I have the following pandas dataframe. There are many NaN but there are lots of NaN value (I skipped the NaN value to make it look shorter).
0 NaN
...
26 NaN
27 357.0
28 357.0
29 357.0
30 NaN
...
246 NaN
247 357.0
248 357.0
249 357.0
250 NaN
...
303 NaN
304 58.0
305 58.0
306 58.0
307 58.0
308 58.0
309 58.0
310 58.0
311 58.0
312 58.0
313 58.0
314 58.0
315 58.0
316 NaN
...
333 NaN
334 237.0
I would like to filter all the NaN value and also only keep the first value out of the NaN (e.g. from index 27-29 there are three values, I would like to keep the value indexed 27 and skip the 28 and 29 value). The targeted array should be as follows:
27 357.0
247 357.0
304 58.0
334 237.0
I am not sure how could I keep only the first value. Thanks in advance.
Take only values that aren't nan, but the value before them is nan:
df = df[df.col1.notna() & df.col1.shift().isna()]
Output:
col1
27 357.0
247 357.0
304 58.0
334 237.0
Assuming all values are greater than 0, we could also do:
df = df.fillna(0).diff()
df = df[df.col1.gt(0)]
You can find the continuous index and diff to get its first value
m = (df['col'].dropna()
.index.to_series()
.diff().fillna(2).gt(1)
.reindex(range(df.index.max()+1))
.fillna(False))
out = df[m]
print(out)
col
27 357.0
247 357.0
304 58.0
334 237.0
say that i have a df in the following format:
year 2016 2017 2018 2019 2020 min max avg
month
2021-01-01 284 288 311 383 476 284 476 357.4
2021-02-01 301 315 330 388 441 301 441 359.6
2021-03-01 303 331 341 400 475 303 475 375.4
2021-04-01 283 300 339 419 492 283 492 372.6
2021-05-01 287 288 346 420 445 287 445 359.7
2021-06-01 283 292 340 424 446 283 446 359.1
2021-07-01 294 296 360 444 452 294 452 370.3
2021-08-01 294 315 381 445 451 294 451 375.9
2021-09-01 288 331 405 464 459 288 464 385.6
2021-10-01 327 349 424 457 453 327 457 399.1
2021-11-01 316 351 413 469 471 316 471 401.0
2021-12-01 259 329 384 467 465 259 467 375.7
and i would like to get the difference of the 2020 column by using df['delta'] = df['2020'].diff()
this will obviously return NaN for the first value in the column. how can i make it so that it automatically interprets that diff as the difference between the FIRST value of 2020 and the LAST value of 2019?
If you want only for 2020:
df["delta"] = pd.concat([df["2019"], df["2020"]]).diff().tail(len(df))
Prints:
year 2016 2017 2018 2019 2020 min max avg delta
0 2021-01-01 284 288 311 383 476 284 476 357.4 9.0
1 2021-02-01 301 315 330 388 441 301 441 359.6 -35.0
2 2021-03-01 303 331 341 400 475 303 475 375.4 34.0
3 2021-04-01 283 300 339 419 492 283 492 372.6 17.0
4 2021-05-01 287 288 346 420 445 287 445 359.7 -47.0
5 2021-06-01 283 292 340 424 446 283 446 359.1 1.0
6 2021-07-01 294 296 360 444 452 294 452 370.3 6.0
7 2021-08-01 294 315 381 445 451 294 451 375.9 -1.0
8 2021-09-01 288 331 405 464 459 288 464 385.6 8.0
9 2021-10-01 327 349 424 457 453 327 457 399.1 -6.0
10 2021-11-01 316 351 413 469 471 316 471 401.0 18.0
11 2021-12-01 259 329 384 467 465 259 467 375.7 -6.0
You can try unstack then do the diff, notice the first item in 2016 will still be NaN
out = df.drop(['min','max','avg'],1).unstack().diff().unstack(0)
2016 2017 2018 2019 2020
2021-01-01 NaN 29.0 -18.0 -1.0 9.0
2021-02-01 17.0 27.0 19.0 5.0 -35.0
2021-03-01 2.0 16.0 11.0 12.0 34.0
2021-04-01 -20.0 -31.0 -2.0 19.0 17.0
2021-05-01 4.0 -12.0 7.0 1.0 -47.0
2021-06-01 -4.0 4.0 -6.0 4.0 1.0
2021-07-01 11.0 4.0 20.0 20.0 6.0
2021-08-01 0.0 19.0 21.0 1.0 -1.0
2021-09-01 -6.0 16.0 24.0 19.0 8.0
2021-10-01 39.0 18.0 19.0 -7.0 -6.0
2021-11-01 -11.0 2.0 -11.0 12.0 18.0
2021-12-01 -57.0 -22.0 -29.0 -2.0 -6.0
I have a dataframe with ID's of clients and their expenses for 2014-2018. What I want is to have the mean of the expenses per ID but only the years before a certain date can be taken into account when calculating the mean value (so column 'Date' dictates which columns can be taken into account for the mean).
Example: for index 0 (ID: 12), the date states '2016-03-08', then the mean should be taken from the columns 'y_2014' and 'y_2015', so then for this index, the mean is 111.0.
If the date is too early (e.g. somewhere in 2014 or earlier in this case), then NaN should be returned (see index 6 and 9).
Initial dataframe:
y_2014 y_2015 y_2016 y_2017 y_2018 Date ID
0 100.0 122.0 324 632 NaN 2016-03-08 12
1 120.0 159.0 54 452 541.0 2015-04-09 96
2 NaN 164.0 687 165 245.0 2016-02-15 20
3 180.0 421.0 512 184 953.0 2018-05-01 73
4 110.0 654.0 913 173 103.0 2017-08-04 84
5 130.0 NaN 754 124 207.0 2016-07-03 26
6 170.0 256.0 843 97 806.0 2013-02-04 87
7 140.0 754.0 95 101 541.0 2016-06-08 64
8 80.0 985.0 184 84 90.0 2019-03-05 11
9 96.0 65.0 127 130 421.0 2014-05-14 34
Desired output:
y_2014 y_2015 y_2016 y_2017 y_2018 Date ID mean
0 100.0 122.0 324 632 NaN 2016-03-08 12 111.0
1 120.0 159.0 54 452 541.0 2015-04-09 96 120.0
2 NaN 164.0 687 165 245.0 2016-02-15 20 164.0
3 180.0 421.0 512 184 953.0 2018-05-01 73 324.25
4 110.0 654.0 913 173 103.0 2017-08-04 84 559.0
5 130.0 NaN 754 124 207.0 2016-07-03 26 130.0
6 170.0 256.0 843 97 806.0 2013-02-04 87 NaN
7 140.0 754.0 95 101 541.0 2016-06-08 64 447
8 80.0 985.0 184 84 90.0 2019-03-05 11 284.6
9 96.0 65.0 127 130 421.0 2014-05-14 34 NaN
Tried code: -> I'm still working on it, as I don't really know how to start for this, I only uploaded the dataframe so far, probably something with the 'datetime'-package has to be done to get the desired dataframe?
import pandas as pd
import numpy as np
import datetime
df = pd.DataFrame({"ID": [12,96,20,73,84,26,87,64,11,34],
"y_2014": [100,120,np.nan,180,110,130,170,140,80,96],
"y_2015": [122,159,164,421,654,np.nan,256,754,985,65],
"y_2016": [324,54,687,512,913,754,843,95,184,127],
"y_2017": [632,452,165,184,173,124,97,101,84,130],
"y_2018": [np.nan,541,245,953,103,207,806,541,90,421],
"Date": ['2016-03-08', '2015-04-09', '2016-02-15', '2018-05-01', '2017-08-04',
'2016-07-03', '2013-02-04', '2016-06-08', '2019-03-05', '2014-05-14']})
print(df)
Due to your naming convention, one need to extract the years from column names for comparison purpose. Then you can mask the data and taking mean:
# the years from columns
data = df.filter(like='y_')
data_years = data.columns.str.extract('(\d+)')[0].astype(int)
# the years from Date
years = pd.to_datetime(df.Date).dt.year.values
df['mean'] = data.where(data_years<years[:,None]).mean(1)
Output:
y_2014 y_2015 y_2016 y_2017 y_2018 Date ID mean
0 100.0 122.0 324 632 NaN 2016-03-08 12 111.00
1 120.0 159.0 54 452 541.0 2015-04-09 96 120.00
2 NaN 164.0 687 165 245.0 2016-02-15 20 164.00
3 180.0 421.0 512 184 953.0 2018-05-01 73 324.25
4 110.0 654.0 913 173 103.0 2017-08-04 84 559.00
5 130.0 NaN 754 124 207.0 2016-07-03 26 130.00
6 170.0 256.0 843 97 806.0 2013-02-04 87 NaN
7 140.0 754.0 95 101 541.0 2016-06-08 64 447.00
8 80.0 985.0 184 84 90.0 2019-03-05 11 284.60
9 96.0 65.0 127 130 421.0 2014-05-14 34 NaN
one more answer:
import pandas as pd
import numpy as np
df = pd.DataFrame({"ID": [12,96,20,73,84,26,87,64,11,34],
"y_2014": [100,120,np.nan,180,110,130,170,140,80,96],
"y_2015": [122,159,164,421,654,np.nan,256,754,985,65],
"y_2016": [324,54,687,512,913,754,843,95,184,127],
"y_2017": [632,452,165,184,173,124,97,101,84,130],
"y_2018": [np.nan,541,245,953,103,207,806,541,90,421],
"Date": ['2016-03-08', '2015-04-09', '2016-02-15', '2018-05-01', '2017-08-04',
'2016-07-03', '2013-02-04', '2016-06-08', '2019-03-05', '2014-05-14']})
#Subset from original df to calculate mean
subset = df.loc[:,['y_2014', 'y_2015', 'y_2016', 'y_2017', 'y_2018']]
#an expense value is only available for the calculation of the mean when that year has passed, therefore 2015-01-01 is chosen for the 'y_2014' column in the subset etc. to check with the 'Date'-column
subset.columns = ['2015-01-01', '2016-01-01', '2017-01-01', '2018-01-01', '2019-01-01']
s = subset.columns[0:].values < df.Date.values[:,None]
t = s.astype(float)
t[t == 0] = np.nan
df['mean'] = (subset.iloc[:,0:]*t).mean(1)
print(df)
#Additionally: (gives the sum of expenses before a certain date in the 'Date'-column
df['sum'] = (subset.iloc[:,0:]*t).sum(1)
print(df)
I have this data frame:
ID Date X 123_Var 456_Var 789_Var
A 16-07-19 3 777 250 810
A 17-07-19 9 637 121 529
A 20-07-19 2 295 272 490
A 21-07-19 3 778 600 544
A 22-07-19 6 741 792 907
A 25-07-19 6 435 416 820
A 26-07-19 8 590 455 342
A 27-07-19 6 763 476 753
A 02-08-19 6 717 211 454
A 03-08-19 6 152 442 475
A 05-08-19 6 564 340 302
A 07-08-19 6 105 929 633
A 08-08-19 6 948 366 586
B 07-08-19 4 509 690 406
B 08-08-19 2 413 725 414
B 12-08-19 2 170 702 912
B 13-08-19 3 851 616 477
B 14-08-19 9 475 447 555
B 15-08-19 1 412 403 708
B 17-08-19 2 299 537 321
B 18-08-19 4 310 119 125
I want to show the mean value of n last days (using Date column), excluding the value of current day.
I'm using this code (what should I do to fix this?):
n = 4
cols = list(df.filter(regex='Var').columns)
df = df.set_index('Date')
df[cols] = (df.groupby('ID').rolling(window=f'{n}D')[cols].mean()
.reset_index(0,drop=True).add_suffix(f'_{n}'))
df.reset_index(inplace=True)
Expected result:
ID Date X 123_Var 456_Var 789_Var 123_Var_4 456_Var_4 789_Var_4
A 16-07-19 3 777 250 810 NaN NaN NaN
A 17-07-19 9 637 121 529 777.000000 250.000000 810.0
A 20-07-19 2 295 272 490 707.000000 185.500000 669.5
A 21-07-19 3 778 600 544 466.000000 196.500000 509.5
A 22-07-19 6 741 792 907 536.500000 436.000000 517.0
A 25-07-19 6 435 416 820 759.500000 696.000000 725.5
A 26-07-19 8 590 455 342 588.000000 604.000000 863.5
A 27-07-19 6 763 476 753 512.500000 435.500000 581.0
A 02-08-19 6 717 211 454 NaN NaN NaN
A 03-08-19 6 152 442 475 717.000000 211.000000 454.0
A 05-08-19 6 564 340 302 434.500000 326.500000 464.5
A 07-08-19 6 105 929 633 358.000000 391.000000 388.5
A 08-08-19 6 948 366 586 334.500000 634.500000 467.5
B 07-08-19 4 509 690 406 NaN NaN NaN
B 08-08-19 2 413 725 414 509.000000 690.000000 406.0
B 12-08-19 2 170 702 912 413.000000 725.000000 414.0
B 13-08-19 3 851 616 477 291.500000 713.500000 663.0
B 14-08-19 9 475 447 555 510.500000 659.000000 694.5
B 15-08-19 1 412 403 708 498.666667 588.333333 648.0
B 17-08-19 2 299 537 321 579.333333 488.666667 580.0
B 18-08-19 4 310 119 125 395.333333 462.333333 528.0
Note: dataframe has changed.
I change unutbu solution for working in rolling:
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
n = 5
cols = df.filter(regex='Var').columns
df = df.set_index('Date')
df_ = df.set_index('ID', append=True).swaplevel(1,0)
df1 = df.groupby('ID').rolling(window=f'{n}D')[cols].count()
df2 = df.groupby('ID').rolling(window=f'{n}D')[cols].mean()
df3 = (df1.mul(df2)
.sub(df_[cols])
.div(df1[cols].sub(1)).add_suffix(f'_{n}')
)
df4 = df_.join(df3)
print (df4)
X 123_Var 456_Var 789_Var 123_Var_5 456_Var_5 789_Var_5
ID Date
A 2019-07-16 3 777 250 810 NaN NaN NaN
2019-07-17 9 637 121 529 777.000000 250.000000 810.0
2019-07-20 2 295 272 490 707.000000 185.500000 669.5
2019-07-21 3 778 600 544 466.000000 196.500000 509.5
2019-07-22 6 741 792 907 536.500000 436.000000 517.0
2019-07-25 6 435 416 820 759.500000 696.000000 725.5
2019-07-26 8 590 455 342 588.000000 604.000000 863.5
2019-07-27 6 763 476 753 512.500000 435.500000 581.0
2019-08-02 6 717 211 454 NaN NaN NaN
2019-08-03 6 152 442 475 717.000000 211.000000 454.0
2019-08-05 6 564 340 302 434.500000 326.500000 464.5
2019-08-07 6 105 929 633 358.000000 391.000000 388.5
2019-08-08 6 948 366 586 334.500000 634.500000 467.5
B 2019-08-07 4 509 690 406 NaN NaN NaN
2019-08-08 2 413 725 414 509.000000 690.000000 406.0
2019-08-12 2 170 702 912 413.000000 725.000000 414.0
2019-08-13 3 851 616 477 170.000000 702.000000 912.0
2019-08-14 9 475 447 555 510.500000 659.000000 694.5
2019-08-15 1 412 403 708 498.666667 588.333333 648.0
2019-08-17 2 299 537 321 579.333333 488.666667 580.0
2019-08-18 4 310 119 125 395.333333 462.333333 528.0
I am following a Lynda tutorial where they use the following code:
import pandas as pd
import seaborn
flights = seaborn.load_dataset('flights')
flights_indexed = flights.set_index(['year','month'])
flights_unstacked = flights_indexed.unstack()
flights_unstacked['passengers','total'] = flights_unstacked.sum(axis=1)
and it works perfectly. However, in my case it seems that the code is not compiling, for the last line I keep getting an error.
TypeError: cannot insert an item into a CategoricalIndex that is not already an existing category
I know in the video they are using Python 2, however I have Python 3 since I am learning for work (which uses Python 3). Most of the differences I have been able to figure out, however I cannot figure out how to create this new column called 'total' with the sums of the passengers.
The root cause of this error message is the categorical nature of the month column:
In [42]: flights.dtypes
Out[42]:
year int64
month category
passengers int64
dtype: object
In [43]: flights.month.cat.categories
Out[43]: Index(['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'], d
type='object')
and you are trying to add a category total - Pandas doesn't like that.
Workaround:
In [45]: flights.month.cat.add_categories('total', inplace=True)
In [46]: x = flights.pivot(index='year', columns='month', values='passengers')
In [47]: x['total'] = x.sum(1)
In [48]: x
Out[48]:
month January February March April May June July August September October November December total
year
1949 112.0 118.0 132.0 129.0 121.0 135.0 148.0 148.0 136.0 119.0 104.0 118.0 1520.0
1950 115.0 126.0 141.0 135.0 125.0 149.0 170.0 170.0 158.0 133.0 114.0 140.0 1676.0
1951 145.0 150.0 178.0 163.0 172.0 178.0 199.0 199.0 184.0 162.0 146.0 166.0 2042.0
1952 171.0 180.0 193.0 181.0 183.0 218.0 230.0 242.0 209.0 191.0 172.0 194.0 2364.0
1953 196.0 196.0 236.0 235.0 229.0 243.0 264.0 272.0 237.0 211.0 180.0 201.0 2700.0
1954 204.0 188.0 235.0 227.0 234.0 264.0 302.0 293.0 259.0 229.0 203.0 229.0 2867.0
1955 242.0 233.0 267.0 269.0 270.0 315.0 364.0 347.0 312.0 274.0 237.0 278.0 3408.0
1956 284.0 277.0 317.0 313.0 318.0 374.0 413.0 405.0 355.0 306.0 271.0 306.0 3939.0
1957 315.0 301.0 356.0 348.0 355.0 422.0 465.0 467.0 404.0 347.0 305.0 336.0 4421.0
1958 340.0 318.0 362.0 348.0 363.0 435.0 491.0 505.0 404.0 359.0 310.0 337.0 4572.0
1959 360.0 342.0 406.0 396.0 420.0 472.0 548.0 559.0 463.0 407.0 362.0 405.0 5140.0
1960 417.0 391.0 419.0 461.0 472.0 535.0 622.0 606.0 508.0 461.0 390.0 432.0 5714.0
UPDATE: alternatively if you don't want to touch the original DF you can get rid of categorical columns in the flights_unstacked DF:
In [76]: flights_unstacked.columns = \
...: flights_unstacked.columns \
...: .set_levels(flights_unstacked.columns.get_level_values(1).categories,
...: level=1)
...:
In [77]: flights_unstacked['passengers','total'] = flights_unstacked.sum(axis=1)
In [78]: flights_unstacked
Out[78]:
passengers
month January February March April May June July August September October November December total
year
1949 112 118 132 129 121 135 148 148 136 119 104 118 1520
1950 115 126 141 135 125 149 170 170 158 133 114 140 1676
1951 145 150 178 163 172 178 199 199 184 162 146 166 2042
1952 171 180 193 181 183 218 230 242 209 191 172 194 2364
1953 196 196 236 235 229 243 264 272 237 211 180 201 2700
1954 204 188 235 227 234 264 302 293 259 229 203 229 2867
1955 242 233 267 269 270 315 364 347 312 274 237 278 3408
1956 284 277 317 313 318 374 413 405 355 306 271 306 3939
1957 315 301 356 348 355 422 465 467 404 347 305 336 4421
1958 340 318 362 348 363 435 491 505 404 359 310 337 4572
1959 360 342 406 396 420 472 548 559 463 407 362 405 5140
1960 417 391 419 461 472 535 622 606 508 461 390 432 5714