Related
I've been struggling with plotting the line:
log y = (0.84 +/- 0.03)*(log x/ 10^45) + (44.06 +/- 0.01)
For context, x is the mid-Infrared luminosity and y is the X-ray luminosity for quasars. The problem is that I've tried plotting it normally as one does with say
x = np.linspace(0, 10**50, 100)
y = 0.84*x/10**45 + 44
plt.plot(x, y, linestyle='-')
plt.xscale('log')
plt.yscale('log')
But this is obviously wrong. I am plotting this line along with points for the data. The data itself is plotted in log space. Right now, I'm going around in circles trying to figure this out. Essentially, I need help in figuring out how to plot log y vs log x for a line.
Thank you!
You can try:
import numpy as np
from matplotlib import pyplot as plt
midir = np.logspace(40, 50, 100)
logxray = 0.84 * np.log10(midir / 1e45) + 44
plt.semilogx(midir, logxray, linestyle="-")
plt.show()
Note that this will show the x-axis labels with the notation 10^X and the y-axis just a Y (despite both showing the log-values). If you wanted them to be consistent you could do, e.g.:
logmidir = np.linspace(40, 50, 100)
logxray = 0.84 * (logmidir - 45) + 44
plt.plot(logmidir, logxray)
plt.show()
I have a code for ctg(x) but I don't want asymptotes or I want that they have a different color. I'm a beginner and I don't know what I can change in this code:
import matplotlib.ticker as tck
import matplotlib.pyplot as plt
import numpy as np
f,ax=plt.subplots(figsize=(8,5))
x=np.linspace(-np.pi, np.pi,100)
y=np.cos(x)/np.sin(x)
plt.ylim([-4, 4])
ax.plot(x/np.pi,y)
plt.title("f(x) = ctg(x)")
plt.xlabel("x")
plt.ylabel("y")
ax.xaxis.set_major_formatter(tck.FormatStrFormatter('%g $\pi$'))
plt.savefig('ctg')
plt.show()
It is not an asymptote being draw, but the line for the points around zero.
To overcome this you should create two plots for the positive and negative parts separately, making sure that the color (style?) for the two plots is the same (and optionally get the first default matplotlib color).
Since np.linspace() includes the extrema, these might accidentally create the same artifact.
To overcome this, it is enough to add/subtract a small number (epsilon) to the extrema.
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
f,ax=plt.subplots(figsize=(8,5))
# get first default color
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][0]
epsilon = 1e-7
intervals = (
(-np.pi, 0),
(0, np.pi), )
for a, b in intervals:
x=np.linspace(a + epsilon, b - epsilon, 50)
y=np.cos(x) / np.sin(x)
ax.plot(x/np.pi,y, color=color)
plt.title("f(x) = ctg(x)")
plt.xlabel("x")
plt.ylabel("y")
plt.ylim([-4, 4])
ax.xaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%g $\pi$'))
plt.savefig('ctg')
plt.show()
This code creates a figure and one subplot for cotangent function. NaN are inserted when sin(x) is tending to 0 (NaN means "Not a Number" and NaNs are not plotted or connected).
matplot-fmt-pi created by k-donn(https://pypi.org/project/matplot-fmt-pi/) used to change the formatter to make x labels and ticks correspond to multiples of π/8 in fractional format.
plot formatting (grid, legend, limits, axis) is performed as commented.
import matplotlib.pyplot as plt
import numpy as np
from matplot_fmt_pi import MultiplePi
fig, ax = plt.subplots() # creates a figure and one subplot
x = np.linspace(-2 * np.pi, 2 * np.pi, 1000)
y = 1/np.tan(x)
y[np.abs(np.sin(x)) <= np.abs(np.sin(x[1]-x[0]))] = np.nan
# This operation inserts a NaN where sin(x) is reaching 0
# NaN means "Not a Number" and NaNs are not plotted or connected
ax.plot(x, y, lw=2, color="blue", label='Cotangent')
# Set up grid, legend, and limits
ax.grid(True)
ax.axhline(0, color='black', lw=.75)
ax.axvline(0, color='black', lw=.75)
ax.set_title("Trigonometric Functions")
ax.legend(frameon=False) # remove frame legend frame
# axis formatting
ax.set_xlim(-2 * np.pi, 2 * np.pi)
pi_manager = MultiplePi(8) # number= ticks between 0 - pi
ax.xaxis.set_major_locator(pi_manager.locator())
ax.xaxis.set_major_formatter(pi_manager.formatter())
plt.ylim(top=10) # y axis limit values
plt.ylim(bottom=-10)
y_ticks = np.arange(-10, 10, 1)
plt.yticks(y_ticks)
fig
plt.show()
I have this so far:
x,y,z = data.nonzero()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z, zdir='z', c= 'red')
plt.savefig("plot.png")
Which creates:
What I'd like to do is stretch this out to make the Z axis 9 times taller and keep X and Y the same. I'd like to keep the same coordinates though.
So far I tried this guy:
fig = plt.figure(figsize=(4.,35.))
But that just stretches out the plot.png image.
The code example below provides a way to scale each axis relative to the others. However, to do so you need to modify the Axes3D.get_proj function. Below is an example based on the example provided by matplot lib: http://matplotlib.org/1.4.0/mpl_toolkits/mplot3d/tutorial.html#line-plots
(There is a shorter version at the end of this answer)
from mpl_toolkits.mplot3d.axes3d import Axes3D
from mpl_toolkits.mplot3d import proj3d
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
#Make sure these are floating point values:
scale_x = 1.0
scale_y = 2.0
scale_z = 3.0
#Axes are scaled down to fit in scene
max_scale=max(scale_x, scale_y, scale_z)
scale_x=scale_x/max_scale
scale_y=scale_y/max_scale
scale_z=scale_z/max_scale
#Create scaling matrix
scale = np.array([[scale_x,0,0,0],
[0,scale_y,0,0],
[0,0,scale_z,0],
[0,0,0,1]])
print scale
def get_proj_scale(self):
"""
Create the projection matrix from the current viewing position.
elev stores the elevation angle in the z plane
azim stores the azimuth angle in the x,y plane
dist is the distance of the eye viewing point from the object
point.
"""
relev, razim = np.pi * self.elev/180, np.pi * self.azim/180
xmin, xmax = self.get_xlim3d()
ymin, ymax = self.get_ylim3d()
zmin, zmax = self.get_zlim3d()
# transform to uniform world coordinates 0-1.0,0-1.0,0-1.0
worldM = proj3d.world_transformation(
xmin, xmax,
ymin, ymax,
zmin, zmax)
# look into the middle of the new coordinates
R = np.array([0.5, 0.5, 0.5])
xp = R[0] + np.cos(razim) * np.cos(relev) * self.dist
yp = R[1] + np.sin(razim) * np.cos(relev) * self.dist
zp = R[2] + np.sin(relev) * self.dist
E = np.array((xp, yp, zp))
self.eye = E
self.vvec = R - E
self.vvec = self.vvec / proj3d.mod(self.vvec)
if abs(relev) > np.pi/2:
# upside down
V = np.array((0, 0, -1))
else:
V = np.array((0, 0, 1))
zfront, zback = -self.dist, self.dist
viewM = proj3d.view_transformation(E, R, V)
perspM = proj3d.persp_transformation(zfront, zback)
M0 = np.dot(viewM, worldM)
M = np.dot(perspM, M0)
return np.dot(M, scale);
Axes3D.get_proj=get_proj_scale
"""
You need to include all the code above.
From here on you should be able to plot as usual.
"""
mpl.rcParams['legend.fontsize'] = 10
fig = plt.figure(figsize=(5,5))
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax.legend()
plt.show()
Standard output:
Scaled by (1, 2, 3):
Scaled by (1, 1, 3):
The reason I particularly like this method,
Swap z and x, scale by (3, 1, 1):
Below is a shorter version of the code.
from mpl_toolkits.mplot3d.axes3d import Axes3D
from mpl_toolkits.mplot3d import proj3d
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
mpl.rcParams['legend.fontsize'] = 10
fig = plt.figure(figsize=(5,5))
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
"""
Scaling is done from here...
"""
x_scale=1
y_scale=1
z_scale=2
scale=np.diag([x_scale, y_scale, z_scale, 1.0])
scale=scale*(1.0/scale.max())
scale[3,3]=1.0
def short_proj():
return np.dot(Axes3D.get_proj(ax), scale)
ax.get_proj=short_proj
"""
to here
"""
ax.plot(z, y, x, label='parametric curve')
ax.legend()
plt.show()
Please note that the answer below simplifies the patch, but uses the same underlying principle as the answer by #ChristianSarofeen.
Solution
As already indicated in other answers, it is not a feature that is currently implemented in matplotlib. However, since what you are requesting is simply a 3D transformation that can be applied to the existing projection matrix used by matplotlib, and thanks to the wonderful features of Python, this problem can be solved with a simple oneliner:
ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([scale_x, scale_y, scale_z, 1]))
where scale_x, scale_y and scale_z are values from 0 to 1 that will re-scale your plot along each of the axes accordingly. ax is simply the 3D axes which can be obtained with ax = fig.gca(projection='3d')
Explanation
To explain, the function get_proj of Axes3D generates the projection matrix from the current viewing position. Multiplying it by a scaling matrix:
scale_x, 0, 0
0, scale_y, 0
0, 0, scale_z
0, 0, 1
includes the scaling into the projection used by the renderer. So, what we are doing here is substituting the original get_proj function with an expression taking the result of the original get_proj and multiplying it by the scaling matrix.
Example
To illustrate the result with the standard parametric function example:
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z ** 2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
# OUR ONE LINER ADDED HERE:
ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([0.5, 0.5, 1, 1]))
ax.plot(x, y, z)
plt.show()
for values 0.5, 0.5, 1, we get:
while for values 0.2, 1.0, 0.2, we get:
In my case I wanted to stretch z-axis 2 times for better point visibility
from mpl_toolkits import mplot3d
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# plt.rcParams["figure.figsize"] = (10,200)
# plt.rcParams["figure.autolayout"] = True
ax = plt.axes(projection='3d')
ax.set_box_aspect(aspect = (1,1,2))
ax.plot(dataX,dataY,dataZ)
I looks like by default, mplot3d will leave quite a bit of room at the top and bottom of a very tall plot. But, you can trick it into filling that space using fig.subplots_adjust, and extending the top and bottom out of the normal plotting area (i.e. top > 1 and bottom < 0). Some trial and error here is probably needed for your particular plot.
I've created some random arrays for x, y, and z with limits similar to your plot, and have found the parameters below (bottom=-0.15, top = 1.2) seem to work ok.
You might also want to change ax.view_init to set a nice viewing angle.
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
from numpy import random
# Make some random data with similar limits to the OP's example
x,y,z=random.rand(3,100)
z*=250
y*=800
y+=900
x*=350
x+=1200
fig=plt.figure(figsize=(4,35))
# Set the bottom and top outside the actual figure limits,
# to stretch the 3D axis
fig.subplots_adjust(bottom=-0.15,top=1.2)
ax = fig.add_subplot(111, projection='3d')
# Change the viewing angle to an agreeable one
ax.view_init(2,None)
ax.scatter(x, y, z, zdir='z', c= 'red')
plt.savefig("plot.png")
Sounds like you're trying to adjust the scale of the plot. I don't think there's a way to stretch a linear scale to user specifications, but you can use set_yscale(), set_xscale(), set_zscale() to alter the scales with respect to each other.
Intuitively, set_yscale(log), set_xscale(log), set_zscale(linear) might solve your problems.
A likely better option: specify a stretch, set them all to symlog with the same log base and then specify the Z-axis's symlog scale with the linscalex/linscaley kwargs to your specifications.
More here:
http://matplotlib.org/mpl_toolkits/mplot3d/api.html
I found this while searching on a similar problem. After experimenting a bit, perhaps I can share some of my prelim findings here..matplotlib library is VAST!! (am a newcomer). Note that quite akin to this question, all i wanted was to 'visually' stretch the chart without distorting it.
Background story (only key code snippets are shown to avoid unnecessary clutter for those who know the library, and if you want a run-able code please drop a comment):
I have three 1-d ndarrays representing the X,Y and Z data points respectively. Clearly I can't use plot_surface (as it requires 2d ndarrays for each dim) so I went for the extremely useful plot_trisurf:
fig = plt.figure()
ax = Axes3D(fig)
3d_surf_obj = ax.plot_trisurf(X, Y, Z_defl, cmap=cm.jet,linewidth=0,antialiased=True)
You can think of the plot like a floating barge deforming in waves...As you can see, the axes stretch make it pretty deceiving visually (note that x is supposed to be at x6 times longer than y and >>>>> z). While the plot points are correct, I wanted something more visually 'stretched' at the very least. Was looking for A QUICK FIX, if I may. Long story cut short, I found a bit of success with...'figure.figsize' general setting (see snippet below).
matplotlib.rcParams.update({'font.serif': 'Times New Roman',
'font.size': 10.0,
'axes.labelsize': 'Medium',
'axes.labelweight': 'normal',
'axes.linewidth': 0.8,
###########################################
# THIS IS THE IMPORTANT ONE FOR STRETCHING
# default is [6,4] but...i changed it to
'figure.figsize':[15,5] # THIS ONE #
})
For [15,5] I got something like...
Pretty neat!!
So I started to push it.... and got up to [20,6] before deciding to settle there..
If you want to try for visually stretching the vertical axis, try with ratios like... [7,10], which in this case gives me ...
Not too shabby !
Should do it for visual prowess.
Multiply all your z values by 9,
ax.scatter(x, y, 9*z, zdir='z', c= 'red')
And then give the z-axis custom plot labels and spacing.
ax.ZTick = [0,-9*50, -9*100, -9*150, -9*200];
ax.ZTickLabel = {'0','-50','-100','-150','-200'};
I have this so far:
x,y,z = data.nonzero()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z, zdir='z', c= 'red')
plt.savefig("plot.png")
Which creates:
What I'd like to do is stretch this out to make the Z axis 9 times taller and keep X and Y the same. I'd like to keep the same coordinates though.
So far I tried this guy:
fig = plt.figure(figsize=(4.,35.))
But that just stretches out the plot.png image.
The code example below provides a way to scale each axis relative to the others. However, to do so you need to modify the Axes3D.get_proj function. Below is an example based on the example provided by matplot lib: http://matplotlib.org/1.4.0/mpl_toolkits/mplot3d/tutorial.html#line-plots
(There is a shorter version at the end of this answer)
from mpl_toolkits.mplot3d.axes3d import Axes3D
from mpl_toolkits.mplot3d import proj3d
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
#Make sure these are floating point values:
scale_x = 1.0
scale_y = 2.0
scale_z = 3.0
#Axes are scaled down to fit in scene
max_scale=max(scale_x, scale_y, scale_z)
scale_x=scale_x/max_scale
scale_y=scale_y/max_scale
scale_z=scale_z/max_scale
#Create scaling matrix
scale = np.array([[scale_x,0,0,0],
[0,scale_y,0,0],
[0,0,scale_z,0],
[0,0,0,1]])
print scale
def get_proj_scale(self):
"""
Create the projection matrix from the current viewing position.
elev stores the elevation angle in the z plane
azim stores the azimuth angle in the x,y plane
dist is the distance of the eye viewing point from the object
point.
"""
relev, razim = np.pi * self.elev/180, np.pi * self.azim/180
xmin, xmax = self.get_xlim3d()
ymin, ymax = self.get_ylim3d()
zmin, zmax = self.get_zlim3d()
# transform to uniform world coordinates 0-1.0,0-1.0,0-1.0
worldM = proj3d.world_transformation(
xmin, xmax,
ymin, ymax,
zmin, zmax)
# look into the middle of the new coordinates
R = np.array([0.5, 0.5, 0.5])
xp = R[0] + np.cos(razim) * np.cos(relev) * self.dist
yp = R[1] + np.sin(razim) * np.cos(relev) * self.dist
zp = R[2] + np.sin(relev) * self.dist
E = np.array((xp, yp, zp))
self.eye = E
self.vvec = R - E
self.vvec = self.vvec / proj3d.mod(self.vvec)
if abs(relev) > np.pi/2:
# upside down
V = np.array((0, 0, -1))
else:
V = np.array((0, 0, 1))
zfront, zback = -self.dist, self.dist
viewM = proj3d.view_transformation(E, R, V)
perspM = proj3d.persp_transformation(zfront, zback)
M0 = np.dot(viewM, worldM)
M = np.dot(perspM, M0)
return np.dot(M, scale);
Axes3D.get_proj=get_proj_scale
"""
You need to include all the code above.
From here on you should be able to plot as usual.
"""
mpl.rcParams['legend.fontsize'] = 10
fig = plt.figure(figsize=(5,5))
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax.legend()
plt.show()
Standard output:
Scaled by (1, 2, 3):
Scaled by (1, 1, 3):
The reason I particularly like this method,
Swap z and x, scale by (3, 1, 1):
Below is a shorter version of the code.
from mpl_toolkits.mplot3d.axes3d import Axes3D
from mpl_toolkits.mplot3d import proj3d
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
mpl.rcParams['legend.fontsize'] = 10
fig = plt.figure(figsize=(5,5))
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
"""
Scaling is done from here...
"""
x_scale=1
y_scale=1
z_scale=2
scale=np.diag([x_scale, y_scale, z_scale, 1.0])
scale=scale*(1.0/scale.max())
scale[3,3]=1.0
def short_proj():
return np.dot(Axes3D.get_proj(ax), scale)
ax.get_proj=short_proj
"""
to here
"""
ax.plot(z, y, x, label='parametric curve')
ax.legend()
plt.show()
Please note that the answer below simplifies the patch, but uses the same underlying principle as the answer by #ChristianSarofeen.
Solution
As already indicated in other answers, it is not a feature that is currently implemented in matplotlib. However, since what you are requesting is simply a 3D transformation that can be applied to the existing projection matrix used by matplotlib, and thanks to the wonderful features of Python, this problem can be solved with a simple oneliner:
ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([scale_x, scale_y, scale_z, 1]))
where scale_x, scale_y and scale_z are values from 0 to 1 that will re-scale your plot along each of the axes accordingly. ax is simply the 3D axes which can be obtained with ax = fig.gca(projection='3d')
Explanation
To explain, the function get_proj of Axes3D generates the projection matrix from the current viewing position. Multiplying it by a scaling matrix:
scale_x, 0, 0
0, scale_y, 0
0, 0, scale_z
0, 0, 1
includes the scaling into the projection used by the renderer. So, what we are doing here is substituting the original get_proj function with an expression taking the result of the original get_proj and multiplying it by the scaling matrix.
Example
To illustrate the result with the standard parametric function example:
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z ** 2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
# OUR ONE LINER ADDED HERE:
ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([0.5, 0.5, 1, 1]))
ax.plot(x, y, z)
plt.show()
for values 0.5, 0.5, 1, we get:
while for values 0.2, 1.0, 0.2, we get:
In my case I wanted to stretch z-axis 2 times for better point visibility
from mpl_toolkits import mplot3d
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# plt.rcParams["figure.figsize"] = (10,200)
# plt.rcParams["figure.autolayout"] = True
ax = plt.axes(projection='3d')
ax.set_box_aspect(aspect = (1,1,2))
ax.plot(dataX,dataY,dataZ)
I looks like by default, mplot3d will leave quite a bit of room at the top and bottom of a very tall plot. But, you can trick it into filling that space using fig.subplots_adjust, and extending the top and bottom out of the normal plotting area (i.e. top > 1 and bottom < 0). Some trial and error here is probably needed for your particular plot.
I've created some random arrays for x, y, and z with limits similar to your plot, and have found the parameters below (bottom=-0.15, top = 1.2) seem to work ok.
You might also want to change ax.view_init to set a nice viewing angle.
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
from numpy import random
# Make some random data with similar limits to the OP's example
x,y,z=random.rand(3,100)
z*=250
y*=800
y+=900
x*=350
x+=1200
fig=plt.figure(figsize=(4,35))
# Set the bottom and top outside the actual figure limits,
# to stretch the 3D axis
fig.subplots_adjust(bottom=-0.15,top=1.2)
ax = fig.add_subplot(111, projection='3d')
# Change the viewing angle to an agreeable one
ax.view_init(2,None)
ax.scatter(x, y, z, zdir='z', c= 'red')
plt.savefig("plot.png")
Sounds like you're trying to adjust the scale of the plot. I don't think there's a way to stretch a linear scale to user specifications, but you can use set_yscale(), set_xscale(), set_zscale() to alter the scales with respect to each other.
Intuitively, set_yscale(log), set_xscale(log), set_zscale(linear) might solve your problems.
A likely better option: specify a stretch, set them all to symlog with the same log base and then specify the Z-axis's symlog scale with the linscalex/linscaley kwargs to your specifications.
More here:
http://matplotlib.org/mpl_toolkits/mplot3d/api.html
I found this while searching on a similar problem. After experimenting a bit, perhaps I can share some of my prelim findings here..matplotlib library is VAST!! (am a newcomer). Note that quite akin to this question, all i wanted was to 'visually' stretch the chart without distorting it.
Background story (only key code snippets are shown to avoid unnecessary clutter for those who know the library, and if you want a run-able code please drop a comment):
I have three 1-d ndarrays representing the X,Y and Z data points respectively. Clearly I can't use plot_surface (as it requires 2d ndarrays for each dim) so I went for the extremely useful plot_trisurf:
fig = plt.figure()
ax = Axes3D(fig)
3d_surf_obj = ax.plot_trisurf(X, Y, Z_defl, cmap=cm.jet,linewidth=0,antialiased=True)
You can think of the plot like a floating barge deforming in waves...As you can see, the axes stretch make it pretty deceiving visually (note that x is supposed to be at x6 times longer than y and >>>>> z). While the plot points are correct, I wanted something more visually 'stretched' at the very least. Was looking for A QUICK FIX, if I may. Long story cut short, I found a bit of success with...'figure.figsize' general setting (see snippet below).
matplotlib.rcParams.update({'font.serif': 'Times New Roman',
'font.size': 10.0,
'axes.labelsize': 'Medium',
'axes.labelweight': 'normal',
'axes.linewidth': 0.8,
###########################################
# THIS IS THE IMPORTANT ONE FOR STRETCHING
# default is [6,4] but...i changed it to
'figure.figsize':[15,5] # THIS ONE #
})
For [15,5] I got something like...
Pretty neat!!
So I started to push it.... and got up to [20,6] before deciding to settle there..
If you want to try for visually stretching the vertical axis, try with ratios like... [7,10], which in this case gives me ...
Not too shabby !
Should do it for visual prowess.
Multiply all your z values by 9,
ax.scatter(x, y, 9*z, zdir='z', c= 'red')
And then give the z-axis custom plot labels and spacing.
ax.ZTick = [0,-9*50, -9*100, -9*150, -9*200];
ax.ZTickLabel = {'0','-50','-100','-150','-200'};
Having a volume implicitly defined by
x*y*z <= 1
for
-5 <= x <= 5
-5 <= y <= 5
-5 <= z <= 5
how would I go about plotting its outer surface using available Python modules, preferably mayavi?
I am aware of the function mlab.mesh, but I don't understand its input. It requires three 2D arrays, that I don't understand how to create having the above information.
EDIT:
Maybe my problem lies with an unsufficient understanding of the meshgrid()-function or the mgrid-class of numpy. I see that I have to use them in some way, but I do not completely grasp their purpose or what such a grid represents.
EDIT:
I arrived at this:
import numpy as np
from mayavi import mlab
x, y, z = np.ogrid[-5:5:200j, -5:5:200j, -5:5:200j]
s = x*y*z
src = mlab.pipeline.scalar_field(s)
mlab.pipeline.iso_surface(src, contours=[1., ],)
mlab.show()
This results in an isosurface (for x*y*z=1) of a volume though, which is not quite what I was looking for. What I am looking for is basically a method to draw an arbitrary surface, like a "polygon in 3d" if there is such a thing.
I created the following code, which plots a surface (works with mayavi, too). I would need to modify this code to my particular problem, but to do that I need to understand why and how a 3d surface is defined by three 2d-arrays? What do these arrays (x, y and z) represent?
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import axes3d, Axes3D
phi, theta = np.mgrid[0:np.pi:11j, 0:2*np.pi:11j]
x = np.sin(phi) * np.cos(theta)
y = np.sin(phi) * np.sin(theta)
z = np.cos(phi)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(x,y,z)
fig.show()
The outer surface, implicitly defined by
x*y*z = 1,
cannot be defined explicitly globally. To see this, consider x and y given, then:
z = 1/(x*y),
which is not defined for x = 0 or y = 0. Therefore, you can only define your surface locally for domains that do not include the singularity, e.g. for the domain
0 < x <= 5
0 < y <= 5
z is indeed defined (a hyperbolic surface). Similarly, you need to plot the surfaces for the other domains, until you have patched together
-5 <= x <= 5
-5 <= y <= 5
Note that your surface is not defined for x = 0 and y = 0, i.e. the axis of your coordinate system, so you cannot patch your surfaces together to get a globally defined surface.
Using numpy and matplotlib, you can plot one of these surfaces as follows (adopted from http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html#surface-plots):
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(0.25, 5, 0.25)
Y = np.arange(0.25, 5, 0.25)
X, Y = np.meshgrid(X, Y)
Z = 1/(X*Y)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
ax.set_zlim(0, 10)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
I'm not familiar with mayavi, but I would assume that creating the meshes with numpy would work the same.
The test case in the Mayavi docs where the function test_mesh() is defined is capable of producing a sphere. This is done by replacing
r = sin(m0*phi)**m1 + cos(m2*phi)**m3 + sin(m4*theta)**m5 + cos(m6*theta)**m7
with r = 1.0 say.
However, your problem is you need to understand that the equations you are writing define a volume when you want to draw a sphere. You need to reformulate them to give a parametric equation of a sphere. This is essentially what is done in the above example, but it may be worth your while to try it yourself. As a hint consider the equation of a circle and extend it.