '')
I tried removing alphabets first, But its getting complex. Any suggestions

Here is how:
df['b'] = ['_'.join(s.split('_')[2:]) for s in df['a']]
print(df)
Output:
a b
0 abc_def12_0520_123 0520_123
1 def_ghij123_0120_456 0120_456
Explanation:
lst = ['_'.join(s.split('_')[2:]) for s in df['a']]
is the equivalent of:
lst = []
for s in df['a']:
a = s.split('_')[2:] # List all strings in list of substrings splitted '_' besides the first 2
lst.append('_'.join(a))

Try:
df['b'] = df['a'].str.split('_',2).str[-1]
a b
0 abc_def12_0520_123 0520_123
1 def_ghij123_0120_456 0120_456

Related

Matching value with column to retrieve index value

Please see example dataframe below:
I'm trying match values of columns X with column names and retrieve value from that matched column
so that:
A B C X result
1 2 3 B 2
5 6 7 A 5
8 9 1 C 1
Any ideas?
Here are a couple of methods:
# Apply Method:
df['result'] = df.apply(lambda x: df.loc[x.name, x['X']], axis=1)
# List comprehension Method:
df['result'] = [df.loc[i, x] for i, x in enumerate(df.X)]
# Pure Pandas Method:
df['result'] = (df.melt('X', ignore_index=False)
.loc[lambda x: x['X'].eq(x['variable']), 'value'])
Here I just build a dataframe from your example and call it df
dict = {
'A': (1,5,8),
'B': (2,6,9),
'C': (3,7,1),
'X': ('B','A','C')}
df = pd.DataFrame(dict)
You can extract the value from another column based on 'X' using the following code. There may be a better way to do this without having to convert first to list and retrieving the first element.
list(df.loc[df['X'] == 'B', 'B'])[0]
I'm going to create a column called 'result' and fill it with 'NA' and then replace the value based on your conditions. The loop below, extracts the value and uses .loc to replace it in your dataframe.
df['result'] = 'NA'
for idx, val in enumerate(list(vals)):
extracted = list(df.loc[df['X'] == val, val])[0]
df.loc[idx, 'result'] = extracted
Here it is as a function:
def search_replace(dataframe, search_col='X', new_col_name='result'):
dataframe[new_col_name] = 'NA'
for idx, val in enumerate(list(vals)):
extracted = list(dataframe.loc[dataframe[search_col] == val, val])[0]
dataframe.loc[idx, new_col_name] = extracted
return df
and the output
>>> search_replace(df)
A B C X result
0 1 2 3 B 2
1 5 6 7 A 5
2 8 9 1 C 1

How to get new pandas dataframe with certain columns and rows depending on list elements?

I have such a list:
l = ['A','B']
And such a dataframe df
Name x y
A 1 2
B 2 1
C 2 2
I now want to get a new dataframe where only the entries for Name and x which are included in l are kept.
new_df should look like this:
Name x
A 1
B 2
I was playing around with isin but did not solve this problem.
Use DataFrame.loc with Series.isin:
new_df = df.loc[df.Name.isin(l), ["Name", "x"]]
This should do it:
# assuming Name is the index
new_df = df[df.index.isin(l)]
# if you only want column x
new_df = df.loc[df.index.isin(l), "x"]
simple as that
l = ['A','B']
def make_empty(row):
print(row)
for idx, value in enumerate(row):
row[idx] = value if value in l else ''
return row
df_new = df[df['Name'].isin(l) | df['x'].isin(l)][['Name','x']]
df_new.apply(lambda row: make_empty(row)
Output:
Name x
0 A
1 B

Explode rows into columns [duplicate]

I have several columns named the same in a df. I need to rename them but the problem is that the df.rename method renames them all the same way. How I can rename the below blah(s) to blah1, blah4, blah5?
df = pd.DataFrame(np.arange(2*5).reshape(2,5))
df.columns = ['blah','blah2','blah3','blah','blah']
df
# blah blah2 blah3 blah blah
# 0 0 1 2 3 4
# 1 5 6 7 8 9
Here is what happens when using the df.rename method:
df.rename(columns={'blah':'blah1'})
# blah1 blah2 blah3 blah1 blah1
# 0 0 1 2 3 4
# 1 5 6 7 8 9
Starting with Pandas 0.19.0 pd.read_csv() has improved support for duplicate column names
So we can try to use the internal method:
In [137]: pd.io.parsers.ParserBase({'names':df.columns})._maybe_dedup_names(df.columns)
Out[137]: ['blah', 'blah2', 'blah3', 'blah.1', 'blah.2']
Since Pandas 1.3.0:
pd.io.parsers.base_parser.ParserBase({'names':df.columns, 'usecols':None})._maybe_dedup_names(df.columns)
This is the "magic" function:
def _maybe_dedup_names(self, names):
# see gh-7160 and gh-9424: this helps to provide
# immediate alleviation of the duplicate names
# issue and appears to be satisfactory to users,
# but ultimately, not needing to butcher the names
# would be nice!
if self.mangle_dupe_cols:
names = list(names) # so we can index
counts = {}
for i, col in enumerate(names):
cur_count = counts.get(col, 0)
if cur_count > 0:
names[i] = '%s.%d' % (col, cur_count)
counts[col] = cur_count + 1
return names
I was looking to find a solution within Pandas more than a general Python solution.
Column's get_loc() function returns a masked array if it finds duplicates with 'True' values pointing to the locations where duplicates are found. I then use the mask to assign new values into those locations. In my case, I know ahead of time how many dups I'm going to get and what I'm going to assign to them but it looks like df.columns.get_duplicates() would return a list of all dups and you can then use that list in conjunction with get_loc() if you need a more generic dup-weeding action
'''UPDATED AS-OF SEPT 2020'''
cols=pd.Series(df.columns)
for dup in df.columns[df.columns.duplicated(keep=False)]:
cols[df.columns.get_loc(dup)] = ([dup + '.' + str(d_idx)
if d_idx != 0
else dup
for d_idx in range(df.columns.get_loc(dup).sum())]
)
df.columns=cols
blah blah2 blah3 blah.1 blah.2
0 0 1 2 3 4
1 5 6 7 8 9
New Better Method (Update 03Dec2019)
This code below is better than above code. Copied from another answer below (#SatishSK):
#sample df with duplicate blah column
df=pd.DataFrame(np.arange(2*5).reshape(2,5))
df.columns=['blah','blah2','blah3','blah','blah']
df
# you just need the following 4 lines to rename duplicates
# df is the dataframe that you want to rename duplicated columns
cols=pd.Series(df.columns)
for dup in cols[cols.duplicated()].unique():
cols[cols[cols == dup].index.values.tolist()] = [dup + '.' + str(i) if i != 0 else dup for i in range(sum(cols == dup))]
# rename the columns with the cols list.
df.columns=cols
df
Output:
blah blah2 blah3 blah.1 blah.2
0 0 1 2 3 4
1 5 6 7 8 9
You could use this:
def df_column_uniquify(df):
df_columns = df.columns
new_columns = []
for item in df_columns:
counter = 0
newitem = item
while newitem in new_columns:
counter += 1
newitem = "{}_{}".format(item, counter)
new_columns.append(newitem)
df.columns = new_columns
return df
Then
import numpy as np
import pandas as pd
df=pd.DataFrame(np.arange(2*5).reshape(2,5))
df.columns=['blah','blah2','blah3','blah','blah']
so that df:
blah blah2 blah3 blah blah
0 0 1 2 3 4
1 5 6 7 8 9
then
df = df_column_uniquify(df)
so that df:
blah blah2 blah3 blah_1 blah_2
0 0 1 2 3 4
1 5 6 7 8 9
You could assign directly to the columns:
In [12]:
df.columns = ['blah','blah2','blah3','blah4','blah5']
df
Out[12]:
blah blah2 blah3 blah4 blah5
0 0 1 2 3 4
1 5 6 7 8 9
[2 rows x 5 columns]
If you want to dynamically just rename the duplicate columns then you could do something like the following (code taken from answer 2: Index of duplicates items in a python list):
In [25]:
import collections
dups = collections.defaultdict(list)
dup_indices=[]
col_list=list(df.columns)
for i, e in enumerate(list(df.columns)):
dups[e].append(i)
for k, v in sorted(dups.items()):
if len(v) >= 2:
dup_indices = v
for i in dup_indices:
col_list[i] = col_list[i] + ' ' + str(i)
col_list
Out[25]:
['blah 0', 'blah2', 'blah3', 'blah 3', 'blah 4']
You could then use this to assign back, you could also have a function to generate a unique name that is not present in the columns prior to renaming.
duplicated_idx = dataset.columns.duplicated()
duplicated = dataset.columns[duplicated_idx].unique()
rename_cols = []
i = 1
for col in dataset.columns:
if col in duplicated:
rename_cols.extend([col + '_' + str(i)])
else:
rename_cols.extend([col])
dataset.columns = rename_cols
Thank you #Lamakaha for the solution. Your idea gave me a chance to modify it and make it workable in all the cases.
I am using Python 3.7.3 version.
I tried your piece of code on my data set which had only one duplicated column i.e. two columns with same name. Unfortunately, the column names remained As-Is without being renamed. On top of that I got a warning that "get_duplicates() is deprecated and same will be removed in future version". I used duplicated() coupled with unique() in place of get_duplicates() which did not yield the expected result.
I have modified your piece of code little bit which is working for me now for my data set as well as in other general cases as well.
Here are the code runs with and without code modification on the example data set mentioned in the question along with results:
df=pd.DataFrame(np.arange(2*5).reshape(2,5))
df.columns=['blah','blah2','blah3','blah','blah']
df
cols=pd.Series(df.columns)
for dup in df.columns.get_duplicates():
cols[df.columns.get_loc(dup)]=[dup+'.'+str(d_idx) if d_idx!=0 else dup for d_idx in range(df.columns.get_loc(dup).sum())]
df.columns=cols
df
f:\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: FutureWarning:
'get_duplicates' is deprecated and will be removed in a future
release. You can use idx[idx.duplicated()].unique() instead
Output:
blah blah2 blah3 blah blah.1
0 0 1 2 3 4
1 5 6 7 8 9
Two of the three "blah"(s) are not renamed properly.
Modified code
df=pd.DataFrame(np.arange(2*5).reshape(2,5))
df.columns=['blah','blah2','blah3','blah','blah']
df
cols=pd.Series(df.columns)
for dup in cols[cols.duplicated()].unique():
cols[cols[cols == dup].index.values.tolist()] = [dup + '.' + str(i) if i != 0 else dup for i in range(sum(cols == dup))]
df.columns=cols
df
Output:
blah blah2 blah3 blah.1 blah.2
0 0 1 2 3 4
1 5 6 7 8 9
Here is a run of modified code on some another example:
cols = pd.Series(['X', 'Y', 'Z', 'A', 'B', 'C', 'A', 'A', 'L', 'M', 'A', 'Y', 'M'])
for dup in cols[cols.duplicated()].unique():
cols[cols[cols == dup].index.values.tolist()] = [dup + '_' + str(i) if i != 0 else dup for i in range(sum(cols == dup))]
cols
Output:
0 X
1 Y
2 Z
3 A
4 B
5 C
6 A_1
7 A_2
8 L
9 M
10 A_3
11 Y_1
12 M_1
dtype: object
Hope this helps anybody who is seeking answer to the aforementioned question.
Since the accepted answer (by Lamakaha) is not working for recent versions of pandas, and because the other suggestions looked a bit clumsy, I worked out my own solution:
def dedupIndex(idx, fmt=None, ignoreFirst=True):
# fmt: A string format that receives two arguments:
# name and a counter. By default: fmt='%s.%03d'
# ignoreFirst: Disable/enable postfixing of first element.
idx = pd.Series(idx)
duplicates = idx[idx.duplicated()].unique()
fmt = '%s.%03d' if fmt is None else fmt
for name in duplicates:
dups = idx==name
ret = [ fmt%(name,i) if (i!=0 or not ignoreFirst) else name
for i in range(dups.sum()) ]
idx.loc[dups] = ret
return pd.Index(idx)
Use the function as follows:
df.columns = dedupIndex(df.columns)
# Result: ['blah', 'blah2', 'blah3', 'blah.001', 'blah.002']
df.columns = dedupIndex(df.columns, fmt='%s #%d', ignoreFirst=False)
# Result: ['blah #0', 'blah2', 'blah3', 'blah #1', 'blah #2']
Here's a solution that also works for multi-indexes
# Take a df and rename duplicate columns by appending number suffixes
def rename_duplicates(df):
import copy
new_columns = df.columns.values
suffix = {key: 2 for key in set(new_columns)}
dup = pd.Series(new_columns).duplicated()
if type(df.columns) == pd.core.indexes.multi.MultiIndex:
# Need to be mutable, make it list instead of tuples
for i in range(len(new_columns)):
new_columns[i] = list(new_columns[i])
for ix, item in enumerate(new_columns):
item_orig = copy.copy(item)
if dup[ix]:
for level in range(len(new_columns[ix])):
new_columns[ix][level] = new_columns[ix][level] + f"_{suffix[tuple(item_orig)]}"
suffix[tuple(item_orig)] += 1
for i in range(len(new_columns)):
new_columns[i] = tuple(new_columns[i])
df.columns = pd.MultiIndex.from_tuples(new_columns)
# Not a MultiIndex
else:
for ix, item in enumerate(new_columns):
if dup[ix]:
new_columns[ix] = item + f"_{suffix[item]}"
suffix[item] += 1
df.columns = new_columns
I just wrote this code it uses a list comprehension to update all duplicated names.
df.columns = [x[1] if x[1] not in df.columns[:x[0]] else f"{x[1]}_{list(df.columns[:x[0]]).count(x[1])}" for x in enumerate(df.columns)]
Created a function with some tests so it should be drop in ready; this is a little different than Lamakaha's excellent solution since it renames the first appearance of a duplicate column:
from collections import defaultdict
from typing import Dict, List, Set
import pandas as pd
def rename_duplicate_columns(df: pd.DataFrame) -> pd.DataFrame:
"""Rename column headers to ensure no header names are duplicated.
Args:
df (pd.DataFrame): A dataframe with a single index of columns
Returns:
pd.DataFrame: The dataframe with headers renamed; inplace
"""
if not df.columns.has_duplicates:
return df
duplicates: Set[str] = set(df.columns[df.columns.duplicated()].tolist())
indexes: Dict[str, int] = defaultdict(lambda: 0)
new_cols: List[str] = []
for col in df.columns:
if col in duplicates:
indexes[col] += 1
new_cols.append(f"{col}.{indexes[col]}")
else:
new_cols.append(col)
df.columns = new_cols
return df
def test_rename_duplicate_columns():
df = pd.DataFrame(data=[[1, 2]], columns=["a", "b"])
assert rename_duplicate_columns(df).columns.tolist() == ["a", "b"]
df = pd.DataFrame(data=[[1, 2]], columns=["a", "a"])
assert rename_duplicate_columns(df).columns.tolist() == ["a.1", "a.2"]
df = pd.DataFrame(data=[[1, 2, 3]], columns=["a", "b", "a"])
assert rename_duplicate_columns(df).columns.tolist() == ["a.1", "b", "a.2"]
We can just assign each column a different name.
Suppoese duplicate column name is like = [a,b,c,d,d,c]
Then just create a list of name what you want to assign:
C = [a,b,c,d,D1,C1]
df.columns = c
This works for me.
This is my solution:
cols = [] # for tracking if we alread seen it before
new_cols = []
for col in df.columns:
cols.append(col)
count = cols.count(col)
if count > 1:
new_cols.append(f'{col}_{count}')
else:
new_cols.append(col)
df.columns = new_cols
Here's an elegant solution:
Isolate a dataframe with only the repeated columns (looks like it will be a series but it will be a dataframe if >1 column with that name):
df1 = df['blah']
For each "blah" column, give it a unique number
df1.columns = ['blah_' + str(int(x)) for x in range(len(df1.columns))]
Isolate a dataframe with all but the repeated columns:
df2 = df[[x for x in df.columns if x != 'blah']]
Merge back together on indices:
df3 = pd.merge(df1, df2, left_index=True, right_index=True)
Et voila:
blah_0 blah_1 blah_2 blah2 blah3
0 0 3 4 1 2
1 5 8 9 6 7

How can I remove string after last underscore in python dataframe?

I want to remove the all string after last underscore from the dataframe. If I my data in dataframe looks like.
AA_XX,
AAA_BB_XX,
AA_BB_XYX,
AA_A_B_YXX
I would like to get this result
AA,
AAA_BB,
AA_BB,
AA_A_B
You can do this simply using Series.str.split and Series.str.join:
In [2381]: df
Out[2381]:
col1
0 AA_XX
1 AAA_BB_XX
2 AA_BB_XYX
3 AA_A_B_YXX
In [2386]: df['col1'] = df['col1'].str.split('_').str[:-1].str.join('_')
In [2387]: df
Out[2387]:
col1
0 AA
1 AAA_BB
2 AA_BB
3 AA_A_B
pd.DataFrame({'col': ['AA_XX', 'AAA_BB_XX', 'AA_BB_XYX', 'AA_A_B_YXX']})['col'].apply(lambda r: '_'.join(r.split('_')[:-1]))
Explaination:
df = pd.DataFrame({'col': ['AA_XX', 'AAA_BB_XX', 'AA_BB_XYX', 'AA_A_B_YXX']})
Creates
col
0 AA_XX
1 AAA_BB_XX
2 AA_BB_XYX
3 AA_A_B_YXX
Use apply in order to loop through the column you want to edit.
I broke the string at _ and then joined all parts leaving the last part at _
df['col'] = df['col'].apply(lambda r: '_'.join(r.split('_')[:-1]))
print(df)
Results:
col
0 AA
1 AAA_BB
2 AA_BB
3 AA_A_B
If your dataset contains values like AA (values without underscore).
Change the lambda like this
df = pd.DataFrame({'col': ['AA_XX', 'AAA_BB_XX', 'AA_BB_XYX', 'AA_A_B_YXX', 'AA']})
df['col'] = df['col'].apply(lambda r: '_'.join(r.split('_')[:-1]) if len(r.split('_')) > 1 else r)
print(df)
Here is another way of going about it.
import pandas as pd
data = {'s': ['AA_XX', 'AAA_BB_XX', 'AA_BB_XYX', 'AA_A_B_YXX']}
df = pd.DataFrame(data)
def cond1(s):
temp_s = s.split('_')
temp_len = len(temp_s)
if len(temp_s) == 1:
return temp_s
else:
return temp_s[:len(temp_s)-1]
df['result'] = df['s'].apply(cond1)

Find column names when row element meets a criteria Pandas

This is a basic question. I've got a square array with the rows and columns summed up. Eg:
df = pd.DataFrame([[0,0,1,0], [0,0,1,0], [1,0,0,0], [0,1,0,0]], index = ["a","b","c","d"], columns = ["a","b","c","d"])
df["sumRows"] = df.sum(axis = 1)
df.loc["sumCols"] = df.sum()
This returns:
In [100]: df
Out[100]:
a b c d sumRows
a 0 0 1 0 1
b 0 0 1 0 1
c 1 0 0 0 1
d 0 1 0 0 1
sumCols 1 1 2 0 4
I need to find the column labels for the sumCols rows which matches 0. At the moment I am doing this:
[df.loc["sumCols"] == 0].index
But this return a strange index type object. All I want is a list of values that match this criteria i.e: ['d'] in this case.
There is two ways (the index object can be converted to an interable like a list).
Do that with the columns:
columns = df.columns[df.sum()==0]
columns = list(columns)
Or you can rotate the Dataframe and treat columns as rows:
list(df.T[df.T.sumCols == 0].index)
You can use a lambda expression to filter series and if you want a list instead of index as result, you can call .tolist() on the index object:
(df.loc['sumCols'] == 0)[lambda x: x].index.tolist()
# ['d']
Or:
df.loc['sumCols'][lambda x: x == 0].index.tolist()
# ['d']
Without explicitly creating the sumCols and if you want to check which column has sum of zero, you can do:
df.sum()[lambda x: x == 0].index.tolist()
# ['d']
Check rows:
df.sum(axis = 1)[lambda x: x == 0].index.tolist()
# []
Note: The lambda expression approach is as fast as the vectorized method for subsetting, functional style and can be written easily in a one-liner if you prefer.
Heres a simple method using query after transposing
df.T.query('sumCols == 0').index.tolist()

Categories