Exporting a model with tf.map_fn - python

I have some tensorflow model which I need to export in a saved model. Below is the simplified code of the model, which I am trying to export.
import tensorflow as tf
def foo(x):
return tf.reduce_sum(x)
inputs = tf.keras.layers.Input(shape=(128,128,3))
y = tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding='SAME')(inputs)
y = tf.keras.layers.ReLU()(y)
outputs = tf.map_fn(foo, y, dtype=(tf.float32))
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
model.save('./export', save_format='tf')
but while exporting the model I am getting the following error.
/Users/bruce/.venv/bin/python /Users/bruce/test_project/mymodel/test.py
Traceback (most recent call last):
File "/Users/bruce/test_project/mymodel/test.py", line 12, in <module>
outputs = tf.map_fn(foo, y, dtype=(tf.float32))
File "/Users/bruce/.venv/lib/python3.6/site-packages/tensorflow_core/python/ops/map_fn.py", line 228, in map_fn
for elem in elems_flat]
File "/Users/bruce/.venv/lib/python3.6/site-packages/tensorflow_core/python/ops/map_fn.py", line 228, in <listcomp>
for elem in elems_flat]
File "/Users/bruce/.venv/lib/python3.6/site-packages/tensorflow_core/python/ops/tensor_array_ops.py", line 1078, in __init__
name=name)
File "/Users/bruce/.venv/lib/python3.6/site-packages/tensorflow_core/python/ops/tensor_array_ops.py", line 716, in __init__
self._tensor_array = [None for _ in range(size)]
TypeError: 'Tensor' object cannot be interpreted as an integer
I cannot remove the part tf.map_fn which is doing some essential processing which I need in the saved model while deploying it.

You need to use a custom layer:
class MyMapLayer(tf.keras.layers.Layer):
def __init__(*args, **kwargs)
super().__init__(*args, **kwargs)
def foo(self, x):
return tf.reduce_sum(x)
def call(self, inputs, **kwargs):
return tf.map_fn(self.foo, inputs, dtype=(tf.float32))
Then, in your model:
inputs = tf.keras.layers.Input(shape=(128,128,3))
y = tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding='SAME')(inputs)
y = tf.keras.layers.ReLU()(y)
outputs = MyMapLayer()(y)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)

Related

Keras load_model is causing 'TypeError: Keyword argument not understood:' when using custom layer in model

I am building a model with a custom attention layer as implemented in Tensorflow's nmt tutorial. I used the same layer code with a few changes which I found as suggestions in order to solve my problem.
The problem is that I cannot load the model from file after I save it when I have this custom layer. This is the layer class:
class BahdanauAttention(layers.Layer):
def __init__(self, output_dim=30, **kwargs):
super(BahdanauAttention, self).__init__(**kwargs)
self.W1 = tf.keras.layers.Dense(output_dim)
self.W2 = tf.keras.layers.Dense(output_dim)
self.V = tf.keras.layers.Dense(1)
def call(self, inputs, **kwargs):
query = inputs[0]
values = inputs[1]
query_with_time_axis = tf.expand_dims(query, 1)
score = self.V(tf.nn.tanh(
self.W1(query_with_time_axis) + self.W2(values)))
attention_weights = tf.nn.softmax(score, axis=1)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
def get_config(self):
config = super(BahdanauAttention, self).get_config()
config.update({
'W1': self.W1,
'W2': self.W2,
'V': self.V,
})
return config
I am saving the model with keras' ModelCheckpoint callback:
path = os.path.join(self.dir, 'model_{}'.format(self.timestamp))
callbacks.append(ModelCheckpoint(path, save_best_only=True, monitor='val_loss', mode='min'))
Later, I am loading the model like so:
self.model = load_model(path, custom_objects={'BahdanauAttention': BahdanauAttention, 'custom_loss': self.custom_loss})
This is the error message I am getting:
raise TypeError(error_message, kwarg)
TypeError: ('Keyword argument not understood:', 'W1')
and full traceback:
Traceback (most recent call last):
File "models/lstm.py", line 49, in load_model
'dollar_mape_loss': self.dollar_mape_loss})
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/saving/save.py", line 187, in load_model
return saved_model_load.load(filepath, compile, options)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 121, in load
path, options=options, loader_cls=KerasObjectLoader)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/saved_model/load.py", line 633, in load_internal
ckpt_options)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 194, in __init__
super(KerasObjectLoader, self).__init__(*args, **kwargs)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/saved_model/load.py", line 130, in __init__
self._load_all()
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 215, in _load_all
self._layer_nodes = self._load_layers()
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 315, in _load_layers
layers[node_id] = self._load_layer(proto.user_object, node_id)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 341, in _load_layer
obj, setter = self._revive_from_config(proto.identifier, metadata, node_id)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 359, in _revive_from_config
self._revive_layer_from_config(metadata, node_id))
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 417, in _revive_layer_from_config
generic_utils.serialize_keras_class_and_config(class_name, config))
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/layers/serialization.py", line 175, in deserialize
printable_module_name='layer')
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/utils/generic_utils.py", line 360, in deserialize_keras_object
return cls.from_config(cls_config)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py", line 697, in from_config
return cls(**config)
File "models/lstm.py", line 310, in __init__
super(BahdanauAttention, self).__init__(**kwargs)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/training/tracking/base.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py", line 318, in __init__
generic_utils.validate_kwargs(kwargs, allowed_kwargs)
File "venv/m/lib/python3.7/site-packages/tensorflow/python/keras/utils/generic_utils.py", line 778, in validate_kwargs
raise TypeError(error_message, kwarg)
TypeError: ('Keyword argument not understood:', 'W1')
Similar questions suggest that the code is using different versions of Keras and TensorFlow. I am only using TensorFlow's Keras. These are the imports
from tensorflow.keras.models import load_model
from tensorflow.keras.callbacks import EarlyStopping, CSVLogger, ModelCheckpoint
from tensorflow.keras import layers
Following keras' documentation on custom layers, They recommend that any weights should not be initialized in __init__() but in build(). This way the weights do not need to be added to the config and the error will be resolved.
This is the updated custom layer class:
class BahdanauAttention(tf.keras.layers.Layer):
def __init__(self, units=30, **kwargs):
super(BahdanauAttention, self).__init__(**kwargs)
self.units = units
def build(self, input_shape):
self.W1 = tf.keras.layers.Dense(self.units)
self.W2 = tf.keras.layers.Dense(self.units)
self.V = tf.keras.layers.Dense(1)
def call(self, inputs, **kwargs):
query = inputs[0]
values = inputs[1]
query_with_time_axis = tf.expand_dims(query, 1)
score = self.V(tf.nn.tanh(
self.W1(query_with_time_axis) + self.W2(values)))
attention_weights = tf.nn.softmax(score, axis=1)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
def get_config(self):
config = super(BahdanauAttention, self).get_config()
config.update({
'units': self.units,
})
return config
I also have this problem.
I've tried a lot of methods and found that this method can be used.
first,build model
model = TextAttBiRNN(maxlen, max_features, embedding_dims).get_model()
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
second, load weights:
I solved the problem with this:
model_file = "/content/drive/My Drive/dga/output_data/model_lstm_att_test_v6.h5"
model.load_weights(model_file)
then,we will find the modle can be use.
in this way,I avoided the previous questions.

Loading pre trained Attention model in keras custom_objects

I am loading a pretrained attention model in Keras using load_model() .
My Attention class is defined as below.
# attention class
from keras.engine.topology import Layer
from keras import initializers, regularizers, constraints
from keras import backend as K
class Attention(Layer):
def __init__(self, step_dim, w_regularizer=None, b_regularizer=None,
w_constraint=None, b_constraint=None, bias=True, **kwargs):
self.supports_masking = True
# weight initializer
self.init = initializers.get('glorot_uniform')
self.w_regularizer = regularizers.get(w_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.w_constraint = constraints.get(w_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
self.step_dim = step_dim
self.features_dim = 0
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) == 3
self.w = self.add_weight(shape=(input_shape[-1],),
initializer=self.init, name='{}_w'.format(self.name),
regularizer=self.w_regularizer,
constraint=self.w_constraint)
self.features_dim = input_shape[-1]
if self.bias:
self.b = self.add_weight(shape=(input_shape[1],),
initializer='zero', name='{}_b'.format(self.name),
regularizer=self.b_regularizer,
constraint=self.b_constraint)
else:
self.b = None
self.built = True
def compute_mask(self, input, input_mask=None):
return None
def call(self, x, mask=None):
features_dim = self.features_dim
step_dim = self.step_dim
eij = K.reshape(K.dot(K.reshape(x, (-1, features_dim)),
K.reshape(self.w, (features_dim, 1))), (-1, step_dim))
if self.bias:
eij += self.b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
a = K.expand_dims(a)
weighted_input = x * a
return K.sum(weighted_input, axis=1)
def compute_output_shape(self, input_shape):
return input_shape[0], self.features_dim
def get_config(self):
config = {
'step_dim': self.step_dim,
'w_regularizer': self.w_regularizer,
'w_constraint': self.w_constraint,
'b_regularizer': self.b_regularizer,
'b_constraint': self.b_constraint,
'bias': self.bias
}
base_config = super(Attention, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
The model is called in test_loadmod.py as
from attention import Attention
from keras.models import load_model
model = load_model('attention_wo_cval.h5', custom_objects={'Attention': Attention})
print(model)
The custom Attention model is made available using load_model() and custom_objects is passed into it as described here.
However it doesnt seem to find the step_dim attribute. Throws up the below error. Any idea how to get this going ? Thanks for your time and help.
Error while loading
TypeError: __init__() missing 1 required positional argument: 'step_dim'
File "test_loadmod.py", line 4, in <module>
model = load_model('attention_wo_cval.h5', custom_objects={'Attention': Attention})
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\engine\saving.py", line 492, in load_wrapper
return load_function(*args, **kwargs)
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\engine\saving.py", line 584, in load_model
model = _deserialize_model(h5dict, custom_objects, compile)
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\engine\saving.py", line 274, in _deserialize_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\engine\saving.py", line 627, in model_from_config
return deserialize(config, custom_objects=custom_objects)
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\layers\__init__.py", line 165, in deserialize
return deserialize_keras_object(config,
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\utils\generic_utils.py", line 144, in deserialize_keras_object
return cls.from_config(
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\engine\network.py", line 1056, in from_config
process_layer(layer_data)
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\engine\network.py", line 1041, in process_layer
layer = deserialize_layer(layer_data,
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\layers\__init__.py", line 165, in deserialize
return deserialize_keras_object(config,
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\utils\generic_utils.py", line 149, in deserialize_keras_object
return cls.from_config(config['config'])
File "C:\Users\RV\AppData\Local\Programs\Python\Python38\lib\site-packages\keras\engine\base_layer.py", line 1179, in from_config
return cls(**config)
TypeError: __init__() missing 1 required positional argument: 'step_dim'
The get_config method is the right solution, but you have to pay attention to save the model when this method is updated.
So:
First add the get_config method
Save the model (with this method)
Load the method

Tensorflow model layer connection failed, and can not use shap.DeepExplainer

I am trying to apply shap.deepexplainer to explain the model output.
My model class is as follows:
class MyModel(tf.keras.Model):
def __init__(self,
input_dim,
emb_dim=128,
alpha_hidden_dim_size=128,
beta_hidden_dim_size=128,
keep_prob_emb=0.25,
keep_prob_context=0.25,
num_class=1):
super(MyModel, self).__init__()
self.embedding = layers.Dense(emb_dim,
use_bias=False,
input_shape=(input_dim, ))
self.emb_drp = layers.Dropout(keep_prob_emb)
self.enroll = layers.Dense(emb_dim, activation='tanh')
self.gru_alpha = layers.Bidirectional(
layers.LSTM(alpha_hidden_dim_size, return_sequences=True))
self.gru_beta = layers.Bidirectional(
layers.LSTM(beta_hidden_dim_size, return_sequences=True))
self.alpha = layers.Dense(1)
self.beta = layers.Dense(emb_dim, activation='tanh')
self.context_drp = layers.Dropout(keep_prob_context)
self.out = layers.Dense(num_class)
def call(self, visits, enroll, lengths, **kwargs):
max_len = lengths[tf.argmax(lengths)]
visits = visits[:, :max_len]
emb = self.embedding(visits)
emb = self.emb_drp(emb, training=kwargs.get('training', False))
enroll = self.enroll(enroll)
mask = tf.sequence_mask(lengths)
h_a = self.gru_alpha(emb, mask=mask)
h_b = self.gru_beta(emb, mask=mask)
preAlpha = self.alpha(h_a)
preAlpha = tf.keras.backend.squeeze(preAlpha, axis=2)
mask_norm = (1 - tf.cast(mask, tf.float32)) * NEG_INF
alpha = tf.nn.softmax(preAlpha + mask_norm, axis=1)
beta = self.beta(h_b)
c_t = tf.math.reduce_sum(alpha[:, :, None] * beta * emb, axis=1)
c_t = layers.add([c_t, enroll])
c_t = self.context_drp(c_t, training=kwargs.get('training', False))
preY = self.out(c_t)
return preY, alpha, beta
When I applied my model as:
model = MyModel(**flags)
And the model is successfully loaded:
print(model)
<__main__.MyModel object at 0x7f51db414400>
Then I am trying to use the
background = X.loc[10:20]
e = shap.DeepExplainer((model.layers[0].input, model.layers[-1].output), background)
but then it gives me the error:
AttributeError: Layer dense is not connected, no input to return.
Traceback (most recent call last): File
"/home/ANANT/codes/test/env/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py",line
1808, in input' is not connected, no input to return.')
And also the model.layers[-1].output can not give proper output neither:
AttributeError: Layer dense_4 has no inbound nodes. Traceback (most
recent call last): File
"/home/ANANT/test/env/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py",
line 1827, in output raise AttributeError('Layer ' + self.name + ' has
no inbound nodes.')
My package versions are: keras==2.3.1, tensorflow==1.15.3, shap==0.35.0
I stuck at this question for a few days, tried shap.KernelExplainer as well, and it gives me a different error:
shap.KernelExplainer(model, df_fis, link="logit")
And the error is as follows:
TypeError: call() missing 2 required positional arguments: 'enroll'
and 'lengths' Traceback (most recent call last): File
"/home/ANANT/test/env/lib/python3.6/site-packages/shap/explainers/kernel.py",
line 97, in __init__model_null = match_model_to_data(self.model,
self.data) File
"/home/ANANT/test/env/lib/python3.6/site-packages/shap/common.py",
line 89, in match_model_to_dataout_val = model.f(data.data) File
"/home/ANANT/test/env/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py",
line 968, in __call__outputs = self.call(cast_inputs, *args, **kwargs)
Please help, thanks in advance!
I think you missed the softmax part
Pytorch version
self.softmax = LogSoftmax(dim=1)
Keras version
layers.Dense(num_classes, activation="softmax")
Add the above line at the end of your __init__ method, see if it works

Getting errors with pytorch grouped convolutions

I am trying to use Pytorch grouped Conv2d operator on very large images (10k x 10k pixels). I am getting an RuntimeError: offset is too big error when trying to apply a grouped convolution in the network. Anyone knows how to circumvent this?
Code for reproducibility:
import torch
import torch.nn as nn
import pdb
def create_img(size, batch_size=1, channels=3):
return torch.FloatTensor(batch_size, channels, size, size).uniform_(-1, 1)
class TestModel(nn.Module):
def __init__(self):
super(TestModel, self).__init__()
self.conv1 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(3,3), stride=(1,1), groups=64, bias=False)
def forward(self, x):
out = self.conv1(x)
return out
if __name__ == '__main__':
model = TestModel()
data = create_img(5002, channels=64)
out = model(data)
pdb.set_trace()
and the error:
Traceback (most recent call last):
File "test.py", line 26, in <module>
out = model(data)
File ".../pipenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
result = self.forward(*input, **kwargs)
File "test.py", line 17, in forward
out = self.conv1(x)
File ".../pipenv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
result = self.forward(*input, **kwargs)
File ".../pipenv/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 320, in forward
self.padding, self.dilation, self.groups)
RuntimeError: offset is too big
I am using Python 3.6 and Pytorch 1.0.0. Strange thing is, this works with smaller images. Change the images size from 5002 to 502, for example.
Solved by updating Pytorch to 1.3.0

Error when using the class_weight parameter in the fit function in Keras

I wanted to test my network on a toy data set - a few examples with two imbalanced classes (0 and 1). Unfortunately, there are problems when using the class_weight parameter to improve the balance. It looks like I forget something.
import tensorflow as tf
from tensorflow.python.keras.layers import Dense, Dropout
from tensorflow.python.keras.applications.xception import Xception, preprocess_input
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.optimizers import Adam
# parsing images from TFRecords
def parse_function(proto):
example = {'image_raw': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64)}
parsed_example = tf.parse_single_example(proto, example)
image = tf.decode_raw(parsed_example['image_raw'], tf.uint8)
image = tf.reshape(image, [HEIGHT, WIDTH, DEPTH])
image = preprocess_input(tf.cast(image, tf.float32))
return image, parsed_example['label']
def get_data(filepath, schuffle_size=32, batch_size=8, prefetch=1, repeat=None, num_parallel_calls=1):
dataset = tf.data.TFRecordDataset(filepath)
if schuffle_size != 0:
dataset = dataset.shuffle(schuffle_size)
dataset = dataset.repeat(repeat)
dataset = dataset.map(parse_function, num_parallel_calls=num_parallel_calls)
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(prefetch)
iterator = dataset.make_one_shot_iterator()
return iterator
def build_model(number_of_neurons_in_dense_layer, dropout, learning_rate):
base_model = Xception(weights='imagenet', include_top=False, pooling='avg', input_shape=(HEIGHT, WIDTH, 3))
for layer in base_model.layers:
layer.trainable = True
x = base_model.output
x = Dropout(dropout)(x)
x = Dense(number_of_neurons_in_dense_layer, activation='relu')(x)
x = Dropout(dropout)(x)
logits = Dense(NUMBER_OF_CLASSES, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=logits)
model.compile(optimizer=Adam(lr=learning_rate), loss='sparse_categorical_crossentropy', metrics=['categorical_accuracy'])
return model
global NUMBER_OF_CLASSES, HEIGHT, WIDTH, DEPTH
NUMBER_OF_CLASSES = 2
...
CLASS_WEIGHTS = {
0: 1,
1: 7
}
model = build_model(64, 0.4, 0.001)
train = get_data(..., 8, 2, num_parallel_calls=8)
val = get_data(...., 0, 4, num_parallel_calls=8)
model.fit(train, validation_data=val, epochs=3,steps_per_epoch=8//2,
validation_steps=8//4, shuffle=False,
class_weight=CLASS_WEIGHTS)
I am getting the following errors
Original exception was:
Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py", line 51, in _wrapfunc
return getattr(obj, method)(*args, **kwds)
AttributeError: 'Tensor' object has no attribute 'reshape'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/usr/model.py", line 147, in main
class_weight=CLASS_WEIGHTS)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py", line 776, in fit
shuffle=shuffle)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py", line 2432, in _standardize_user_data
feed_sample_weight_modes)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py", line 2431, in <listcomp>
for (ref, sw, cw, mode) in zip(y, sample_weights, class_weights,
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training_utils.py", line 758, in standardize_weights
y_classes = np.reshape(y, y.shape[0])
File "/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py", line 279, in reshape
return _wrapfunc(a, 'reshape', newshape, order=order)
File "/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py", line 61, in _wrapfunc
return _wrapit(obj, method, *args, **kwds)
File "/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py", line 41, in _wrapit
result = getattr(asarray(obj), method)(*args, **kwds)
TypeError: __index__ returned non-int (type NoneType)
Without the class_weight parameter, the fit function works correctly.
Just for a future reference:
I ran into this error to and was able to resolve it by passing an array instead of a dictionary.
e.g.
CLASS_WEIGHTS = np.array([1,7])
instead of:
CLASS_WEIGHTS = {
0: 1,
1: 7
}

Categories