Reading multiple excel file in python - python

Sample data imageI'm new to python. Trying to read multiple excel files in folder and make it separate DataFrames.
Is the below code correct?
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sys, os
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
os.chdir(r'/Users/try/Documents/data')
df = ([])
def readdataframe(the_list):
for element in the_list:
print(element)
df[element] = pd.read_excel(element, 'shee1')
readdataframe(["24032020_D_KWH.xlsx","25032020_D_KWH.xlsx","26032020_D_KWH.xlsx","27032020_D_KWH.xlsx"])
I get below error when I execute
TypeError: list indices must be integers or slices, not str

Changing df = ([]) with df=pd.DataFrame() should do the trick. You didn't define your df as a pandas dataframe.
After a test this is what I came up with:
import pandas as pd
import os
os.chdir(r"path to your excel files")
the_list = []
for root, dirs, files in os.walk(r"path to your excel files"):
for file in files:
if file.endswith('.xlsx'):
the_list.append(file)
def readdataframe(the_list):
df = pd.DataFrame() #define df as an empty pandas DataFrame
for element in the_list:
#print(element)
df[element] = pd.read_excel(element, squeeze=True)
return df
print(readdataframe(the_list))
Output:
file1.xlsx file2.xlsx file3.xlsx
0 1 6 11
1 2 7 12
2 3 8 13
3 4 9 14
4 5 10 15
I'm sorry but it is considered a bad practice to upload your files, and I'm not going to download it. Nothing personal, just basic digital hygiene.
Now onto the explanation.
As you may have noticed in this line
df[element] = pd.read_excel(element, squeeze=True)
I"ve added
squeeze=True
What this parameter does is convert the dataframe that was returned into a pandas Series (one-dimensional array, think of it as your general python list), because I had only 1 column in each of my files and
df[element] =
syntax sets "element" as a column name in your dataframe where you save your data. So, this way will only work if data in your file is one-dimensional (only 1 column) If not, you should probably look into pandas.concat or pandas DataFrame join depending on the uniformity of the data shape in the files and your needs.
if you are willing to get multiple dataframes instead this is what I'm suggesting.
import pandas as pd
import os
os.chdir(r"path to your excel files")
the_list = []
for root, dirs, files in os.walk(r"path to your excel files"):
for file in files:
if file.endswith('.xlsx'):
the_list.append(file)
def readdataframe(the_list):
df_dict = {}
for element in the_list:
df_dict[element] = pd.read_excel(element)
return df_dict
print(readdataframe(the_list))
This way you are getting a python dictionary(hashtable) that contains your dataframe objects as a value and filename as a key.

Related

Merge (concat) every N excel files into one finel using glob function

I have a folder that contains 1220 excel files. The 1220 files are 4 parameters from 305 points for example:
P1-a.xlsx
P1-b.xlsx
P1-c.xlsx
P1-d.xlsx
P2-a.xlsx
P2-b.xlsx
P2-c.xlsx
P2-d.xlsx
.
.
.
P305-a.xlsx
P305-b.xlsx
P305-c.xlsx
P305-d.xlsx
I have the code bellow to merge all of 1220 files as one dataframe (Final_df):
import os
import glob
import pandas
fileList=glob.glob("*.xlsx")
dfList=[]
for filename in fileList:
print(filename)
df = pandas.read_excel(filename, header=None)
dfList.append(df)
Final_df=pandas.concat(dfList,axis=1)
Final_df.to_excel("Final.xlsx",index=None)
Can anyone suggest a way that I can concat every 4 excels so that I have 305 final excels corresponding to P1 to P305 ???
Or a code that I can group or concat every 4 excels?? which lead to the same results?
Another suggestion is that I extract every 4 columns from the Final data frame and output it as a single dataframe named from P1 to P305??
You can group your files by prefix using pathlib and itertools module:
import pandas as pd
from itertools import groupby
from pathlib import Path
key = lambda x: x.stem.split('-')[0]
for name, files in groupby(sorted(Path('.').glob('*.xlsx'), key=key), key=key):
df = pd.concat([pd.read_excel(file, header=None) for file in files])
df.to_excel(f"{name}.xlsx", index=None)

Merge csv files based on file names and suffix in Python

First time poster and fairly new to Python here. I have a collection of +1,7000 csv files with 2 columns each. The number and labels of the rows are the same in every file. The files are named with a specific format. For example:
Species_1_OrderA_1.csv
Species_1_OrderA_2.csv
Species_1_OrderA_3.csv
Species_10_OrderB_1.csv
Species_10_OrderB_2.csv
Each imported dataframe is formatted like so:
TreeID Species_1_OrderA_2
0 Bu2_1201_1992 0
1 Bu3_1201_1998 0
2 Bu4_1201_2000 0
3 Bu5_1201_2002 0
4 Bu6_1201_2004 0
.. ... ...
307 Fi141_16101_2004 0
308 Fi142_16101_2006 0
309 Fi143_16101_2008 0
310 Fi144_16101_2010 0
311 Fi147_16101_2015 0
I would like to join the files that correspond to the same species, based on the first column. So, in the end, I would get the files Species_1_OrderA.csv and Species_10_OrderB.csv. Please note that all the species do not necessarily have the same number of files.
This is what I have tried so far.
import os
import glob
import pandas as pd
# Importing csv files from directory
path = '.'
extension = 'csv'
os.chdir(path)
files = glob.glob('*.{}'.format(extension))
# Create a dictionary to loop through each file to read its contents and create a dataframe
file_dict = {}
for file in files:
key = file
df = pd.read_csv(file)
file_dict[key] = df
# Extract the name of each dataframe, convert to a list and extract the relevant
# information (before the 3rd underscore). Compare each of these values to the next and
# if they are the same, append them to a list. This list (in my head, at least) will help
# me merge them using pandas.concat
keys_list = list(file_dict.keys())
group = ''
for line in keys_list:
type = "_".join(line.split("_")[:3])
for i in range(len(type) - 1):
if type[i] == type[i+1]:
group.append(line[keys_list])
print(group)
However, the last bit is not even working, and at this point, I am not sure this is the best way to deal with my problem. Any pointers on how to solve this will be really appreciated.
--- EDIT:
This is the expected output for the files per species. Ideally, I would remove the rows that have zeros in them, but that can easily be done with awk.
TreeID,Species_1_OrderA_0,Species_1_OrderA_1,Species_1_OrderA_2
Bu2_1201_1992,0,0,0
Bu3_1201_1998,0,0,0
Bu4_1201_2000,0,0,0
Bu5_1201_2002,0,0,0
Bu6_1201_2004,0,0,0
Bu7_1201_2006,0,0,0
Bu8_1201_2008,0,0,0
Bu9_1201_2010,0,0,0
Bu10_1201_2012,0,0,0
Bu11_1201_2014,0,0,0
Bu14_1201_2016,0,0,0
Bu16_1201_2018,0,0,0
Bu18_3103_1989,0,0,0
Bu22_3103_1999,0,0,0
Bu23_3103_2001,0,0,0
Bu24_3103_2003,0,0,0
...
Fi141_16101_2004,0,0,10
Fi142_16101_2006,0,4,0
Fi143_16101_2008,0,0,0
Fi144_16101_2010,2,0,0
Fi147_16101_2015,0,7,0
``
Try it like this:
import os
import pandas as pd
path = "C:/Users/username"
files = [file for file in os.listdir(path) if file.endswith(".csv")]
dfs = dict()
for file in files:
#everything before the final _ is the species name
species = file.rsplit("_", maxsplit=1)[0]
#read the csv to a dataframe
df = pd.read_csv(os.path.join(path, file))
#if you don't have a df for a species, create a new key
if species not in dfs:
dfs[species] = df
#else, merge current df to existing df on the TreeID
else:
dfs[species] = pd.merge(dfs[species], df, on="TreeID", how="outer")
#write all dfs to their own csv files
for key in dfs:
dfs[key].to_csv(f"{key}.csv")
If your goal is to concatenate all the csv's for each species-order into a consolidated csv, this is one approach. I haven't tested it so there might be a few errors. The idea is to first use glob, as you're doing, to make a dict of file_paths so that all the file_paths of the same species-order are grouped together. Then for each species-order read in all the data into a single table in memory and then write out to a consolidated file.
import pandas as pd
import glob
#Create a dictionary keyed by species_order, valued by a list of files
#i.e. file_paths_by_species_order['Species_10_OrderB'] = ['Species_10_OrderB_1.csv', 'Species_10_OrderB_2.csv']
file_paths_by_species_order = {}
for file_path in glob.glob('*.csv'):
species_order = file_path.split("_")[:3]
if species_order not in file_paths_by_species_order:
file_paths_by_species_order[species_order] = [file_path]
else:
file_paths_by_species_order[species_order].append(file_path)
#For each species_order, concat all files and save the info into a new csv
for species_order,file_paths in file_paths_by_species_order.items():
df = pd.concat(pd.read_csv(file_path) for file_path in file_paths)
df.to_csv('consolidated_{}.csv'.format(species_order))
There are definitely improvements that can be made such as using collections.defaultdict and writing one file at a time out to the consolidated file, instead of reading them all into memory

reading specific columns from multiple csv files Nan values

Im new to python i have an issue with reading one column from different csv files
this codes works but i gives me all NAN values. The column length is different in some of the csv files
import pandas as pd
from glob import glob
def read_row(fn):
return pd.read_csv(fn, sep=r"\s+", usecols=[10])
files = glob('./*/*.csv')
df = pd.concat([read_row(fn) for fn in files], axis=1)
df = df.reset_index(drop=True)
df
Thanks
It worked i just changed sep=r"\s+" to delimiter=','

How to import many .txt files in a loop but without concatenation?

I have many (>40) data files in .txt (space-delimited) that have identical layout that I would like to read into python for data processing and plotting. The files are model outputs from a parametric sweep of one parameter, which occupies one column in each data file. The parameter increments to the next value in each consecutive file.
The issue I am having is that I do not know how to write the for-loop for reading each data file into its own dataframe.
I have seen many answers suggesting 'pandas.read_csv' followed by concatenation, however I do not want to concatenate the files into one dataframe, since I would like to plot each dataset separately.
It doesn't make sense to me to resort to concatenating a dataframe only to have to then separate out the datasets afterwards.
import glob
import os
import pandas as pd
from pandas import Series, DataFrame
path = r'D:/user/data-folder/'
files = glob.glob(os.path.join(path + 'data-*.txt')) # Added based on suggestions from similar questions
df1 = []
for f in files:
df = pd.read_csv(path1 + f,
sep=' '
)
df1.append(df)
print(df1)
Ideally, I would like to have each data file read into its own dataframe, numbered incrementally, e.g. 'df1_1', 'df1_2', etc.
I could then manipulate each dataframe individually and plot the data against each other for comparisons.
What about a list of dataframes? If you have:
../data/a.txt:
firstname,lastname,hobby
niles,crane,wine tasting
martin,crane,sitting in recliner
bob,bulldog,being annoying
../data/b.txt:
firstname,lastname,hobby
john,doe,doing stuff
jane,doe,being anonymous
humphrey,bogart,smoking and drinking
The code:
def main():
from glob import glob
from os.path import join
import pandas as pd
from pandas import DataFrame
from contextlib import ExitStack
local_path = "data/"
filenames = glob(join(local_path + "*.txt"))
with ExitStack() as context_manager:
files = [context_manager.enter_context(open(filename, "r")) for filename in filenames]
dataframes = []
for file in files:
dataframe = pd.read_csv(file)
dataframes.append(dataframe)
print(dataframes[0], end="\n\n")
print(dataframes[1])
return 0
if __name__ == "__main__":
import sys
sys.exit(main())
Output:
firstname lastname hobby
0 niles crane wine tasting
1 martin crane sitting in recliner
2 bob bulldog being annoying
firstname lastname hobby
0 john doe doing stuff
1 jane doe being anonymous
2 humphrey bogart smoking and drinking
Use pathlib to replace os & glob
from pathlib import Path
get the files
data_path = Path(r'D:/user/data-folder')
data_files = data_path.glob('data-*.txt')
store them in a dict
df_dict = dict()
for i, file in enumerate(data_files):
df_dict[f'df_{i}'] = pd.read_csv(file, sep=' ')
recall a DataFrame
df_dict['df_1']
plot DataFrames
for value in df_dict.values():
value.plot()

Import multiple CSV files into pandas and concatenate into one DataFrame

I would like to read several CSV files from a directory into pandas and concatenate them into one big DataFrame. I have not been able to figure it out though. Here is what I have so far:
import glob
import pandas as pd
# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
dfs = []
for filename in filenames:
dfs.append(pd.read_csv(filename))
# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)
I guess I need some help within the for loop?
See pandas: IO tools for all of the available .read_ methods.
Try the following code if all of the CSV files have the same columns.
I have added header=0, so that after reading the CSV file's first row, it can be assigned as the column names.
import pandas as pd
import glob
import os
path = r'C:\DRO\DCL_rawdata_files' # use your path
all_files = glob.glob(os.path.join(path , "/*.csv"))
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True)
Or, with attribution to a comment from Sid.
all_files = glob.glob(os.path.join(path, "*.csv"))
df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)
It's often necessary to identify each sample of data, which can be accomplished by adding a new column to the dataframe.
pathlib from the standard library will be used for this example. It treats paths as objects with methods, instead of strings to be sliced.
Imports and Setup
from pathlib import Path
import pandas as pd
import numpy as np
path = r'C:\DRO\DCL_rawdata_files' # or unix / linux / mac path
# Get the files from the path provided in the OP
files = Path(path).glob('*.csv') # .rglob to get subdirectories
Option 1:
Add a new column with the file name
dfs = list()
for f in files:
data = pd.read_csv(f)
# .stem is method for pathlib objects to get the filename w/o the extension
data['file'] = f.stem
dfs.append(data)
df = pd.concat(dfs, ignore_index=True)
Option 2:
Add a new column with a generic name using enumerate
dfs = list()
for i, f in enumerate(files):
data = pd.read_csv(f)
data['file'] = f'File {i}'
dfs.append(data)
df = pd.concat(dfs, ignore_index=True)
Option 3:
Create the dataframes with a list comprehension, and then use np.repeat to add a new column.
[f'S{i}' for i in range(len(dfs))] creates a list of strings to name each dataframe.
[len(df) for df in dfs] creates a list of lengths
Attribution for this option goes to this plotting answer.
# Read the files into dataframes
dfs = [pd.read_csv(f) for f in files]
# Combine the list of dataframes
df = pd.concat(dfs, ignore_index=True)
# Add a new column
df['Source'] = np.repeat([f'S{i}' for i in range(len(dfs))], [len(df) for df in dfs])
Option 4:
One liners using .assign to create the new column, with attribution to a comment from C8H10N4O2
df = pd.concat((pd.read_csv(f).assign(filename=f.stem) for f in files), ignore_index=True)
or
df = pd.concat((pd.read_csv(f).assign(Source=f'S{i}') for i, f in enumerate(files)), ignore_index=True)
An alternative to darindaCoder's answer:
path = r'C:\DRO\DCL_rawdata_files' # use your path
all_files = glob.glob(os.path.join(path, "*.csv")) # advisable to use os.path.join as this makes concatenation OS independent
df_from_each_file = (pd.read_csv(f) for f in all_files)
concatenated_df = pd.concat(df_from_each_file, ignore_index=True)
# doesn't create a list, nor does it append to one
import glob
import os
import pandas as pd
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', "my_files*.csv"))))
Almost all of the answers here are either unnecessarily complex (glob pattern matching) or rely on additional third-party libraries. You can do this in two lines using everything Pandas and Python (all versions) already have built in.
For a few files - one-liner
df = pd.concat(map(pd.read_csv, ['d1.csv', 'd2.csv','d3.csv']))
For many files
import os
filepaths = [f for f in os.listdir(".") if f.endswith('.csv')]
df = pd.concat(map(pd.read_csv, filepaths))
For No Headers
If you have specific things you want to change with pd.read_csv (i.e., no headers) you can make a separate function and call that with your map:
def f(i):
return pd.read_csv(i, header=None)
df = pd.concat(map(f, filepaths))
This pandas line, which sets the df, utilizes three things:
Python's map (function, iterable) sends to the function (the
pd.read_csv()) the iterable (our list) which is every CSV element
in filepaths).
Panda's read_csv() function reads in each CSV file as normal.
Panda's concat() brings all these under one df variable.
Easy and Fast
Import two or more CSV files without having to make a list of names.
import glob
import pandas as pd
df = pd.concat(map(pd.read_csv, glob.glob('data/*.csv')))
The Dask library can read a dataframe from multiple files:
>>> import dask.dataframe as dd
>>> df = dd.read_csv('data*.csv')
(Source: https://examples.dask.org/dataframes/01-data-access.html#Read-CSV-files)
The Dask dataframes implement a subset of the Pandas dataframe API. If all the data fits into memory, you can call df.compute() to convert the dataframe into a Pandas dataframe.
I googled my way into Gaurav Singh's answer.
However, as of late, I am finding it faster to do any manipulation using NumPy and then assigning it once to a dataframe rather than manipulating the dataframe itself on an iterative basis and it seems to work in this solution too.
I do sincerely want anyone hitting this page to consider this approach, but I don't want to attach this huge piece of code as a comment and making it less readable.
You can leverage NumPy to really speed up the dataframe concatenation.
import os
import glob
import pandas as pd
import numpy as np
path = "my_dir_full_path"
allFiles = glob.glob(os.path.join(path,"*.csv"))
np_array_list = []
for file_ in allFiles:
df = pd.read_csv(file_,index_col=None, header=0)
np_array_list.append(df.as_matrix())
comb_np_array = np.vstack(np_array_list)
big_frame = pd.DataFrame(comb_np_array)
big_frame.columns = ["col1", "col2"....]
Timing statistics:
total files :192
avg lines per file :8492
--approach 1 without NumPy -- 8.248656988143921 seconds ---
total records old :1630571
--approach 2 with NumPy -- 2.289292573928833 seconds ---
A one-liner using map, but if you'd like to specify additional arguments, you could do:
import pandas as pd
import glob
import functools
df = pd.concat(map(functools.partial(pd.read_csv, sep='|', compression=None),
glob.glob("data/*.csv")))
Note: map by itself does not let you supply additional arguments.
If you want to search recursively (Python 3.5 or above), you can do the following:
from glob import iglob
import pandas as pd
path = r'C:\user\your\path\**\*.csv'
all_rec = iglob(path, recursive=True)
dataframes = (pd.read_csv(f) for f in all_rec)
big_dataframe = pd.concat(dataframes, ignore_index=True)
Note that the three last lines can be expressed in one single line:
df = pd.concat((pd.read_csv(f) for f in iglob(path, recursive=True)), ignore_index=True)
You can find the documentation of ** here. Also, I used iglobinstead of glob, as it returns an iterator instead of a list.
EDIT: Multiplatform recursive function:
You can wrap the above into a multiplatform function (Linux, Windows, Mac), so you can do:
df = read_df_rec('C:\user\your\path', *.csv)
Here is the function:
from glob import iglob
from os.path import join
import pandas as pd
def read_df_rec(path, fn_regex=r'*.csv'):
return pd.concat((pd.read_csv(f) for f in iglob(
join(path, '**', fn_regex), recursive=True)), ignore_index=True)
Inspired from MrFun's answer:
import glob
import pandas as pd
list_of_csv_files = glob.glob(directory_path + '/*.csv')
list_of_csv_files.sort()
df = pd.concat(map(pd.read_csv, list_of_csv_files), ignore_index=True)
Notes:
By default, the list of files generated through glob.glob is not sorted. On the other hand, in many scenarios, it's required to be sorted e.g. one may want to analyze number of sensor-frame-drops v/s timestamp.
In pd.concat command, if ignore_index=True is not specified then it reserves the original indices from each dataframes (i.e. each individual CSV file in the list) and the main dataframe looks like
timestamp id valid_frame
0
1
2
.
.
.
0
1
2
.
.
.
With ignore_index=True, it looks like:
timestamp id valid_frame
0
1
2
.
.
.
108
109
.
.
.
IMO, this is helpful when one may want to manually create a histogram of number of frame drops v/s one minutes (or any other duration) bins and want to base the calculation on very first timestamp e.g.
begin_timestamp = df['timestamp'][0]
Without, ignore_index=True, df['timestamp'][0] generates the series containing very first timestamp from all the individual dataframes, it does not give just a value.
Another one-liner with list comprehension which allows to use arguments with read_csv.
df = pd.concat([pd.read_csv(f'dir/{f}') for f in os.listdir('dir') if f.endswith('.csv')])
Alternative using the pathlib library (often preferred over os.path).
This method avoids iterative use of pandas concat()/apped().
From the pandas documentation:
It is worth noting that concat() (and therefore append()) makes a full copy of the data, and that constantly reusing this function can create a significant performance hit. If you need to use the operation over several datasets, use a list comprehension.
import pandas as pd
from pathlib import Path
dir = Path("../relevant_directory")
df = (pd.read_csv(f) for f in dir.glob("*.csv"))
df = pd.concat(df)
If multiple CSV files are zipped, you may use zipfile to read all and concatenate as below:
import zipfile
import pandas as pd
ziptrain = zipfile.ZipFile('yourpath/yourfile.zip')
train = []
train = [ pd.read_csv(ziptrain.open(f)) for f in ziptrain.namelist() ]
df = pd.concat(train)
Based on Sid's good answer.
To identify issues of missing or unaligned columns
Before concatenating, you can load CSV files into an intermediate dictionary which gives access to each data set based on the file name (in the form dict_of_df['filename.csv']). Such a dictionary can help you identify issues with heterogeneous data formats, when column names are not aligned for example.
Import modules and locate file paths:
import os
import glob
import pandas
from collections import OrderedDict
path =r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
Note: OrderedDict is not necessary, but it'll keep the order of files which might be useful for analysis.
Load CSV files into a dictionary. Then concatenate:
dict_of_df = OrderedDict((f, pandas.read_csv(f)) for f in filenames)
pandas.concat(dict_of_df, sort=True)
Keys are file names f and values are the data frame content of CSV files.
Instead of using f as a dictionary key, you can also use os.path.basename(f) or other os.path methods to reduce the size of the key in the dictionary to only the smaller part that is relevant.
import os
os.system("awk '(NR == 1) || (FNR > 1)' file*.csv > merged.csv")
Where NR and FNR represent the number of the line being processed.
FNR is the current line within each file.
NR == 1 includes the first line of the first file (the header), while FNR > 1 skips the first line of each subsequent file.
In case of an unnamed column issue, use this code for merging multiple CSV files along the x-axis.
import glob
import os
import pandas as pd
merged_df = pd.concat([pd.read_csv(csv_file, index_col=0, header=0) for csv_file in glob.glob(
os.path.join("data/", "*.csv"))], axis=0, ignore_index=True)
merged_df.to_csv("merged.csv")
You can do it this way also:
import pandas as pd
import os
new_df = pd.DataFrame()
for r, d, f in os.walk(csv_folder_path):
for file in f:
complete_file_path = csv_folder_path+file
read_file = pd.read_csv(complete_file_path)
new_df = new_df.append(read_file, ignore_index=True)
new_df.shape
Consider using convtools library, which provides lots of data processing primitives and generates simple ad hoc code under the hood.
It is not supposed to be faster than pandas/polars, but sometimes it can be.
e.g. you could concat csv files into one for further reuse - here's the code:
import glob
from convtools import conversion as c
from convtools.contrib.tables import Table
import pandas as pd
def test_pandas():
df = pd.concat(
(
pd.read_csv(filename, index_col=None, header=0)
for filename in glob.glob("tmp/*.csv")
),
axis=0,
ignore_index=True,
)
df.to_csv("out.csv", index=False)
# took 20.9 s
def test_convtools():
table = None
for filename in glob.glob("tmp/*.csv"):
table_ = Table.from_csv(filename, header=False)
if table is None:
table = table_
else:
table = table.chain(table_)
table.into_csv("out_convtools.csv", include_header=False)
# took 15.8 s
Of course if you just want to obtain a dataframe without writing a concatenated file, it will take 4.63 s and 10.9 s correspondingly (pandas is faster here because it doesn't need to zip columns for writing it back).
import pandas as pd
import glob
path = r'C:\DRO\DCL_rawdata_files' # use your path
file_path_list = glob.glob(path + "/*.csv")
file_iter = iter(file_path_list)
list_df_csv = []
list_df_csv.append(pd.read_csv(next(file_iter)))
for file in file_iter:
lsit_df_csv.append(pd.read_csv(file, header=0))
df = pd.concat(lsit_df_csv, ignore_index=True)
This is how you can do it using Colaboratory on Google Drive:
import pandas as pd
import glob
path = r'/content/drive/My Drive/data/actual/comments_only' # Use your path
all_files = glob.glob(path + "/*.csv")
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True,sort=True)
frame.to_csv('/content/drive/onefile.csv')

Categories