how to add list values to existing dictionary in python - python

Im trying to add each values of score to the dict names i,e score[0] to names[0] and so on...
names=[{'id': 1, 'name': 'laptop'}, {'id': 2, 'name': 'box'}, {'id': 3, 'name': 'printer'}]
score = [0.9894376397132874, 0.819094657897949, 0.78116521835327]
Output should be like this
names=[{'id': 1, 'name': 'laptop','score':0.98}, {'id': 2, 'name': 'box','score':0.81}, {'id': 3, 'name': 'printer','score':0.78}]
How to achieve this? thanks in advance

I'd do it with a comprehension like this:
>>> [{**d, 'score':s} for d, s in zip(names, score)]
[{'id': 1, 'name': 'laptop', 'score': 0.9894376397132874}, {'id': 2, 'name': 'box', 'score': 0.819094657897949}, {'id': 3, 'name': 'printer', 'score': 0.78116521835327}]

Without list comprehension.
for i, name in enumerate(names):
name['score'] = score[i]
print(names)

This is an easy-to-understand solution. From your example, I understand you don't want to round up the numbers but still want to cut them.
import math
def truncate(f, n):
return math.floor(f * 10 ** n) / 10 ** n
names=[{'id': 1, 'name': 'laptop'}, {'id': 2, 'name': 'box'}, {'id': 3, 'name': 'printer'}]
score = [0.9894376397132874, 0.819094657897949, 0.78116521835327]
n = len(score)
for i in range(n):
names[i]["score"] = truncate(score[i], 2)
print(names)
If you do want to round up the numbers:
names=[{'id': 1, 'name': 'laptop'}, {'id': 2, 'name': 'box'}, {'id': 3, 'name': 'printer'}]
score = [0.9894376397132874, 0.819094657897949, 0.78116521835327]
n = len(score)
for i in range(n):
names[i]["score"] = round(score[i], 2)
print(names)

Related

Concat 2 list of dictionaries with same id

I have 2 lists of dictionaries
a = [{'id':1, 'name':'John Doe'}, {'id':2, 'name':'Jane Doe'}, {'id':4, 'name':'Sample Doe'}]
b = [{'id':1, 'rating':9}, {'id':2, 'rating':7}, {'id':3, 'rating':8}]
Is there a way to concat b to a if the id b is on id a?
[{'id':1, 'name':'John Doe', 'rating':9}, {'id':2, 'name':'Jane Doe', 'rating':7}, {'id':4, 'name':'Sample Doe', 'rating':0}]
You could use the new merging dictionaries feature introduced in Python 3.9:
>>> a = [{'id': 1, 'name': 'John Doe'}, {'id': 2, 'name': 'Jane Doe'}, {'id': 4, 'name': 'Sample Doe'}]
>>> b = [{'id': 1, 'rating': 9}, {'id': 2, 'rating': 7}, {'id': 3, 'rating': 8}]
>>> b_id_to_d = {d['id']: d for d in b} # Create for O(1) lookup time by id.
>>> b_id_to_d
{1: {'id': 1, 'rating': 9}, 2: {'id': 2, 'rating': 7}, 3: {'id': 3, 'rating': 8}}
>>> c = [d | b_id_to_d.get(d['id'], {'rating': 0}) for d in a]
>>> c
[{'id': 1, 'name': 'John Doe', 'rating': 9}, {'id': 2, 'name': 'Jane Doe', 'rating': 7}, {'id': 4, 'name': 'Sample Doe', 'rating': 0}]
For older versions of Python you can try use dict unpacking instead:
>>> c = [{**d, **b_id_to_d.get(d['id'], {'rating': 0})} for d in a]
>>> c
[{'id': 1, 'name': 'John Doe', 'rating': 9}, {'id': 2, 'name': 'Jane Doe', 'rating': 7}, {'id': 4, 'name': 'Sample Doe', 'rating': 0}]
This should work:
[{**item1, **item2} for item1 in a for item2 in b if item1['id'] == item2['id']]
It iterates over the the two dict so it is O(n^2), but it is clear and concise.
{**item1, **item2} means adds the key value pairs from item1, then the key value pairs from item2.
Here, the results will be:
[{'id': 1, 'name': 'John Doe', 'rating': 9},
{'id': 2, 'name': 'Jane Doe', 'rating': 7}]
There is no direct solution to this problem.
But you can use following code:
a = [{'id':1, 'name':'John Doe'}, {'id':2, 'name':'Jane Doe'}]
b = [{'id':1, 'rating':9}, {'id':2, 'rating':7}, {'id':3, 'rating':8}]
key_pos_mapping = {}
for index,dict in enumerate(a):
key_pos_mapping[dict['id']] = index
for dict in b:
if( dict['id'] in key_pos_mapping.keys()):
dict.update(a[key_pos_mapping[dict['id']]])
else:
b.remove(dict)

itertools.permutations for a set of dicts

before I ask my question I wanted to let y'all know that I am a beginner coder and I appreciate all inputs so thanks in advance for your help.
Assume I have the following object:
set: [
{'id': 1
'type': a
},
{'id': 2
'type': a
},
{'id': 3
'type': b
},
{'id': 4
'type': b
},
{'id': 5
'type': a
}
]
How could I use itertools.permutations to calculate (and eventually make copies of) all combinations of the 'type' key? i.e. have a set in which ids 3 and 5 have type b, the rest a, a set in which ids 2 and 5 have b and the rest a, etc.
Furthermore, is it possible calculate combinations given certain conditions (for example, ids 1 and 2 have to always be type a for all combos)?
Thank you all in advance
Building off of what John already has, we can constrain the permutations as you described by removing the constrained types from the types list before calculating permutations. Then you could insert the types back into each permutation as defined by the constraint. The following example script would return the permutations with the constraint: "ids 1 and 2 have to always be type a for all combos". Feel free to remove the print statements.
from itertools import permutations
# these define which types must be located at the given id (index + 1)
constraints = [
{'id': 1, 'type': "a"},
{'id': 2, 'type': "a"}
]
# this is the list of types to permute
typeset = [
{'id': 1, 'type': "a"},
{'id': 2, 'type': "a"},
{'id': 3, 'type': "b"},
{'id': 4, 'type': "b"},
{'id': 5, 'type': "a"}
]
# we create lists of types to permute and remove the ones that are constrained
types_to_permute = [d["type"] for d in typeset]
constraint_types = [d["type"] for d in constraints]
for constraint_type in constraint_types:
types_to_permute.remove(constraint_type)
print(types_to_permute)
# we calculate the permutations for the unconstrained types
permutations = list(permutations(types_to_permute, r=None))
permutations = [list(permutation) for permutation in permutations]
print(permutations)
# we insert the constrained types in their given locations
for permutation in permutations:
for constraint in constraints:
permutation.insert(constraint["id"] - 1, constraint["type"])
print(permutations)
# we reconstruct the permutations in the orignal format (list of dictionaries)
final_permutations = []
for permutation in permutations:
final_permutation = []
for index, type_object in enumerate(permutation):
final_permutation.append({"id": index + 1, "type": type_object})
final_permutations.append(final_permutation)
print(final_permutations)
The final permutations would be:
[
[
{'id': 1, 'type': 'a'},
{'id': 2, 'type': 'a'},
{'id': 3, 'type': 'b'},
{'id': 4, 'type': 'b'},
{'id': 5, 'type': 'a'}],
[
{'id': 1, 'type': 'a'},
{'id': 2, 'type': 'a'},
{'id': 3, 'type': 'b'},
{'id': 4, 'type': 'a'},
{'id': 5, 'type': 'b'}],
[
{'id': 1, 'type': 'a'},
{'id': 2, 'type': 'a'},
{'id': 3, 'type': 'b'},
{'id': 4, 'type': 'b'},
{'id': 5, 'type': 'a'}],
[
{'id': 1, 'type': 'a'},
{'id': 2, 'type': 'a'},
{'id': 3, 'type': 'b'},
{'id': 4, 'type': 'a'},
{'id': 5, 'type': 'b'}],
[
{'id': 1, 'type': 'a'},
{'id': 2, 'type': 'a'},
{'id': 3, 'type': 'a'},
{'id': 4, 'type': 'b'},
{'id': 5, 'type': 'b'}],
[
{'id': 1, 'type': 'a'},
{'id': 2, 'type': 'a'},
{'id': 3, 'type': 'a'},
{'id': 4, 'type': 'b'},
{'id': 5, 'type': 'b'}]]
You could use a list comprehension to pull out all the "type" values, then you can either push them through a set (or just leave it in the list) to compute the permutations.
from itertools import permutations
typeset = [...] # what you named `set` in the question
types = [d["type"] for d in typeset]
# Optionally, push `types` through a `set` to get only the unique `type` values
# types = set(types)
combos = list(permutations(types, r=None))
In case you haven't looked, here's a link to the docs on permutations. r is entirely optional, but it would let you compute permutations of length r instead of len(types).
Alternatively, let's consider the case where you want the permutation of your List[Dict]:
from itertools import permutations
typeset = [...] # as before
types = range(len(typeset))
combos = list(permutations(types, r=None))
You can now retrieve all permutations of typeset based on the indices stored in combos. However, depending on the size of your typeset, I wouldn't recommend it as that could consume quite a bit of memory.

How to convert list of dict into two lists?

For example:
persons = [{'id': 1, 'name': 'john'}, {'id': 2, 'name': 'mary'}, {'id': 3, 'name': 'tom'}]
I want to get two lists from it:
ids = [1, 2, 3]
names = ['john', 'mary', 'tom']
What I did:
names = [d['name'] for d in persons]
ids = [d['id'] for d in persons]
Is there a better way to do it?
I'd stick with using list comprehension or use #Woodford technique
ids,name = [dcts['id'] for dcts in persons],[dcts['name'] for dcts in persons]
output
[1, 2, 3]
['john', 'mary', 'tom']
What you did works fine. Another way to handle this (not necessarily better, depending on your needs) is to store your data in a more efficient dictionary and pull the names/ids out of it when you need them:
>>> persons = [{'id': 1, 'name': 'john'}, {'id': 2, 'name': 'mary'}, {'id': 3, 'name': 'tom'}]
>>> p2 = {x['id']: x['name'] for x in persons}
>>> p2
{1: 'john', 2: 'mary', 3: 'tom'}
>>> list(p2.keys())
[1, 2, 3]
>>> list(p2.values())
['john', 'mary', 'tom']
You can do it with pandas in a vectorized fashion:
import pandas as pd
persons = [{'id': 1, 'name': 'john'}, {'id': 2, 'name': 'mary'}, {'id': 3, 'name': 'tom'}]
df = pd.DataFrame(persons)
id_list = df.id.tolist() #[1, 2, 3]
name_list = df.name.tolist() #['john', 'mary', 'tom']
An alternative, inspired by this question, is
ids, names = zip(*map(lambda x: x.values(), persons))
that return tuples. If you need lists
ids, names = map(list, zip(*map(lambda x: x.values(), persons)))
It is a little bit slower on my laptop using python3.9 than the accepted answer but it might be useful.
It sounds like you're trying to iterate through the values of your list while unpacking your dictionaries:
persons = [{'id': 1, 'name': 'john'}, {'id': 2, 'name': 'mary'}, {'id': 3, 'name': 'tom'}]
for x in persons:
id, name = x.values()
ids.append(id)
names.append(name)

Combining multiple lists of dictionaries

I have several lists of dictionaries, where each dictionary contains a unique id value that is common among all lists. I'd like to combine them into a single list of dicts, where each dict is joined on that id value.
list1 = [{'id': 1, 'value': 20}, {'id': 2, 'value': 21}]
list2 = [{'id': 1, 'sum': 10}, {'id': 2, 'sum': 11}]
list3 = [{'id': 1, 'total': 30}, {'id': 2, 'total': 32}]
desired_output = [{'id': 1, 'value': 20, 'sum': 10, 'total': 30}, {'id': 2, 'value': 21, 'sum': 11, 'total': 32}]
I tried doing something like the answer found at https://stackoverflow.com/a/42018660/7564393, but I'm getting very confused since I have more than 2 lists. Should I try using a defaultdict approach? More importantly, I am NOT always going to know the other values, only that the id value is present in all dicts.
You can use itertools.groupby():
from itertools import groupby
list1 = [{'id': 1, 'value': 20}, {'id': 2, 'value': 21}]
list2 = [{'id': 1, 'sum': 10}, {'id': 2, 'sum': 11}]
list3 = [{'id': 1, 'total': 30}, {'id': 2, 'total': 32}]
desired_output = []
for _, values in groupby(sorted([*list1, *list2, *list3], key=lambda x: x['id']), key=lambda x: x['id']):
temp = {}
for d in values:
temp.update(d)
desired_output.append(temp)
Result:
[{'id': 1, 'value': 20, 'sum': 10, 'total': 30}, {'id': 2, 'value': 21, 'sum': 11, 'total': 32}]
list1 = [{'id': 1, 'value': 20}, {'id': 2, 'value': 21}]
list2 = [{'id': 1, 'sum': 10}, {'id': 2, 'sum': 11}]
list3 = [{'id': 1, 'total': 30}, {'id': 2, 'total': 32}]
# combine all lists
d = {} # id -> dict
for l in [list1, list2, list3]:
for list_d in l:
if 'id' not in list_d: continue
id = list_d['id']
if id not in d:
d[id] = list_d
else:
d[id].update(list_d)
# dicts with same id are grouped together since id is used as key
res = [v for v in d.values()]
print(res)
You can first build a dict of dicts, then turn it into a list:
from itertools import chain
from collections import defaultdict
list1 = [{'id': 1, 'value': 20}, {'id': 2, 'value': 21}]
list2 = [{'id': 1, 'sum': 10}, {'id': 2, 'sum': 11}]
list3 = [{'id': 1, 'total': 30}, {'id': 2, 'total': 32}]
dict_out = defaultdict(dict)
for d in chain(list1, list2, list3):
dict_out[d['id']].update(d)
out = list(dict_out.values())
print(out)
# [{'id': 1, 'value': 20, 'sum': 10, 'total': 30}, {'id': 2, 'value': 21, 'sum': 11, 'total': 32}]
itertools.chain allows you to iterate on all the dicts contained in the 3 lists. We build a dict dict_out having the id as key, and the corresponding dict being built as value. This way, we can easily update the already built part with the small dict of our current iteration.
Here, I have presented a functional approach without using itertools (which is excellent in rapid development work).
This solution will work for any number of lists as the function takes variable number of arguments and also let user to specify the type of return output (list/dict).
By default it returns list as you want that otherwise it returns dictionary in case if you pass as_list = False.
I preferred dictionary to solve this because its fast and search complexity is also less.
Just have a look at the below get_packed_list() function.
get_packed_list()
def get_packed_list(*dicts_lists, as_list=True):
output = {}
for dicts_list in dicts_lists:
for dictionary in dicts_list:
_id = dictionary.pop("id") # id() is in-built function so preferred _id
if _id not in output:
# Create new id
output[_id] = {"id": _id}
for key in dictionary:
output[_id][key] = dictionary[key]
dictionary["id"] = _id # push back the 'id' after work (call by reference mechanism)
if as_list:
return [output[key] for key in output]
return output # dictionary
Test
list1 = [{'id': 1, 'value': 20}, {'id': 2, 'value': 21}]
list2 = [{'id': 1, 'sum': 10}, {'id': 2, 'sum': 11}]
list3 = [{'id': 1, 'total': 30}, {'id': 2, 'total': 32}]
output = get_packed_list(list1, list2, list3)
print(output)
# [{'id': 1, 'value': 20, 'sum': 10, 'total': 30}, {'id': 2, 'value': 21, 'sum': 11, 'total': 32}]
output = get_packed_list(list1, list2, list3, as_list=False)
print(output)
# {1: {'id': 1, 'value': 20, 'sum': 10, 'total': 30}, 2: {'id': 2, 'value': 21, 'sum': 11, 'total': 32}}
list1 = [{'id': 1, 'value': 20}, {'id': 2, 'value': 21}]
list2 = [{'id': 1, 'sum': 10}, {'id': 2, 'sum': 11}]
list3 = [{'id': 1, 'total': 30}, {'id': 2, 'total': 32}]
print(list1+list2+list3)
list1 = [{'id': 1, 'value': 20}, {'id': 2, 'value': 21}]
list2 = [{'id': 1, 'sum': 10}, {'id': 2, 'sum': 11}]
list3 = [{'id': 1, 'total': 30}, {'id': 2, 'total': 32}]
result = []
for i in range(0,len(list1)):
final_dict = dict(list(list1[i].items()) + list(list2[i].items()) + list(list3[i].items()))
result.append(final_dict)
print(result)
output : [{'id': 1, 'value': 20, 'sum': 10, 'total': 30}, {'id': 2, 'value': 21, 'sum': 11, 'total': 32}]

Merging arrays of versioned dictionaries

Given the following two arrays of dictionaries, how can I merge them such that the resulting array of dictionaries contains only those dictionaries whose version is greatest?
data1 = [{'id': 1, 'name': u'Oneeee', 'version': 2},
{'id': 2, 'name': u'Two', 'version': 1},
{'id': 3, 'name': u'Three', 'version': 2},
{'id': 4, 'name': u'Four', 'version': 1},
{'id': 5, 'name': u'Five', 'version': 1}]
data2 = [{'id': 1, 'name': u'One', 'version': 1},
{'id': 2, 'name': u'Two', 'version': 1},
{'id': 3, 'name': u'Threeee', 'version': 3},
{'id': 6, 'name': u'Six', 'version': 2}]
The merged result should look like this:
data3 = [{'id': 1, 'name': u'Oneeee', 'version': 2},
{'id': 2, 'name': u'Two', 'version': 1},
{'id': 3, 'name': u'Threeee', 'version': 3},
{'id': 4, 'name': u'Four', 'version': 1},
{'id': 5, 'name': u'Five', 'version': 1},
{'id': 6, 'name': u'Six', 'version': 2}]
If you want to get the highest version according to the dictionaries ids then you can use itertools.groupby method like this:
sdata = sorted(data1 + data2, key=lambda x:x['id'])
res = []
for _,v in itertools.groupby(sdata, key=lambda x:x['id']):
v = list(v)
if len(v) > 1: # happened that the same id was in both datas
# append the one with higher version
res.append(v[0] if v[0]['version'] > v[1]['version'] else v[1])
else: # the id was in one of the two data
res.append(v[0])
The solution is not a one liner but I think is simple enough (once you understand groupby() which is not trivial).
This will result in res containing this list:
[{'id': 1, 'name': u'Oneeee', 'version': 2},
{'id': 2, 'name': u'Two', 'version': 1},
{'id': 3, 'name': u'Threeee', 'version': 3},
{'id': 4, 'name': u'Four', 'version': 1},
{'id': 5, 'name': u'Five', 'version': 1},
{'id': 6, 'name': u'Six', 'version': 2}]
I think is possible to shrink the solution even more, but it could be quite hard to understand.
Hope this helps!
A fairly straightforward procedural solution, where we build a dictionary keyed by item id, and then replace the items:
indexed_data = { item['id']: item for item in data1 }
# or, pre-Python2.7:
# indexed_data = dict((item['id'], item) for item in data1)
for item in data2:
if indexed_data.get(item['id'], {'version': float('-inf')})['version'] < item['version']:
indexed_data[item['id']] = item
data3 = [item for (_, item) in sorted(indexed_data.items())]
The same thing, but using a more functional approach:
sorted_items = sorted(data1 + data2, key=lambda item: (item['id'], item['version']))
merged = { item['id']: item for item in sorted_items }
# or, pre-Python2.7:
# merged = dict((item['id'], item) for item in sorted_items )
data3 = [item for (_, item) in sorted(merged.items())]

Categories