How to modify elements of a Keras Tensor object - python

I am building a Convolution Neural Network in Keras that receives batch of images with dimensions (None, 256, 256, 1) and the output would be batches with size (None, 256, 256, 3). Now after the final layer output I want to add a layer that assigns values to some of the pixels in output layer based on a value condition on inputs. Here is what I tried:
The Function
def SetBoundaries(ins):
xi = ins[0]
xo = ins[1]
bnds = np.where(xi[:, :, :, 0] == 0)
bnds_s, bnds_i, bnds_j = bnds[0], bnds[1], bnds[2]
xo[bnds_s, bnds_i, bnds_j, 0] = 0
xo[bnds_s, bnds_i, bnds_j, 1] = 0
xo[bnds_s, bnds_i, bnds_j, 2] = 0
return xo
Keras model
def conv_res(inputs):
x0 = inputs
...
xc = conv_layer(xc, kernel_size=3, stride=1,
num_filters=3, name="Final_Conv")
# apply assignment function
xc = Lambda(SetBoundaries, name="assign_boundaries")([x0, xc])
return xc
Finally, the model is built using
def build_model(inputs):
xres = int(inputs.shape[1])
yres = int(inputs.shape[2])
cres = int(inputs.shape[3])
inputs = Input((xres, yres, cres))
outputs = UNet.conv_res(inputs)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
However, when I run I get the error:
NotImplementedError: Cannot convert a symbolic Tensor (assign_boundaries/Equal:0) to a numpy array.
Everything works fine without the Lambda function. I understand the issue is assigning value to Tensor object but how can I achieve what I am after?
Thanks

np.where works with NumPy arrays, but the output from your model is a Tensorflow tensor. Try using tf.where, which is the same thing but for tf.Tensors.

I managed to make it work by changing the function to:
def SetBoundaries(ins):
xi = ins[0]
xo = ins[1]
xin = tf.broadcast_to(xi, tf.shape(xo))
mask = K.cast(tf.not_equal(xin, 0), dtype="float32")
xf = layers.Multiply()([mask, xo])
return xf

Related

How to use a batch_size of Keras tensor at the model building time?

I want to use an external program as a custom operation.
Because automatic gradient would be not available, I wrote the code to provide gradients by using numerical methods. However, because it have to compute the batch_size number of derivatives,
I wrote it to get batch_size from the shape of x.
Following is an example using numpy function as an external program
f(x) = np.sum(x**2)
(In fact, for this simple numpy function, no loop over batch_size is necessary. But, it is written for general external function.)
#tf.custom_gradient
def custom_op(x):
# without using numpy, use external function
# assume x shape = (batch_size,3)
batch_size= x.shape[0]
input_length = x.shape[1]
# assert input_length==3
yout=[] # shape should be (batch_size,1)
gout=[] # shape should be (batch_size,3)
for i in range(batch_size):
inputs = x[i,:] # shape (3,)
y = np.sum(inputs**2) # shape (3,)
yout.append(y) # shape (1,)
# compute differences
dy = []
for j in range(len(inputs)):
delta = np.zeros_like(inputs)
delta[j] = np.abs(inputs[j])*0.001
yplus = np.sum((inputs + delta)**2) # change only j-th input
grad = (yplus-y)/delta[j] #shape (1,)
dy.append(grad)
gout.append(dy)
yout = tf.convert_to_tensor(yout,dtype='float32') # (batch_size,)
yout = tf.reshape(yout,shape=(batch_size,1)) # (batch_size,1)
gout = tf.convert_to_tensor(gout,dtype='float32') # (batch_size,)
gout = tf.reshape(gout,shape=(batch_size,input_length)) # (batch_size,1)
def grad(upstream):
return upstream*gout
return yout, grad
x = tf.Variable([[1.,2.,3.],[2.,3.,4.]],dtype='float32')
with tf.GradientTape() as tape:
y = custom_op(x)
tape.gradient(y,x)
and found it works.
However, when I tried to use it in the keras model , for example,
def construct_model():
inputs = tf.keras.Input(shape=(3,)) #input array
x = tf.keras.layers.Dense(1)(inputs)
outputs = custom_op(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
optimizer = 'adam'
model.compile(loss='mean_squared_error',
optimizer=optimizer,
metrics=['mean_absolute_error', 'mean_squared_error'])
return model
model = construct_model()
it gives errors
because kerasTensor "inputs" does not have specified batch_size.
I tried to specify batch_size as "tf.keras.Input(shape=(3,),batch_size=2)".
However, it also raises errors because of the use of kerasTensor.
How should I change the custom_op to be compatible with keras?

Feature importance in neural networks with multiple differently shaped inputs in pytorch and captum (classification)

I have developed a model with three inputs types. Image, categorical data and numerical data. For Image data I've used ResNet50 for the other two I develop my own network.
class MulticlassClassification(nn.Module):
def __init__(self, cat_size, num_col, output_size, layers, p=0.4):
super(MulticlassClassification, self).__init__()
# IMAGE: ResNet
self.cnn = models.resnet50(pretrained = True)
for param in self.cnn.parameters():
param.requires_grad = False
n_inputs = self.cnn.fc.in_features
self.cnn.fc = nn.Sequential(
nn.Linear(n_inputs, 250),
nn.ReLU(),
nn.Dropout(p),
nn.Linear(250, output_size),
nn.LogSoftmax(dim=1)
)
# TABULAR
self.all_embeddings = nn.ModuleList(
[nn.Embedding(categories, size) for categories, size in cat_size]
)
self.embedding_dropout = nn.Dropout(p)
self.batch_norm_num = nn.BatchNorm1d(num_col)
all_layers = []
num_cat_col = sum(e.embedding_dim for e in self.all_embeddings)
input_size = num_cat_col + num_col
for i in layers:
all_layers.append(nn.Linear(input_size, i))
all_layers.append(nn.ReLU(inplace=True))
all_layers.append(nn.BatchNorm1d(i))
all_layers.append(nn.Dropout(p))
input_size = i
all_layers.append(nn.Linear(layers[-1], output_size))
self.layers = nn.Sequential(*all_layers)
#combine
self.combine_fc = nn.Linear(output_size * 2, output_size)
def forward(self, image, x_categorical, x_numerical):
embeddings = []
for i, embedding in enumerate(self.all_embeddings):
print(x_categorical[:,i])
embeddings.append(embedding(x_categorical[:,i]))
x = torch.cat(embeddings, 1)
x = self.embedding_dropout(x)
x_numerical = self.batch_norm_num(x_numerical)
x = torch.cat([x, x_numerical], 1)
x = self.layers(x)
# img
x2 = self.cnn(image)
# combine
x3 = torch.cat([x, x2], 1)
x3 = F.relu(self.combine_fc(x3))
return x
Now after successful training I would like to calculate integrated gradients by using the captum library.
from captum.attr import IntegratedGradients
ig = IntegratedGradients(model)
testiter = iter(testloader)
img, stack_cat, stack_num, target = next(testiter)
attributions_ig = ig.attribute(inputs=(img.cuda(), stack_cat.cuda(), stack_num.cuda()), target=target.cuda())
And here I got an error:
RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)
I figured out that captum injects a wrongly shaped tensor into my x_categorical input (with the print in my forward method). It seems like captum only sees the first input tensor and uses it's shape for all other inputs. How can I change this behaviour?
I've found the similar issue here (https://github.com/pytorch/captum/issues/439). It was recommended to use Interpretable Embedding for categorical data. When I used it I got this error:
IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)
I would be very grateful for any tips and advises how to combine all three inputs and to solve my problem.

Computing Masking layer and using a few layers later in Keras

I have an architecture that processes padded sequences of fixed length. For whatever reason, passing the mask through some of the intermediate layers doesn't work, so what I want is to:
Compute the mask right after the Input layer
Process the input with some other layers
Apply the mask before it goes into a GRU layer
Something like this
x = layers.Input(shape=(sequenceLength, inputFeatures))
m = layers.Masking(mask_value=255)(x)
# x = SomeOtherLayers()(x) # some other layers
# Apply initial mask here
x = GRU()(x)
Is there an easy way to achieve this? I have tried adding a new mask and overwriting the _keras_mask attribute, but that didn't work
x = layers.Input(shape=(sequenceLength, inputFeatures), name=name)
m = layers.Masking(mask_value=255)(x)
# x = SomeOtherLayers()(x) # some other layers
x = layers.Masking()(x)
x._keras_mask = m._keras_mask
x = GRU()(x)
Maybe I am approaching this the wrong way. Any suggestion is welcome.
What I do is using a custom function to get the mask :
def get_mask_from_lengths(lengths, max_len=None):
if max_len is None:
max_len = tf.reduce_max(lengths)
ids = tf.range(0, max_len)
mask = ids < lengths
return mask
Then I define the model:
sequenceLength = 5
inputFeatures = 1
inputs = tf.keras.layers.Input(shape=(sequenceLength, inputFeatures))
lengths = tf.keras.layers.Input(shape=(1,)) # vector containing the length of each element of the batch
x = tf.keras.layers.Dense(units=3)(inputs) # some other layer
mask = get_mask_from_lengths(lengths=lengths)
output = tf.keras.layers.GRU(units=2)(x, mask=mask)
model = tf.keras.Model(inputs=[inputs, lengths], outputs=output)
model.compile(loss='mse', optimizer='adam')
model.summary()
An example:
x1 = tf.reshape(tf.convert_to_tensor([10, 3, 5, 3, 5]), (1, -1))
x2 = tf.reshape(tf.convert_to_tensor([11, 9, 120, 255, 255]), (1, -1))
input_tensor = tf.concat([x1, x2], axis=0)
length_tensor = tf.reshape([5, 3], (-1, 1)) # first sequence x1 is full and x2 has three elements not equal to the masking value 255 (should create a function to get this tensor from input_tensor)
out_tensor = tf.random.uniform(shape=(2, 2))
model.fit([input_tensor, length_tensor], out_tensor, epochs=2)

Solved: How to combine tf.gradients with tf.data.dataset and keras models

I'm trying to build a workflow that uses tf.data.dataset batches and an iterator. For performance reasons, I am really trying to avoid using the placeholder->feed_dict loop workflow.
The process I'm trying to implement involves grad-cam (which requires the gradient of the loss with respect to the final convolutional layer of a CNN) as an intermediate step, and ideally I'd like to be able to try it out on several Keras pre-trained models, including non-sequential ones like ResNet.
Most implementations of grad-cam that I've found rely on hand-crafting the CNN of interest in tensorflow. I found one implementation, https://github.com/jacobgil/keras-grad-cam, that is made for keras models, and following that example, I get
def safe_norm(x):
return x / tf.sqrt(tf.reduce_mean(x ** 2) + 1e-8)
vgg_ = VGG19()
dataset = tf.data.Dataset.from_tensor_slices((filenames))
#preprocessing...
it = dataset.make_one_shot_iterator()
files, batch = it.get_next()
conv5_4 = vgg_.layers[-6]
h_k, w_k, c_k = conv5_4.output.shape[1:]
vgg_model = Model(inputs=vgg_.input, outputs=vgg_.output)
conv_model = Model(inputs=vgg_.input, outputs=conv5_4.output)
probs = vgg_model(batch)
predicted_class = tf.argmax(probs, axis=-1)
layer_name = 'block5_conv4'
target_layer = lambda x: target_category_loss(x, predicted_class, n_categories)
x = Lambda(target_layer)(vgg_model.outputs[0])
model = Model(inputs=vgg_model.inputs[0], outputs=x)
loss = K.sum(model.output, axis=-1)
conv_output = [l for l in model.layers if l.name is layer_name][0].output
grads = Lambda(safe_norm)(K.gradients(loss, [conv_output])[0])
gradient_function = K.function([model.input], [conv_output, grads])
output, grads_val = gradient_function([batch])
weights = tf.reduce_mean(grads_val, axis = (1, 2))
cam = tf.ones([batch_size, h_k, w_k], dtype = tf.float32)
cam += tf.reduce_sum(output * tf.reshape(weights, [-1, 1, 1, weights.shape[-1]]), axis=-1)
cam = tf.squeeze(tf.image.resize_images(images=tf.expand_dims(cam, axis=-1), size=(224, 224)))
cam = tf.maximum(cam, 0)
heatmap = cam / tf.reshape(tf.reduce_max(cam, axis=[1, 2]), shape=[-1, 1, 1])
The problem is that gradient_function([batch]) returns a numpy array whose value is determined by the first batch, so that heatmap doesn't change with subsequent evaluations.
I've tried replacing K.function with a Model in various ways, but nothing seems to work. I usually end up either with an error suggesting that grads evaluates to None or that one model or another is expecting a feed_dict and not receiving one.
Is this code salvageable? Is there a better way to do this besides looping through the data several times (once to get all the grad-cams and then again once I have them) or using placeholders and feed_dicts?
Edit:
def safe_norm(x):
return x / tf.sqrt(tf.reduce_mean(x ** 2) + 1e-8)
vgg_ = VGG19()
dataset = tf.data.Dataset.from_tensor_slices((filenames))
#preprocessing...
it = dataset.make_one_shot_iterator()
files, batch = it.get_next()
conv5_4 = vgg_.layers[-6]
h_k, w_k, c_k = conv5_4.output.shape[1:]
vgg_model = Model(inputs=vgg_.input, outputs=vgg_.output)
conv_model = Model(inputs=vgg_.input, outputs=conv5_4.output)
probs = vgg_model(batch)
predicted_class = tf.argmax(probs, axis=-1)
layer_name = 'block5_conv4'
target_layer = lambda x: target_category_loss(x, predicted_class, n_categories)
x = Lambda(target_layer)(vgg_model.outputs[0])
model = Model(inputs=vgg_model.inputs[0], outputs=x)
loss = K.sum(model.output, axis=-1)
conv_output = [l for l in model.layers if l.name is layer_name][0].output
grads = Lambda(safe_norm)(K.gradients(loss, [conv_output])[0])
gradient_function = K.function([model.input], [conv_output, grads])
output, grads_val = gradient_function([batch])
weights = tf.reduce_mean(grads_val, axis = (1, 2))
cam = tf.ones([batch_size, h_k, w_k], dtype = tf.float32)
cam += tf.reduce_sum(output * tf.reshape(weights, [-1, 1, 1, weights.shape[-1]]), axis=-1)
cam = tf.squeeze(tf.image.resize_images(images=tf.expand_dims(cam, axis=-1), size=(224, 224)))
cam = tf.maximum(cam, 0)
heatmap = cam / tf.reshape(tf.reduce_max(cam, axis=[1, 2]), shape=[-1, 1, 1])
# other operations on heatmap and batch ...
# ...
output_function = K.function(model.input, [node1, ..., nodeN])
for batch in range(n_batches):
outputs1, ... , outputsN = output_function(batch)
Gives me the desired outputs for each batch.
Yes, K.function returns numpy arrays because it evaluates the symbolic computation in your graph. What I think you should do is to keep everything symbolic up to K.function, and after getting the gradients, perform all computations of the Grad-CAM weights and final saliency map using numpy.
Then you can iterate on your dataset, evaluate gradient_function on a new batch of data, and compute the saliency map.
If you want to keep everything symbolic, then you should not use K.function to produce the gradient function, but use the symbolic gradient (the output of K.gradient, without lambda) and convolutional feature maps (conv_output) and perform the saliency map computation on top of that, and then build a function (using K.function) that takes the model input, and outputs the saliency map.
Hope the explanation is enough.

Flattening two last dimensions of a tensor in TensorFlow

I'm trying to reshape a tensor from [A, B, C, D] into [A, B, C * D] and feed it into a dynamic_rnn. Assume that I don't know the B, C, and D in advance (they're a result of a convolutional network).
I think in Theano such reshaping would look like this:
x = x.flatten(ndim=3)
It seems that in TensorFlow there's no easy way to do this and so far here's what I came up with:
x_shape = tf.shape(x)
x = tf.reshape(x, [batch_size, x_shape[1], tf.reduce_prod(x_shape[2:])]
Even when the shape of x is known during graph building (i.e. print(x.get_shape()) prints out absolute values, like [10, 20, 30, 40] after the reshaping get_shape() becomes [10, None, None]. Again, still assume the initial shape isn't known so I can't operate with absolute values.
And when I'm passing x to a dynamic_rnn it fails:
ValueError: Input size (depth of inputs) must be accessible via shape inference, but saw value None.
Why is reshape unable to handle this case? What is the right way of replicating Theano's flatten(ndim=n) in TensorFlow with tensors of rank 4 and more?
It is not a flaw in reshape, but a limitation of tf.dynamic_rnn.
Your code to flatten the last two dimensions is correct. And, reshape behaves correctly too: if the last two dimensions are unknown when you define the flattening operation, then so is their product, and None is the only appropriate value that can be returned at this time.
The culprit is tf.dynamic_rnn, which expects a fully-defined feature shape during construction, i.e. all dimensions apart from the first (batch size) and the second (time steps) must be known. It is a bit unfortunate perhaps, but the current implementation does not seem to allow RNNs with a variable number of features, à la FCN.
I tried a simple code according to your requirements. Since you are trying to reshape a CNN output, the shape of X is same as the output of CNN in Tensorflow.
HEIGHT = 100
WIDTH = 200
N_CHANELS =3
N_HIDDEN =64
X = tf.placeholder(tf.float32, shape=[None,HEIGHT,WIDTH,N_CHANELS],name='input') # output of CNN
shape = X.get_shape().as_list() # get the shape of each dimention shape[0] =BATCH_SIZE , shape[1] = HEIGHT , shape[2] = HEIGHT = WIDTH , shape[3] = N_CHANELS
input = tf.reshape(X, [-1, shape[1] , shape[2] * shape[3]])
print(input.shape) # prints (?, 100, 600)
#Input for tf.nn.dynamic_rnn should be in the shape of [BATCH_SIZE, N_TIMESTEPS, INPUT_SIZE]
#Therefore, according to the reshape N_TIMESTEPS = 100 and INPUT_SIZE= 600
#create the RNN here
lstm_layers = tf.contrib.rnn.BasicLSTMCell(N_HIDDEN, forget_bias=1.0)
outputs, _ = tf.nn.dynamic_rnn(lstm_layers, input, dtype=tf.float32)
Hope this helps.
I found a solution to this by using .get_shape().
Assuming 'x' is a 4-D Tensor.
This will only work with the Reshape Layer. As you were making changes to the architecture of the model, this should work.
x = tf.keras.layers.Reshape(x, [x.get_shape()[0], x.get_shape()[1], x.get_shape()[2] * x.get_shape()][3])
Hope this works!
If you use the tf.keras.models.Model or tf.keras.layers.Layer wrapper, the build method provides a nice way to do this.
Here's an example:
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv1D, Conv2D, Conv2DTranspose, Attention, Layer, Reshape
class VisualAttention(Layer):
def __init__(self, channels_out, key_is_value=True):
super(VisualAttention, self).__init__()
self.channels_out = channels_out
self.key_is_value = key_is_value
self.flatten_images = None # see build method
self.unflatten_images = None # see build method
self.query_conv = Conv1D(filters=channels_out, kernel_size=1, padding='same')
self.value_conv = Conv1D(filters=channels_out, kernel_size=4, padding='same')
self.key_conv = self.value_conv if key_is_value else Conv1D(filters=channels_out, kernel_size=4, padding='same')
self.attention_layer = Attention(use_scale=False, causal=False, dropout=0.)
def build(self, input_shape):
b, h, w, c = input_shape
self.flatten_images = Reshape((h*w, c), input_shape=(h, w, c))
self.unflatten_images = Reshape((h, w, self.channels_out), input_shape=(h*w, self.channels_out))
def call(self, x, training=True):
x = self.flatten_images(x)
q = self.query_conv(x)
v = self.value_conv(x)
inputs = [q, v] if self.key_is_value else [q, v, self.key_conv(x)]
output = self.attention_layer(inputs=inputs, training=training)
return self.unflatten_images(output)
# test
import numpy as np
x = np.arange(8*28*32*3).reshape((8, 28, 32, 3)).astype('float32')
model = VisualAttention(8)
y = model(x)
print(y.shape)

Categories