AttributeError: ‘RNN’ object has no attribute ‘weight_hh_l’ [duplicate] - python

I'd like to initialize the parameters of RNN with np arrays.
In the following example, I want to pass w to the parameters of rnn. I know pytorch provides many initialization methods like Xavier, uniform, etc., but is there way to initialize the parameters by passing numpy arrays?
import numpy as np
import torch as nn
rng = np.random.RandomState(313)
w = rng.randn(input_size, hidden_size).astype(np.float32)
rnn = nn.RNN(input_size, hidden_size, num_layers)

First, let's note that nn.RNN has more than one weight variable, c.f. the documentation:
Variables:
weight_ih_l[k] – the learnable input-hidden weights of the k-th layer, of shape (hidden_size * input_size) for k = 0. Otherwise,
the shape is (hidden_size * hidden_size)
weight_hh_l[k] – the learnable hidden-hidden weights of the k-th layer, of shape (hidden_size * hidden_size)
bias_ih_l[k] – the learnable input-hidden bias of the k-th layer, of shape (hidden_size)
bias_hh_l[k] – the learnable hidden-hidden bias of the k-th layer, of shape (hidden_size)
Now, each of these variables (Parameter instances) are attributes of your nn.RNN instance. You can access them, and edit them, two ways, as show below:
Solution 1: Accessing all the RNN Parameter attributes by name (rnn.weight_hh_lK, rnn.weight_ih_lK, etc.):
import torch
from torch import nn
import numpy as np
input_size, hidden_size, num_layers = 3, 4, 2
use_bias = True
rng = np.random.RandomState(313)
rnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)
def set_nn_parameter_data(layer, parameter_name, new_data):
param = getattr(layer, parameter_name)
param.data = new_data
for i in range(num_layers):
weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
set_nn_parameter_data(rnn, "weight_hh_l{}".format(i),
torch.from_numpy(weights_hh_layer_i))
set_nn_parameter_data(rnn, "weight_ih_l{}".format(i),
torch.from_numpy(weights_ih_layer_i))
if use_bias:
bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)
bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)
set_nn_parameter_data(rnn, "bias_hh_l{}".format(i),
torch.from_numpy(bias_hh_layer_i))
set_nn_parameter_data(rnn, "bias_ih_l{}".format(i),
torch.from_numpy(bias_ih_layer_i))
Solution 2: Accessing all the RNN Parameter attributes through rnn.all_weights list attribute:
import torch
from torch import nn
import numpy as np
input_size, hidden_size, num_layers = 3, 4, 2
use_bias = True
rng = np.random.RandomState(313)
rnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)
for i in range(num_layers):
weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
rnn.all_weights[i][0].data = torch.from_numpy(weights_ih_layer_i)
rnn.all_weights[i][1].data = torch.from_numpy(weights_hh_layer_i)
if use_bias:
bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)
bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)
rnn.all_weights[i][2].data = torch.from_numpy(bias_ih_layer_i)
rnn.all_weights[i][3].data = torch.from_numpy(bias_hh_layer_i)

As a detailed answer is provided, I just to add one more sentence. The parameters of an nn.Module are Tensors (previously, it used to be autograd variables, which is deperecated in Pytorch 0.4). So, essentially you need to use the torch.from_numpy() method to convert the Numpy array to Tensor and then use them to initialize the nn.Module parameters.

Related

Keras implementation of custom layer

I am more or less new to the field of neural networks and python, just a couple of months of work.
I am interested in this case developed in matlab https://it.mathworks.com/help/images/image-processing-operator-approximation-using-deep-learning.html
However, I would like to try to implement this using Keras.
I have three questions regarding the two custom layers this net uses, whose codes are found here:
https://github.com/catsymptote/Salsa_cryptanalysis/blob/master/matlab/workspace/adaptiveNormalizationMu.m
https://github.com/catsymptote/Salsa_cryptanalysis/blob/master/matlab/workspace/adaptiveNormalizationLambda.m
I have not really/deeply understood what these layers actually do
Is my temptative implementation of adaptiveNormalizationMu correct on Keras? Based on what I
understood, this layer just multiplies the output of the BN layer for an adaptive scale
parameter, mu. I wrote the code following the example reported here
https://www.tutorialspoint.com/keras/keras_customized_layer.htm
I am struggling with the variables input_shape and output_shape of the code I wrote following the tutorial.
Considering batch size BS, images with dimensions dim1 and dim2, 1 channel, I would love the input to have dimension (BS, dim1, dim2, 1), and output to have the same, since it is a mere scaling. How to be coherent with the code written in matlab in the mathworks example, where the only input argument is numberOfFilters? I don't know where to introduce this parameter in the code I am trying to write. I would love not to fix the input dimension, so that I can re-use this layer at different depths of the network, but correctly choose the "depht" (like the number of filters for a standard conv2D layer)
Thank you so much for the help
F.
###
from keras import backend as K
from keras.layers import Layer
class MyAdaptiveNormalizationMu(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyAdaptiveNormalizationMu, self).__init__(**kwargs)
def build(self, input_shape):
self.mu = self.add_weight(name = 'mu',
shape = (input_shape[1], self.output_dim),
initializer = 'random_normal', trainable = True)
super(MyAdaptiveNormalizationMu, self).build(input_shape)
def call(self, input_data):
return input_data * self.mu
def compute_output_shape(self, input_shape): return (input_shape[0], self.output_dim)
from keras.models import Sequential
batch_size = 16
dim1 = 8
dim2 = 8
channels = 1
input_shape = (batch_size, dim1, dim2, channels)
output_shape = input_shape
model = Sequential()
model.add(MyAdaptiveNormalizationMu(output_dim=?, input_shape=?))
EDIT: I provide a second realization attempt, which seems to compile. It should do what I think adaptiveNormalizationLambda and adaptiveNormalizationMu do: multiply the input for a learnable weight matrix. However, i am still unsure if the layer is doing what it is supposed to, and if I got correctly the sense of those layers.
from keras.layers import Layer, Input
from keras.models import Model
import numpy as np
class Multiply_Weights(Layer):
def __init__(self, **kwargs):
super(Multiply_Weights, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[1], input_shape[2]),
initializer='RandomNormal',
trainable=True)
super(Multiply_Weights, self).build(input_shape)
def call(self, x, **kwargs):
# Implicit broadcasting occurs here.
# Shape x: (BATCH_SIZE, N, M)
# Shape kernel: (N, M)
# Shape output: (BATCH_SIZE, N, M)
return x * self.kernel
def compute_output_shape(self, input_shape):
return input_shape
N = 3
M = 4
BATCH_SIZE = 1
a = Input(shape=(N, M))
layer = Multiply_Weights()(a)
model = Model(inputs=a,
outputs=layer)
a = np.ones(shape=(BATCH_SIZE, N, M))
pred = model.predict(a)
print(pred)

Using RNN Trained Model without pytorch installed

I have trained an RNN model with pytorch. I need to use the model for prediction in an environment where I'm unable to install pytorch because of some strange dependency issue with glibc. However, I can install numpy and scipy and other libraries. So, I want to use the trained model, with the network definition, without pytorch.
I have the weights of the model as I save the model with its state dict and weights in the standard way, but I can also save it using just json/pickle files or similar.
I also have the network definition, which depends on pytorch in a number of ways. This is my RNN network definition.
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import random
torch.manual_seed(1)
random.seed(1)
device = torch.device('cpu')
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size,num_layers, matching_in_out=False, batch_size=1):
super(RNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.batch_size = batch_size
self.matching_in_out = matching_in_out #length of input vector matches the length of output vector
self.lstm = nn.LSTM(input_size, hidden_size,num_layers)
self.hidden2out = nn.Linear(hidden_size, output_size)
self.hidden = self.init_hidden()
def forward(self, feature_list):
feature_list=torch.tensor(feature_list)
if self.matching_in_out:
lstm_out, _ = self.lstm( feature_list.view(len( feature_list), 1, -1))
output_space = self.hidden2out(lstm_out.view(len( feature_list), -1))
output_scores = torch.sigmoid(output_space) #we'll need to check if we need this sigmoid
return output_scores #output_scores
else:
for i in range(len(feature_list)):
cur_ft_tensor=feature_list[i]#.view([1,1,self.input_size])
cur_ft_tensor=cur_ft_tensor.view([1,1,self.input_size])
lstm_out, self.hidden = self.lstm(cur_ft_tensor, self.hidden)
outs=self.hidden2out(lstm_out)
return outs
def init_hidden(self):
#return torch.rand(self.num_layers, self.batch_size, self.hidden_size)
return (torch.rand(self.num_layers, self.batch_size, self.hidden_size).to(device),
torch.rand(self.num_layers, self.batch_size, self.hidden_size).to(device))
I am aware of this question, but I'm willing to go as low level as possible. I can work with numpy array instead of tensors, and reshape instead of view, and I don't need a device setting.
Based on the class definition above, what I can see here is that I only need the following components from torch to get an output from the forward function:
nn.LSTM
nn.Linear
torch.sigmoid
I think I can easily implement the sigmoid function using numpy. However, can I have some implementation for the nn.LSTM and nn.Linear using something not involving pytorch? Also, how will I use the weights from the state dict into the new class?
So, the question is, how can I "translate" this RNN definition into a class that doesn't need pytorch, and how to use the state dict weights for it?
Alternatively, is there a "light" version of pytorch, that I can use just to run the model and yield a result?
EDIT
I think it might be useful to include the numpy/scipy equivalent for both nn.LSTM and nn.linear. It would help us compare the numpy output to torch output for the same code, and give us some modular code/functions to use. Specifically, a numpy equivalent for the following would be great:
rnn = nn.LSTM(10, 20, 2)
input = torch.randn(5, 3, 10)
h0 = torch.randn(2, 3, 20)
c0 = torch.randn(2, 3, 20)
output, (hn, cn) = rnn(input, (h0, c0))
and also for linear:
m = nn.Linear(20, 30)
input = torch.randn(128, 20)
output = m(input)
You should try to export the model using torch.onnx. The page gives you an example that you can start with.
An alternative is to use TorchScript, but that requires torch libraries.
Both of these can be run without python. You can load torchscript in a C++ application https://pytorch.org/tutorials/advanced/cpp_export.html
ONNX is much more portable and you can use in languages such as C#, Java, or Javascript
https://onnxruntime.ai/ (even on the browser)
A running example
Just modifying a little your example to go over the errors I found
Notice that via tracing any if/elif/else, for, while will be unrolled
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import random
torch.manual_seed(1)
random.seed(1)
device = torch.device('cpu')
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size,num_layers, matching_in_out=False, batch_size=1):
super(RNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.batch_size = batch_size
self.matching_in_out = matching_in_out #length of input vector matches the length of output vector
self.lstm = nn.LSTM(input_size, hidden_size,num_layers)
self.hidden2out = nn.Linear(hidden_size, output_size)
def forward(self, x, h0, c0):
lstm_out, (hidden_a, hidden_b) = self.lstm(x, (h0, c0))
outs=self.hidden2out(lstm_out)
return outs, (hidden_a, hidden_b)
def init_hidden(self):
#return torch.rand(self.num_layers, self.batch_size, self.hidden_size)
return (torch.rand(self.num_layers, self.batch_size, self.hidden_size).to(device).detach(),
torch.rand(self.num_layers, self.batch_size, self.hidden_size).to(device).detach())
# convert the arguments passed during onnx.export call
class MWrapper(nn.Module):
def __init__(self, model):
super(MWrapper, self).__init__()
self.model = model;
def forward(self, kwargs):
return self.model(**kwargs)
Run an example
rnn = RNN(10, 10, 10, 3)
X = torch.randn(3,1,10)
h0,c0 = rnn.init_hidden()
print(rnn(X, h0, c0)[0])
Use the same input to trace the model and export an onnx file
torch.onnx.export(MWrapper(rnn), {'x':X,'h0':h0,'c0':c0}, 'rnn.onnx',
dynamic_axes={'x':{1:'N'},
'c0':{1: 'N'},
'h0':{1: 'N'}
},
input_names=['x', 'h0', 'c0'],
output_names=['y', 'hn', 'cn']
)
Notice that you can use symbolic values for the dimensions of some axes of some inputs. Unspecified dimensions will be fixed with the values from the traced inputs. By default LSTM uses dimension 1 as batch.
Next we load the ONNX model and pass the same inputs
import onnxruntime
ort_model = onnxruntime.InferenceSession('rnn.onnx')
print(ort_model.run(['y'], {'x':X.numpy(), 'c0':c0.numpy(), 'h0':h0.numpy()}))
Basically implementing it in numpy and copying weights from your pytorch model can do the trick. For your usecase you will only need to do a forward pass so we just need to implement that only
#Set Parameters for a small LSTM network
input_size = 2 # size of one 'event', or sample, in our batch of data
hidden_dim = 3 # 3 cells in the LSTM layer
output_size = 1 # desired model output
num_layers=3
torch_lstm = RNN( input_size,
hidden_dim ,
output_size,
num_layers,
matching_in_out=True
)
state = torch_lstm.state_dict() # state will capture the weights of your model
Now for LSTM in numpy these functions will be used:
got the below code from this link: https://towardsdatascience.com/the-lstm-reference-card-6163ca98ae87
### NOT MY CODE
import numpy as np
from scipy.special import expit as sigmoid
def forget_gate(x, h, Weights_hf, Bias_hf, Weights_xf, Bias_xf, prev_cell_state):
forget_hidden = np.dot(Weights_hf, h) + Bias_hf
forget_eventx = np.dot(Weights_xf, x) + Bias_xf
return np.multiply( sigmoid(forget_hidden + forget_eventx), prev_cell_state )
def input_gate(x, h, Weights_hi, Bias_hi, Weights_xi, Bias_xi, Weights_hl, Bias_hl, Weights_xl, Bias_xl):
ignore_hidden = np.dot(Weights_hi, h) + Bias_hi
ignore_eventx = np.dot(Weights_xi, x) + Bias_xi
learn_hidden = np.dot(Weights_hl, h) + Bias_hl
learn_eventx = np.dot(Weights_xl, x) + Bias_xl
return np.multiply( sigmoid(ignore_eventx + ignore_hidden), np.tanh(learn_eventx + learn_hidden) )
def cell_state(forget_gate_output, input_gate_output):
return forget_gate_output + input_gate_output
def output_gate(x, h, Weights_ho, Bias_ho, Weights_xo, Bias_xo, cell_state):
out_hidden = np.dot(Weights_ho, h) + Bias_ho
out_eventx = np.dot(Weights_xo, x) + Bias_xo
return np.multiply( sigmoid(out_eventx + out_hidden), np.tanh(cell_state) )
We would need the sigmoid function as well so
def sigmoid(x):
return 1/(1 + np.exp(-x))
Because pytorch stores weights in stacked manner so we need to break it up for that we would need the below function
def get_slices(hidden_dim):
slices=[]
breaker=(hidden_dim*4)
slices=[[i,i+3] for i in range(0, breaker, breaker//4)]
return slices
Now we have the functions ready for lstm, now we create an lstm class to copy the weights from pytorch class and get the output from it.
class numpy_lstm:
def __init__( self, layer_num=0, hidden_dim=1, matching_in_out=False):
self.matching_in_out=matching_in_out
self.layer_num=layer_num
self.hidden_dim=hidden_dim
def init_weights_from_pytorch(self, state):
slices=get_slices(self.hidden_dim)
print (slices)
#Event (x) Weights and Biases for all gates
lstm_weight_ih='lstm.weight_ih_l'+str(self.layer_num)
self.Weights_xi = state[lstm_weight_ih][slices[0][0]:slices[0][1]].numpy() # shape [h, x]
self.Weights_xf = state[lstm_weight_ih][slices[1][0]:slices[1][1]].numpy() # shape [h, x]
self.Weights_xl = state[lstm_weight_ih][slices[2][0]:slices[2][1]].numpy() # shape [h, x]
self.Weights_xo = state[lstm_weight_ih][slices[3][0]:slices[3][1]].numpy() # shape [h, x]
lstm_bias_ih='lstm.bias_ih_l'+str(self.layer_num)
self.Bias_xi = state[lstm_bias_ih][slices[0][0]:slices[0][1]].numpy() #shape is [h, 1]
self.Bias_xf = state[lstm_bias_ih][slices[1][0]:slices[1][1]].numpy() #shape is [h, 1]
self.Bias_xl = state[lstm_bias_ih][slices[2][0]:slices[2][1]].numpy() #shape is [h, 1]
self.Bias_xo = state[lstm_bias_ih][slices[3][0]:slices[3][1]].numpy() #shape is [h, 1]
lstm_weight_hh='lstm.weight_hh_l'+str(self.layer_num)
#Hidden state (h) Weights and Biases for all gates
self.Weights_hi = state[lstm_weight_hh][slices[0][0]:slices[0][1]].numpy() #shape is [h, h]
self.Weights_hf = state[lstm_weight_hh][slices[1][0]:slices[1][1]].numpy() #shape is [h, h]
self.Weights_hl = state[lstm_weight_hh][slices[2][0]:slices[2][1]].numpy() #shape is [h, h]
self.Weights_ho = state[lstm_weight_hh][slices[3][0]:slices[3][1]].numpy() #shape is [h, h]
lstm_bias_hh='lstm.bias_hh_l'+str(self.layer_num)
self.Bias_hi = state[lstm_bias_hh][slices[0][0]:slices[0][1]].numpy() #shape is [h, 1]
self.Bias_hf = state[lstm_bias_hh][slices[1][0]:slices[1][1]].numpy() #shape is [h, 1]
self.Bias_hl = state[lstm_bias_hh][slices[2][0]:slices[2][1]].numpy() #shape is [h, 1]
self.Bias_ho = state[lstm_bias_hh][slices[3][0]:slices[3][1]].numpy() #shape is [h, 1]
def forward_lstm_pass(self,input_data):
h = np.zeros(self.hidden_dim)
c = np.zeros(self.hidden_dim)
output_list=[]
for eventx in input_data:
f = forget_gate(eventx, h, self.Weights_hf, self.Bias_hf, self.Weights_xf, self.Bias_xf, c)
i = input_gate(eventx, h, self.Weights_hi, self.Bias_hi, self.Weights_xi, self.Bias_xi,
self.Weights_hl, self.Bias_hl, self.Weights_xl, self.Bias_xl)
c = cell_state(f,i)
h = output_gate(eventx, h, self.Weights_ho, self.Bias_ho, self.Weights_xo, self.Bias_xo, c)
if self.matching_in_out: # doesnt make sense but it was as it was in main code :(
output_list.append(h)
if self.matching_in_out:
return output_list
else:
return h
Similarly for fully connected layer,
class fully_connected_layer:
def __init__(self,state, dict_name='fc', ):
self.fc_Weight = state[dict_name+'.weight'][0].numpy()
self.fc_Bias = state[dict_name+'.bias'][0].numpy() #shape is [,output_size]
def forward(self,lstm_output, is_sigmoid=True):
res=np.dot(self.fc_Weight, lstm_output)+self.fc_Bias
print (res)
if is_sigmoid:
return sigmoid(res)
else:
return res
Now we would need one class to call all of them together and generalise them with respect to multiple layers
You can modify the below class if you need more Fully connected layers or want to set false condition for sigmoid etc.
class RNN_model_Numpy:
def __init__(self, state, input_size, hidden_dim, output_size, num_layers, matching_in_out=True):
self.lstm_layers=[]
for i in range(0, num_layers):
lstm_layer_obj=numpy_lstm(layer_num=i, hidden_dim=hidden_dim, matching_in_out=True)
lstm_layer_obj.init_weights_from_pytorch(state)
self.lstm_layers.append(lstm_layer_obj)
self.hidden2out=fully_connected_layer(state, dict_name='hidden2out')
def forward(self, feature_list):
for x in self.lstm_layers:
lstm_output=x.forward_lstm_pass(feature_list)
feature_list=lstm_output
return self.hidden2out.forward(feature_list, is_sigmoid=False)
Sanity check on a numpy variable:
data = np.array(
[[1,1],
[2,2],
[3,3]])
check=RNN_model_Numpy(state, input_size, hidden_dim, output_size, num_layers)
check.forward(data)
EXPLANATION:
Since we just need forward pass, we would need certain functions that are required in LSTM, for that we have the forget gate, input gate, cell gate and output gate. They are just some operations that are done on the input that you give.
For get_slices function, this is used to break down the weight matrix that we get from pytorch state dictionary (state dictionary) is the dictionary which contains the weights of all the layers that we have in our network.
For LSTM particularly have it in this order ignore, forget, learn, output. So for that we would need to break it up for different LSTM cells.
For numpy_lstm class, we have init_weights_from_pytorch function which must be called, what it will do is that it will extract the weights from state dictionary which we got earlier from pytorch model object and then populate the numpy array weights with the pytorch weights. You can first train your model and then save the state dictionary through pickle and then use it.
The fully connected layer class just implements the hidden2out neural network.
Finally our rnn_model_numpy class is there to ensure that if you have multiple layers then it is able to send the output of one layer of lstm to other layer of lstm.
Lastly there is a small sanity check on data variable.
IMPORTANT NOTE: PLEASE NOTE THAT YOU MIGHT GET DIMENSION ERROR AS PYTORCH WAY OF HANDLING INPUT IS COMPLETELY DIFFERENT SO PLEASE ENSURE THAT YOU INPUT NUMPY IS OF SIMILAR SHAPE AS DATA VARIABLE.
Important references:
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
https://christinakouridi.blog/2019/06/19/backpropagation-lstm/

Efficient way to get the weights of a PyTorch NN model as a tensor

I have a simple NN:
import torch
import torch.nn as nn
import torch.optim as optim
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.fc1 = nn.Linear(1, 5)
self.fc2 = nn.Linear(5, 10)
self.fc3 = nn.Linear(10, 1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Model()
Is there a more efficient way to get the weights of this network (while keeping the gradients) than iterate through every single one like this
for w_arr in net.parameters():
or
list(net.parameters())
Since the latter doesn't maintain the gradients (it converts it into a list)
You can use the torch.nn.utils.parameters_to_vector utility function.
>>> net(torch.rand(1, 1, requires_grad=True)).mean().backward()
>>> from torch.nn.utils import parameters_to_vector
>>> parameters_to_vector(net.parameters())
tensor([-0.8196, -0.7785, -0.2459, 0.4670, -0.9747, 0.1994, 0.7510, -0.6452,
0.4948, 0.3376, 0.2641, -0.0707, 0.1282, -0.2944, 0.1337, 0.0461,
-0.1491, 0.2985, 0.3031, 0.3566, 0.0058, 0.0157, -0.0712, 0.3874,
0.2870, -0.3829, 0.1178, -0.3901, -0.0425, -0.1603, 0.0408, 0.3513,
0.0289, -0.3374, -0.1820, 0.3684, -0.3069, 0.0312, -0.4205, 0.1456,
0.2833, 0.0589, -0.2229, -0.1753, -0.1829, 0.1529, 0.1097, 0.0067,
-0.2694, -0.2176, 0.2292, 0.0529, -0.2617, 0.0736, 0.1617, 0.0438,
0.2387, 0.3278, -0.0536, -0.2875, -0.0869, 0.0770, -0.0774, -0.1909,
0.2803, -0.3237, -0.3851, -0.2241, 0.2838, 0.2202, 0.3057, 0.0128,
-0.2650, 0.1660, -0.2961, -0.0123, -0.2106, -0.1021, 0.1135, -0.1051,
0.1735], grad_fn=<CatBackward>)
It will convert a parameter generator into a flat tensor while retaining gradients, which corresponds to a concatenation of all parameter tensors flattened.

Obtain the output of intermediate layer (Functional API) and use it in SubClassed API

In the keras doc, it says that if we want to pick the intermediate layer's output of the model (sequential and functional), all we need to do as follows:
model = ... # create the original model
layer_name = 'my_layer'
intermediate_layer_model = keras.Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model(data)
So, here we get two models, the intermediate_layer_model is the sub-model of its parent model. And they're independent as well. Likewise, if we get the intermediate layer's output feature maps of the parent model (or base model), and do some operation with it and get some output feature maps from this operation, then we can also impute this output feature maps back to the parent model.
input = tf.keras.Input(shape=(size,size,3))
model = tf.keras.applications.DenseNet121(input_tensor = input)
layer_name = "conv1_block1" # for example
output_feat_maps = SomeOperationLayer()(model.get_layer(layer_name).output)
# assume, they're able to add up
base = Add()([model.output, output_feat_maps])
# bind all
imputed_model = tf.keras.Model(inputs=[model.input], outputs=base)
So, in this way we have one modified model. It's quite easy with functional API. All the keras imagenet models are written with functional API (mostly). In model subclassing API, we can use these models. My concern here is, what to do if we need the intermediate output feature maps of these functional API models' inside call function.
class Subclass(tf.keras.Model):
def __init__(self, dim):
super(Subclass, self).__init__()
self.dim = dim
self.base = DenseNet121(input_shape=self.dim)
# building new model with the desired output layer of base model
self.mid_layer_model = tf.keras.Model(self.base.inputs,
self.base.get_layer(layer_name).output)
def call(self, inputs):
# forward with base model
x = self.base(inputs)
# forward with mid_layer_model
mid_feat = self.mid_layer_model(inputs)
# do some op with it
mid_x = SomeOperationLayer()(mid_feat)
# assume, they're able to add up
out = tf.keras.layers.add([x, mid_x])
return out
The issue is, here we've technically two models in a joint fashion. But unlike building a model like this, here we simply want the intermediate output feature maps (from some inputs) of the base model forward manner and use it somewhere else and get some output. Like this
mid_x = SomeOperationLayer()(self.base.get_layer(layer_name).output)
But it gives ValueError: Graph disconnected. So, currently, we have to build a new model from the base model based on our desired intermediate layer. In the init method we define or create new self.mid_layer_model model that gives our desired output feature maps like this: mid_feat = self.mid_layer_model(inputs). Next, we take the mid_faet and do some operation and get some output and lastly add them with tf.keras.layers.add([x, mid_x]). So by creating a new model with desired intermediate out works but by the same time, we repeat the same operation twice i.e the base model and its subset model. Maybe I'm missing something obvious, please add up something. Is it how it is! or there some strategies we can adopt. I've asked in the forum here, no response yet.
Update
Here is a working example. Let's say we have a custom layer like this
import tensorflow as tf
from tensorflow.keras.applications import DenseNet121
from tensorflow.keras.layers import Add
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Flatten
class ConvBlock(tf.keras.layers.Layer):
def __init__(self, kernel_num=32, kernel_size=(3,3), strides=(1,1), padding='same'):
super(ConvBlock, self).__init__()
# conv layer
self.conv = tf.keras.layers.Conv2D(kernel_num,
kernel_size=kernel_size,
strides=strides, padding=padding)
# batch norm layer
self.bn = tf.keras.layers.BatchNormalization()
def call(self, input_tensor, training=False):
x = self.conv(input_tensor)
x = self.bn(x, training=training)
return tf.nn.relu(x)
And we want to impute this layer into an ImageNet model and construct a model like this
input = tf.keras.Input(shape=(32, 32, 3))
base = DenseNet121(weights=None, input_tensor = input)
# get output feature maps of at certain layer, ie. conv2_block1_0_relu
cb = ConvBlock()(base.get_layer("conv2_block1_0_relu").output)
flat = Flatten()(cb)
dense = Dense(1000)(flat)
# adding up
adding = Add()([base.output, dense])
model = tf.keras.Model(inputs=[base.input], outputs=adding)
from tensorflow.keras.utils import plot_model
plot_model(model,
show_shapes=True, show_dtype=True,
show_layer_names=True,expand_nested=False)
Here the computation from input to layer conv2_block1_0_relu is computed one time. Next, if we want to translate this functional API to subclassing API, we had to build a model from the base model's input to layer conv2_block1_0_relu first. Like
class ModelWithMidLayer(tf.keras.Model):
def __init__(self, dim=(32, 32, 3)):
super().__init__()
self.dim = dim
self.base = DenseNet121(input_shape=self.dim, weights=None)
# building sub-model from self.base which gives
# desired output feature maps: ie. conv2_block1_0_relu
self.mid_layer = tf.keras.Model(self.base.inputs,
self.base.get_layer("conv2_block1_0_relu").output)
self.flat = Flatten()
self.dense = Dense(1000)
self.add = Add()
self.cb = ConvBlock()
def call(self, x):
# forward with base model
bx = self.base(x)
# forward with mid layer
mx = self.mid_layer(x)
# make same shape or do whatever
mx = self.dense(self.flat(mx))
# combine
out = self.add([bx, mx])
return out
def build_graph(self):
x = tf.keras.layers.Input(shape=(self.dim))
return tf.keras.Model(inputs=[x], outputs=self.call(x))
mwml = ModelWithMidLayer()
plot_model(mwml.build_graph(),
show_shapes=True, show_dtype=True,
show_layer_names=True,expand_nested=False)
Here model_1 is actually a sub-model from DenseNet, which probably leads the whole model (ModelWithMidLayer) to compute the same operation twice. If this observation is correct, then this gives us concern.
I thought it might be much complex but it's actually rather very simple. We just need to build a model with desired output layers at the __init__ method and use it normally in the call method.
import tensorflow as tf
from tensorflow.keras.applications import DenseNet121
from tensorflow.keras.layers import Add
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Flatten
class ConvBlock(tf.keras.layers.Layer):
def __init__(self, kernel_num=32, kernel_size=(3,3), strides=(1,1), padding='same'):
super(ConvBlock, self).__init__()
# conv layer
self.conv = tf.keras.layers.Conv2D(kernel_num,
kernel_size=kernel_size,
strides=strides, padding=padding)
# batch norm layer
self.bn = tf.keras.layers.BatchNormalization()
def call(self, input_tensor, training=False):
x = self.conv(input_tensor)
x = self.bn(x, training=training)
return tf.nn.relu(x)
class ModelWithMidLayer(tf.keras.Model):
def __init__(self, dim=(32, 32, 3)):
super().__init__()
self.dim = dim
self.base = DenseNet121(input_shape=self.dim, weights=None)
# building sub-model from self.base which gives
# desired output feature maps: ie. conv2_block1_0_relu
self.mid_layer = tf.keras.Model(
inputs=[self.base.inputs],
outputs=[
self.base.get_layer("conv2_block1_0_relu").output,
self.base.output])
self.flat = Flatten()
self.dense = Dense(1000)
self.add = Add()
self.cb = ConvBlock()
def call(self, x):
# forward with base model
bx = self.mid_layer(x)[1] # output self.base.output
# forward with mid layer
mx = self.mid_layer(x)[0] # output base.get_layer("conv2_block1_0_relu").output
# make same shape or do whatever
mx = self.dense(self.flat(mx))
# combine
out = self.add([bx, mx])
return out
def build_graph(self):
x = tf.keras.layers.Input(shape=(self.dim))
return tf.keras.Model(inputs=[x], outputs=self.call(x))
mwml = ModelWithMidLayer()
tf.keras.utils.plot_model(mwml.build_graph(),
show_shapes=True, show_dtype=True,
show_layer_names=True,expand_nested=False)

How can I specify input dimension in neural_tangent.stax framework?

I have a code defining structure of a model
from neural_tangents import stax
from neural_tangents.stax import Dense
from jax import jit
def model(
W_std,
b_std,
width,
depth,
activation,
parameterization
):
"""Construct fully connected NN model and infinite width NTK & NNGP kernel
function.
Args:
W_std (float): Weight standard deviation.
b_std (float): Bias standard deviation.
width (int): Hidden layer width.
depth (int): Number of hidden layers.
activation (string): Activation function string, 'erf' or 'relu'.
parameterization (string): Parameterization string, 'ntk' or 'standard'.
Returns:
`(init_fn, apply_fn, kernel_fn)`
"""
act = activation_fn(activation)
layers_list = [Dense(width, W_std, b_std, parameterization=parameterization)]
def layer_block():
return stax.serial(act(), Dense(width, W_std, b_std, parameterization=parameterization))
for _ in range(depth-1):
layers_list += [layer_block()]
layers_list += [act(), Dense(1, W_std, b_std, parameterization=parameterization)]
# print (f"---- layer list is {layers_list} ------")
init_fn, apply_fn, kernel_fn = stax.serial(*layers_list)
apply_fn = jit(apply_fn)
return init_fn, apply_fn, kernel_fn
I can't see where I can establish dimension of input. By default it is 1, but I need to adapt this structure to inputs of higher dimension. width parameter in Dense specifies only output dimension. How can I change input dimension?
Code is from here
The key is that Dense doesn't require input dimension. It is specified in init_fn function:
init_fn, apply_fn, kernel_fn = model(
W_std,
b_std,
width,
depth,
activation,
parameterization
)
_, init_params = init_fn(key, input.shape)

Categories