ValueError: Ciphertext length must be equal to key size - python

I know this question was asked a lot, but I still don't really understand how could I debug my code. I was googling this question for over 3 days now, but I just can't find a suitable answer for my code. I want to add the encrypted message with an input but every time I run my code it just gives the
Traceback (most recent call last):
File "decryption.py", line 27, in <module>
label=None
File "/opt/anaconda3/lib/python3.7/site-packages/cryptography/hazmat/backends/openssl/rsa.py", line 357, in decrypt
raise ValueError("Ciphertext length must be equal to key size.")
ValueError: Ciphertext length must be equal to key size.
error. I know its with the label, but I just can't find the answer
Here is my code for the decryption:
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
with open("private_key.pem", "rb") as key_file:
private_key = serialization.load_pem_private_key(
key_file.read(),
password=None,
backend=default_backend()
)
with open("public_key.pem", "rb") as key_file:
public_key = serialization.load_pem_public_key(
key_file.read(),
backend=default_backend()
)
textInput = str(input(">>> "))
encrypted = textInput.encode()
original_message = private_key.decrypt(
encrypted,
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)
original_decoded_message = original_message.decode("utf-8")
print(original_decoded_message)
And for the encryption:
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.primitives import serialization
private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
backend=default_backend()
)
public_key = private_key.public_key()
pem = private_key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.PKCS8,
encryption_algorithm=serialization.NoEncryption()
)
with open('private_key.pem', 'wb') as f:
f.write(pem)
pem = public_key.public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo
)
with open('public_key.pem', 'wb') as f:
f.write(pem)
raw_message = str(input(">>> "))
message = raw_message.encode("utf-8")
encrypted = public_key.encrypt(
message,
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)
print(encrypted)
Im really new to Asymmetric encryption / decryption.

This minor modification in the decryption part of your code made it work for me:
textInput = str(input(">>> "))
# encrypted = textInput.encode() #this is incorrect!
encrypted = eval(textInput)
This is what I get:
For the encryption part:
>>> test message
b'>xB)\xf1\xc5I\xd6\xce\xfb\xcf\x83\xe2\xc5\x8f\xcfl\xb9\x0f\xa2\x13\xa5\xe1\x03\xf7p\xb3\x9c\xeb\r\xc1"\xf2\x17\x8b\xea\t\xed\xb2xG\xb7\r\xa9\xf8\x03eBD\xdd9>\xbe\xd1O\xe2\x9f\xbb\xf9\xff5\x96l\xea\x17FI\x8d\x02\x05\xea\x1dpM\xbb\x04J\xfc\x0c\\\xfe\x15\x07\xaf \x9e\xc2\xf9M\xa4\x1d$\xc3\x99my\xb6\xc5\xad\x97\xd06\xd2\x08\xd3\xe2\xc8H\xca\xd8\xfd{\xe6\xc6\xa3\x18\xeb\xe6\xcc\xc5\x9a\xc8*\xbb\xc1\x8c\x80,\x1f\r#\x9b\x9d\xc5\x91I\xa8\xc01y\xbc\xa73\xd3\x19;\xef\x8a\xfb\xc2\xc4\x9e\xbe\x8f\xeb\x1d\x12\xbd\xe4<\xa0\xbb\x8d\xef\xee\xa3\x89E\x07"m\x1d\xb0\xf3\xd2:y\xd9\xbd\xef\xdf\xc9\xbb\x1b\xd5\x03\x91\xa4l\x8bS\x9e\x80\x14\x90\x18\xc4\x9e\\?\x8eF\x05\xa1H\x9e:\x0c\x96\x8e\xb3E3\x90\xa2\xa1\xd9\x88\xa0<X\x7f\rIP\x00\xbf\xf6\x15\xfb9tW\x17\x9f\xca\x95\xf6|\xd7\x90\xbcp\xe5\xb5,V\x1b\xe9\x90\xf6\x87 v=6'
Now for the decryption part, I use the output:
>>> b'>xB)\xf1\xc5I\xd6\xce\xfb\xcf\x83\xe2\xc5\x8f\xcfl\xb9\x0f\xa2\x13\xa5\xe1\x03\xf7p\xb3\x9c\xeb\r\xc1"\xf2\x17\x8b\xea\t\xed\xb2xG\xb7\r\xa9\xf8\x03eBD\xdd9>\xbe\xd1O\xe2\x9f\xbb\xf9\xff5\x96l\xea\x17FI\x8d\x02\x05\xea\x1dpM\xbb\x04J\xfc\x0c\\\xfe\x15\x07\xaf \x9e\xc2\xf9M\xa4\x1d$\xc3\x99my\xb6\xc5\xad\x97\xd06\xd2\x08\xd3\xe2\xc8H\xca\xd8\xfd{\xe6\xc6\xa3\x18\xeb\xe6\xcc\xc5\x9a\xc8*\xbb\xc1\x8c\x80,\x1f\r#\x9b\x9d\xc5\x91I\xa8\xc01y\xbc\xa73\xd3\x19;\xef\x8a\xfb\xc2\xc4\x9e\xbe\x8f\xeb\x1d\x12\xbd\xe4<\xa0\xbb\x8d\xef\xee\xa3\x89E\x07"m\x1d\xb0\xf3\xd2:y\xd9\xbd\xef\xdf\xc9\xbb\x1b\xd5\x03\x91\xa4l\x8bS\x9e\x80\x14\x90\x18\xc4\x9e\\?\x8eF\x05\xa1H\x9e:\x0c\x96\x8e\xb3E3\x90\xa2\xa1\xd9\x88\xa0<X\x7f\rIP\x00\xbf\xf6\x15\xfb9tW\x17\x9f\xca\x95\xf6|\xd7\x90\xbcp\xe5\xb5,V\x1b\xe9\x90\xf6\x87 v=6'
test message
The problem with your original code is that you are writing the representation of a bytes string as a unicode string (when using print(encrypted)), then encoding it into a bytes object in the decrypt code, and then passing it to the decrypt function. Encoding this string will not yield the original bytes string encrypted.
This example illustrates the problem:
>>> x = bytes(bytearray.fromhex('f3'))
>>> x #A bytes string, similar to encrypt
b'\xf3'
>>> print(x)
b'\xf3'
>>> len(x)
1
>>> str(x) #this is what print(x) writes to stdout
"b'\\xf3'"
>>> print(str(x))
b'\xf3'
>>> len(str(x)) #Note that the lengths are different!
7
>>> x == str(x)
False
>>> str(x).encode() #what you were trying to do
b"b'\\xf3'"
>>> x == str(x).encode()
False
>>> eval(str(x)) #what gets the desired result
b'\xf3'
>>> x == eval(str(x))
True
The thing is that the print function prints the representation of the object rather than the object itself. Essentially, it does this by getting a printable value of inherently unprintable objects by using __repr__ or __str__ methods of that object.
This is the documentation for __str__:
Called by str(object) and the built-in functions format() and print()
to compute the “informal” or nicely printable string representation of
an object. The return value must be a string object.
.
.
The default
implementation defined by the built-in type object calls
object.__repr__().
and __repr__:
Called by the repr() built-in function to compute the “official”
string representation of an object. If at all possible, this should
look like a valid Python expression that could be used to recreate an
object
This "official" representation returned by __repr__ is what allowed me to use the eval function in the decrypt code to solve the problem.
TL;DR:
copying the output of print(encrypted) copies the informal, human readable value returned by encrypted.__str__() or the "official" representation returned by encrypted.__repr__(), which are both in a human readable encoding such as utf-8. They cannot be encoded back(by using utf-8 encoding) to create the original bytes string that they represent.
It is also worth looking into this question from a stackoverflow user, facing the same issue. The answer gives a way to actually encode this representation back into a bytes object if you want. It's worth looking into this because eval should be avoided, it is very unsafe. For that method to work, you would have to remove the leading b' and trailing ' from the string textInput before encoding it.
My final recommendation would be to pass the entire object encrypted between the two programs by either using files with the pickle module, or some form of socket programming. Best to stay away from using print and input to pass data like this between programs to avoid encoding issues.

Related

Python 3 XChaCha20 test vectors work for encryption but decryption stage fails

I use the following vectors to test XChaCha20 encryption with AEAD by Poly1305 in python:
Vectors:
https://datatracker.ietf.org/doc/html/draft-arciszewski-xchacha-03#appendix-A.3
pycryptodome:
https://pycryptodome.readthedocs.io/en/latest/src/cipher/chacha20_poly1305.html
The drafts use HEX for the test vectors, if you really need to check me convert using this service:
https://www.asciitohex.com/
import json
from base64 import b64encode
from base64 import b64decode
from Crypto.Cipher import ChaCha20_Poly1305
from Crypto.Random import get_random_bytes
#nonce_xchacha20 = get_random_bytes(24)
nonce_xchacha20 = b64decode("QEFCQ0RFRkdISUpLTE1OT1BRUlNUVVZX")
#header = b"header"
header = b64decode("UFFSU8DBwsPExcbH")
plaintext = b"Ladies and Gentlemen of the class of '99: If I could offer you only one tip for the future, sunscreen would be it."
#key = get_random_bytes(32)
key = b64decode("gIGCg4SFhoeIiYqLjI2Oj5CRkpOUlZaXmJmam5ydnp8=")
cipher = ChaCha20_Poly1305.new(key=key, nonce=nonce_xchacha20)
cipher.update(header)
ciphertext, tag = cipher.encrypt_and_digest(plaintext)
jk = [ 'nonce', 'header', 'ciphertext', 'tag' ]
jv = [ b64encode(x).decode('utf-8') for x in (cipher.nonce, header, ciphertext, tag) ]
result = json.dumps(dict(zip(jk, jv)))
print(result)
# We assume that the key was securely shared beforehand
try:
b64 = json.loads(result)
jk = [ 'nonce', 'header', 'ciphertext', 'tag' ]
jv = {k:b64decode(b64[k]) for k in jk}
cipher = ChaCha20_Poly1305.new(key=key, nonce=jv['nonce'])
cipher.update(jv['header'])
plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
print("The message was: " + plaintext)
except (ValueError, KeyError):
print("Incorrect decryption")
print("sanity check if key values are the same: ")
print(b64encode(jv['nonce']))
print(b64encode(jv['header']))
print(b64encode(jv['ciphertext']))
print(b64encode(jv['tag']))
Why does my decryption stage fail if the test vectors encrypt correctly according to IETF-draft?
{"nonce": "AAAAAFBRUlNUVVZX", "header": "UFFSU8DBwsPExcbH", "ciphertext": "vW0XnT6D1DuVdleUk8DpOVcqFwAlK/rMvtKQLCE5bLtzHH8bC0qmRAvzqC9O2n45rmTGcIxUwhbLlrcuEhO0Ui+Mm6QNtdlFsRtpuYLBu54/P6wrw2lIj3ayODVl0//5IflmTJdjfal2iBL2FcaLE7Uu", "tag": "wIdZJMHHmHlH3q/YeArPSQ=="}
Incorrect decryption
sanity check if key values are the same:
b'AAAAAFBRUlNUVVZX'
b'UFFSU8DBwsPExcbH'
b'vW0XnT6D1DuVdleUk8DpOVcqFwAlK/rMvtKQLCE5bLtzHH8bC0qmRAvzqC9O2n45rmTGcIxUwhbLlrcuEhO0Ui+Mm6QNtdlFsRtpuYLBu54/P6wrw2lIj3ayODVl0//5IflmTJdjfal2iBL2FcaLE7Uu'
b'wIdZJMHHmHlH3q/YeArPSQ=='
When I convert the byte arrays back to base64, they still match the JSON output.
So reading my key values from JSON for decryption was done correctly.
Where is the mistake? I literally use a code example from the site offering pycryptodome and encryption was done correctly. It should decrypt just fine.
The decryption will be done correctly if you replace in the line
jv = [ b64encode(x).decode('utf-8') for x in (cipher.nonce, header, ciphertext, tag) ]
the expression cipher.nonce with nonce_xchacha20. The bug causes an incorrect nonce to be supplied in the JSON.
It seems that cipher.nonce can only be used to determine a randomly generated nonce (a random nonce is generated if no explicit nonce is specified when instantiating the cipher, s. here).
A second (trivial) change is in the line
print("The message was: " + plaintext)
necessary. Here a UTF8 decoding must be performed, i.e. plaintext must be replaced by plaintext.decode('utf8').
In your first post, the AADs were also set incorrectly. But this has been corrected in the meantime.
With these two changes, the code, especially the decryption, works on my machine.

RSA decryption without using the key

I am still new in learning RSA, so sorry for stupid question.
I am given an RSA public key and a ciphertext.
I know how RSA works so i already calculate from the N , the p and q.
Now without brute force to find the private key, I should find a way to descrypt it to plaintext and
my problem is following: When i print my cyphertext, it looks like this:
b'\xdcM\xbf\xe6\x91\x1c\xf7\x1a\xbfVM\x10\x9eu\x97\x9f\x86yx~y\xab\xac\xab\xf6\xc0G\xb5\x84\r\x89\x0b\x83\x8a\x84\x88Z28(\xd4\x99S\xd8\xf4\xed\r\xc8\xec\x00k\x0cx(\xde\x01\x0f\'\x08w\xb9_\x96X\xcap\xe0\xc5\x9b\x1c/\x0f\xabW\xb4+d6\x00Y\xcf\x04\xf3\x916$W\xa8&\xc1\x94\x90\xae\xb0\xceF,\x86.\x81Oo\x00\x00\xbc\x1fBE\x95u\xaa\xe1\xf5a\x97\r\xa5\n4\x05\x182\xd8\xb5\xfd,M\xdd\xc9\xdf\xe7\xcce\x9b\xf5\x075\x8d/\xd6\xc4R\xf3{=\xd8\xb7\x8c\xd5\x0fjo\xec\xd6\x15\x03\x1b=\x9fL\x032\xee\\x8b[\xf0\x7f-\xb6X\xaa\xba\x15\xf7AsT\xdck\x14\xf3?\xfc\x82\q\xaf\xea=\xc4\x07\x03\x82\xc0\xfb1b\x89-\x81\\xda\xbf\x94]\xac#\xf2y0\x7f\x83/\xb5\xe6i\x7f\xe4\xbb\n\xad\xdd\xbb\xbf\xa5\xdc\x08\xb6\x82\xb4\xf4g\x16\x82\x0c~\x13\x8b-\\xf0n\x99\x93\x00\xa9\xc0{Y\xb9\x93\xfeV\x1dI\x8f\xa5\xab\x17\xf7\xd4HfP\xdc\xa6\x10^b\x9cy\xc5\x81Z+\xa2H\xbe=\xdf\x9c\xd7\x9d\x809\xaag\xce\xa2\xe8\x96\xc6\xc1\xc7\x90\xdd\xe6%.-z3\\x8e?\xaf\xbbx\xb4\xe9;\xba\x87\x01:R\x1d\x889M}\xf9\xf2\xacx\xe1\xea\xbfG\xb8\x8fr:\x89\xef\x85\x9e\xbd\x10J\x1a\xbd\xe5t\x0f\x8f8\xba6&\nU\x04\xc7\xc3\xef7t)\xd8m:>\xf9\xa4#\xc7\x10l\xeas\r\x83\xfb\x96fXi\xa7=R\xff\x7f\xbf0%\xa7\x88c\x0e\x9fp{\xaa\xcb\xcen|T\x131Z\xb3X\xecB\xbf+\xf9\xa76S8\xf7\x10\xe9)\x04\xd8e\xe6\xb5 \x1f\xe8\xce\xd8\x87"\xb6\xe4\x8c\xfd\xec~//\x8b\xc1\x9b\x8a\xe7\xcd7\xc3\xf24\x01\xf7\xcf\xa9Q\x93X\x06\x8e[\xba96\xca\x17b\xaf\xe2\x8ea\x10[M%\xe0\x06h#\rN\xb6\xe7%`\xae\xfbW\xc3\x0e\x05i\xbd\xed\x96l/U\x01\xe4\xbbPJ\x96\xad\xb6\x0b\x87*\x0ct\xc2$'
How am I supposed to using the rsa with these base64 bytes? I tried to decode it with base64 and it gives me :
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xdc in position 0: invalid continuation byte.
Also convert it doesnt give me a readable string. Can someone help me with this and give me a clue ?
def decrypt(fname):
with open(fname+'.enc', 'rb') as f:
ct = f.read()
with open(pkfile, 'rb') as f:
pk = RSA.importKey(f.read(), 'PEM')
p,q = fermat(pk) //using fermat factorization to get p and q
b = ct.decode("utf-8")
bytes.decode is not for encryption, it just converts from bytes to a string object. See https://docs.python.org/3/library/stdtypes.html#bytes for more info.
You have to calculate the inverse of e mod n, then you can use:
private_key = RSA.construct((n, e, d))
dsmg = private_key.decrypt(msg)

Python - How can I avoid b"\n" being written in a text file with "wb" causing a line break?

Here is my case:
# Small hashing script example
import hashlib
import os
def original_pass(Password):
salt = os.urandom(64)
hashed = hashlib.pbkdf2_hmac("sha512", Password.encode(), salt, 300000, dklen = 124)
with open("Hash.txt", "wb") as file:
file.write(salt + b"\n" + hashed)
file.close()
def check_pass(New_Pass):
with open("Hash.txt", "rb") as file:
f = file.readlines()
print (f)
check_hash = hashlib.pbkdf2_hmac("sha512", New_Pass.encode(), f[0].strip(b"\n"), 300000, dklen = 124)
file.close()
if check_hash == f[1]:
return True
else:
return False
original_pass("Password")
print (check_pass("Password"))
My problem is that occasionally the hash will contain characters such as \n. E.G. b"x004\n4\no5". This line gets split into b"x004\n", b"4\no5". This causes errors when I try to read things like the salt, since it may be split up into multiple pieces. Is there any way of avoiding it being read like that, or just stopping it from writing it that way?
To address the duplicate remark
I am dealing specifically with byte strings here and not regular strings. Both are a distinct data type, moreso in python 3 (the version I'm using) as seen here: What is the difference between a string and a byte string?. This distinction means that certain string methods such as .encode() don't work on byte strings. Thus there is a clear difference in the data types I'm dealing with and how they are manipulated, etc...
Based on #Blckknght comment, code using knowledge of fixed length salt:
import hashlib
import os
SALT_LEN = 64
def hash(password,salt):
return hashlib.pbkdf2_hmac('sha512',password.encode(),salt,300000,dklen=124)
def original_pass(password):
salt = os.urandom(SALT_LEN)
hashed = hash(password,salt)
with open('hash.bin','wb') as file:
file.write(salt + hashed)
def check_pass(password):
with open('hash.bin','rb') as file:
data = file.read()
salt,hashed = data[:SALT_LEN],data[SALT_LEN:]
check_hash = hash(password,salt)
return check_hash == hashed
original_pass('Password')
print(check_pass('Password'))

TypeError while using pycrypto library in python 3.3.2

I have just started using PyCrypto package for python.
I am trying out the following code under python 3.3.2:
Code Reference : AES Encryption using python
#!/usr/bin/env python
from Crypto.Cipher import AES
import base64
import os
# the block size for the cipher object; must be 16, 24, or 32 for AES
BLOCK_SIZE = 32
# the character used for padding--with a block cipher such as AES, the value
# you encrypt must be a multiple of BLOCK_SIZE in length. This character is
# used to ensure that your value is always a multiple of BLOCK_SIZE
PADDING = '{'
# one-liner to sufficiently pad the text to be encrypted
pad = lambda s: s + (BLOCK_SIZE - len(s) % BLOCK_SIZE) * PADDING
# one-liners to encrypt/encode and decrypt/decode a string
# encrypt with AES, encode with base64
EncodeAES = lambda c, s: base64.b64encode(c.encrypt(pad(s)))
DecodeAES = lambda c, e: c.decrypt(base64.b64decode(e)).rstrip(PADDING)
# generate a random secret key
secret = os.urandom(BLOCK_SIZE)
# create a cipher object using the random secret
cipher = AES.new(secret)
# encode a string
encoded = EncodeAES(cipher, 'password')
print ('Encrypted string:', encoded)
# decode the encoded string
decoded = DecodeAES(cipher, encoded)
print ('Decrypted string:', decoded)
The error that I run into is :
Traceback (most recent call last):
File "C:/Users/Hassan Javaid/Documents/Python files/crypto_example.py", line 34, in <module>
decoded = DecodeAES(cipher, encoded)
File "C:/Users/Hassan Javaid/Documents/Python files/crypto_example.py", line 21, in <lambda>
DecodeAES = lambda c, e: c.decrypt(base64.b64decode(e)).rstrip(PADDING)
TypeError: Type str doesn't support the buffer API
Any pointers to why I am getting the same ?
This is because cipher.encrypt(plain_text) in python 3.x returns a byte string.
The example given in the page uses python 2.x in which case cipher.encrypt(plain_text) returned a regular string.
You can verify the same by using the type function:
In python 3.x:
>>> type(cipher.encrypt("ABCDEFGHIJKLMNOP"))
<class 'bytes'>
In python 2.x
>>> type(cipher.encrypt("ABCDEFGHIJKLMNOP"))
<class 'str'>
The error you are getting is because you are trying to use the rstrip method on a byte string.
Use:
DecodeAES = lambda c, e: c.decrypt(base64.b64decode(e)).decode("UTF-8").rstrip(PADDING)
This will decode the bytestring to regular string before using the rstrip method on it.
Another way to look at it is that the method rstrip accepts as argument a byte string if invoked on a byte string, or a regular string if invoked on a regular string.
Since decrypt of an AES object returns a byte string, DELIMITER should be defined as a byte string too:
PADDING = b'{'

Django urlsafe base64 decoding with decryption

I'm writing my own captcha system for user registration. So I need to create a suitable URL for receiving generated captcha pictures. Generation looks like this:
_cipher = cipher.new(settings.CAPTCHA_SECRET_KEY, cipher.MODE_ECB)
_encrypt_block = lambda block: _cipher.encrypt(block + ' ' * (_cipher.block_size - len(block) % _cipher.block_size))
#...
a = (self.rightnum, self.animal_type[1])
serialized = pickle.dumps(a)
encrypted = _encrypt_block(serialized)
safe_url = urlsafe_b64encode(encrypted)
But then I'm trying to receive this key via GET request in the view function, it fails on urlsafe_b64decode() with "character mapping must return integer, None or unicode" error:
def captcha(request):
try:
key = request.REQUEST['key']
decoded = urlsafe_b64decode(key)
decrypted = _decrypt_block(decoded)
deserialized = pickle.loads(decrypted)
return HttpResponse(deserialized)
except KeyError:
return HttpResponseBadRequest()
I found that on the output of urlsafe_b64encode there is an str, but GET request returns a unicode object (nevertheless it's a right string). Str() didn't help (it returns decode error deep inside django), and if I use key.repr it works, but decryptor doesn't work with an error "Input strings must be a multiple of 16 in length".
Inside a test file all this construction works perfectly, I can't understand, what's wrong?
The problem is that b64decode quite explicitly can only take bytes (a string), not unicode.
>>> import base64
>>> test = "Hi, I'm a string"
>>> enc = base64.urlsafe_b64encode(test)
>>> enc
'SGksIEknbSBhIHN0cmluZw=='
>>> uenc = unicode(enc)
>>> base64.urlsafe_b64decode(enc)
"Hi, I'm a string"
>>> base64.urlsafe_b64decode(uenc)
Traceback (most recent call last):
...
TypeError: character mapping must return integer, None or unicode
Since you know that your data only contains ASCII data (that's what base64encode will return), it should be safe to encode your unicode code points as ASCII or UTF-8 bytes, those bytes will be equivalent to the ASCII you expected.
>>> base64.urlsafe_b64decode(uenc.encode("ascii"))
"Hi, I'm a string"
I solved the problem!
deserialized = pickle.loads(captcha_decrypt(urlsafe_b64decode(key.encode('ascii'))))
return HttpResponse(str(deserialized))
But still I don't understand, why it didn't work first time.

Categories