Error in function 'distanceTransform' - Python, using OpenCV (3.4.9) - python

I am trying to use distance transform to contours, but I am getting an error:
out = cv2.distanceTransform(mask, distanceType=cv2.DIST_L2, maskSize=5)
cv2.error: OpenCV(3.4.9) /Users/travis/build/skvark/opencv-python/opencv/modules/imgproc/src/distransform.cpp:724: error: (-215:Assertion failed) src.type() == CV_8UC1 in function 'distanceTransform'
And this is my code:
import cv2
import imutils
pathToThePhoto = 'labrador.jpg'
img = cv2.imread(pathToThePhoto)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 100 , 255, cv2.THRESH_BINARY)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
c = max(cnts, key=cv2.contourArea)
mask = cv2.drawContours(gray, [c], -1, (0, 255, 255), 2) #Edit: Changed from img to gray
out = cv2.distanceTransform(mask, distanceType=cv2.DIST_L2, maskSize=5)
cv2.imshow("distance-transform", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
labrador.jpg:
Result after Edit:
It doesn't look like the correct result, or yes?

The issue is that the output of cv2.distanceTransform is of type np.float32.
You need to normalize out to range [0, 1] before showing out.
See OpenCV documentation:
Normalize the distance image for range = {0.0, 1.0}
so we can visualize and threshold it
cv.normalize(dist, dist, 0, 1.0, cv.NORM_MINMAX)
cv.imshow('Distance Transform Image', dist)
Here is the code:
import cv2
import imutils
pathToThePhoto = 'labrador.jpg'
img = cv2.imread(pathToThePhoto)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 100 , 255, cv2.THRESH_BINARY)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
c = max(cnts, key=cv2.contourArea)
mask = cv2.drawContours(gray, [c], -1, 255, 2) #Edit: Changed from img to gray
out = cv2.distanceTransform(mask, distanceType=cv2.DIST_L2, maskSize=5)
# Normalize the distance image for range = {0.0, 1.0}
# so we can visualize and threshold it
out = cv2.normalize(out, out, 0, 1.0, cv2.NORM_MINMAX)
cv2.imshow("distance-transform", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
out:
I am not sure if this is your intended result.
You are applying the Distance Transform on the image with the puppy.
mask:

Related

Hand contour not precise

I wrote an OpenCV program to extract the hand out of the image precisely. But is not able to get it out correctly. Below is the code and the output and the sample image which I used to test it.
import numpy as np
import cv2
# Reading image
font = cv2.FONT_HERSHEY_COMPLEX
img2 = cv2.imread('1.bmp', cv2.IMREAD_COLOR)
# Reading same image in another
# variable and converting to gray scale.
img = cv2.imread('1.bmp', cv2.IMREAD_GRAYSCALE)
# Converting image to a binary image
# ( black and white only image).
_, threshold = cv2.threshold(img, 110, 255, cv2.THRESH_BINARY)
# Detecting contours in image.
contours, _= cv2.findContours(threshold, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
contours1 = max(contours, key=cv2.contourArea)
# Going through every contours found in the image.
approx = cv2.approxPolyDP(contours1, 0.009 * cv2.arcLength(contours1, True), True)
# draws boundary of contours.
cv2.drawContours(img2, [approx], 0, (0, 0, 255), 5)
cv2.imshow('image2', img2)
# Exiting the window if 'q' is pressed on the keyboard.
if cv2.waitKey(0) & 0xFF == ord('q'):
cv2.destroyAllWindows()
Input image -
One of the reasons your contour is not precise is the obvious; the line where you approximated the contour. But you have also mentioned (in a comment) that lowering the approximation didn't solve the problem.
This is because you didn't blur the thresholded image, which resulted in the jagged edges. Here is an example where the thresholded image is blurred before the contour detection:
The code:
import cv2
import numpy as np
def process(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return cv2.threshold(img_gray, 111, 255, cv2.THRESH_BINARY)[1]
def draw_contours(img):
contours, _ = cv2.findContours(process(img), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
cv2.drawContours(img, [cnt], -1, (0, 0, 255), 2)
img = cv2.imread("image.png")
draw_contours(img)
cv2.imshow("result", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Input image:
Output image:
Still, the contour isn't very precise. This is where the Canny edge detector comes into play:
import cv2
import numpy as np
def process(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(img_gray, 111, 255, cv2.THRESH_BINARY)
img_blur = cv2.GaussianBlur(thresh, (5, 5), 4)
img_canny = cv2.Canny(img_blur, 0, 0)
img_dilate = cv2.dilate(img_canny, None, iterations=1)
return cv2.erode(img_dilate, None, iterations=0)
def draw_contours(img):
contours, _ = cv2.findContours(process(img), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
cv2.drawContours(img, [cnt], -1, (0, 0, 255), 2)
img = cv2.imread("image.png")
draw_contours(img)
cv2.imshow("result", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Need help removing a contour from image using Open CV python

I am trying to remove this rectangular contour from the binary image of this photo.
I have tried to use this tutorial https://pyimagesearch.com/2015/02/09/removing-contours-image-using-python-opencv/ but it is not yielding the desired results and I am not very clear of what the syntax does.
thresh = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 61, 10)
cntrs, hiearchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
largest_areas = sorted(cntrs, key=cv2.contourArea)
largest_cntr = [largest_areas[-1]] #rectangular contour or largest contour
mask = np.ones(thresh.shape[:2], dtype="uint8") * 255
cv2.drawContours(mask, largest_cntr, -1, 0, -1)
thresh = cv2.bitwise_and(thresh, thresh, mask=mask)
cv2.imshow("Mask", mask)
cv2.imshow("After", thresh)
In the end I get a black-filled image. How can I remove the contour from the image properly?
Full code:
import cv2,os, glob
from imutils.perspective import four_point_transform
from imutils import contours
import numpy as np
folder_dir = os.getcwd()
print(folder_dir)
img = cv2.imread(folder_dir + "/imgur.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10)
cntrs, hiearchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
largest_areas = sorted(cntrs, key=cv2.contourArea)
largest_cntr = [largest_areas[-1]] #rectangular contour or largest contour
mask = np.ones(thresh.shape[:2], dtype="uint8") * 255
cv2.drawContours(mask, largest_cntr, -1, 0, -1)
thresh = cv2.bitwise_and(thresh, thresh, mask=mask)
cv2.imshow("Mask", mask)
cv2.imshow("After", thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()

Draw bounding boxding box around whole block of text In image using python

I have the image, i have removed the noise (dots in the background) and, I want to draw a bounding box around the block of text In image how can I do it using python OpenCV
Input image:
Noise Removed Image:
Here is the code used to remove noise in background Where i can change to save images with bounding boxes around the text
import cv2
import matplotlib.pyplot as plt
import glob
import os
def remove_dots(image_path,outdir):
image = cv2.imread(image_path)
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,51,9)
# Create horizontal kernel then dilate to connect text contours
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
dilate = cv2.dilate(thresh, kernel, iterations=2)
# Find contours and filter out noise using contour approximation and area filtering
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
x,y,w,h = cv2.boundingRect(c)
area = w * h
ar = w / float(h)
if area > 1200 and area < 50000 and ar <8:
cv2.drawContours(mask, [c], -1, (255,255,255), -1)
# Bitwise-and input image and mask to get result
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
result = cv2.bitwise_and(image, image, mask=mask)
result[mask==0] = (255,255,255) # Color background white
cv2.imwrite(os.path.join(outdir,os.path.basename(image_path)),result)
for jpgfile in glob.glob(r'C:\custom\TableDetectionWork\text_detection_dataset/*'):
print(jpgfile)
remove_dots(jpgfile,r'C:\custom\TableDetectionWork\textdetect/')
You can do that by using a horizontal morphology filter to merge the letters in a mask image. Then find the contours. Then get the bounding boxes.
Input:
import cv2
import numpy as np
img = cv2.imread("john.jpg")
# convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# threshold
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# invert
thresh = 255 - thresh
# apply horizontal morphology close
kernel = np.ones((5 ,191), np.uint8)
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# get external contours
contours = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# draw contours
result = img.copy()
for cntr in contours:
# get bounding boxes
pad = 10
x,y,w,h = cv2.boundingRect(cntr)
cv2.rectangle(result, (x-pad, y-pad), (x+w+pad, y+h+pad), (0, 0, 255), 4)
# save result
cv2.imwrite("john_bbox.png",result)
# display result
cv2.imshow("thresh", thresh)
cv2.imshow("morph", morph)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Morphology Closed Image:
Bounding Boxes Image:
Here is the core of your code modified to do what you want in Python/OpenCV. It is just adding my code to the end of your code.
Input:
import cv2
import numpy as np
image = cv2.imread("john.jpg")
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,51,9)
# Create horizontal kernel then dilate to connect text contours
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
dilate = cv2.dilate(thresh, kernel, iterations=2)
# Find contours and filter out noise using contour approximation and area filtering
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
x,y,w,h = cv2.boundingRect(c)
area = w * h
ar = w / float(h)
if area > 1200 and area < 50000 and ar <8:
cv2.drawContours(mask, [c], -1, (255,255,255), -1)
# Bitwise-and input image and mask to get result
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
result = cv2.bitwise_and(image, image, mask=mask)
result[mask==0] = (255,255,255) # Color background white
# NEW CODE HERE TO END _____________________________________________________________
gray2 = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
thresh2 = cv2.threshold(gray2, 128, 255, cv2.THRESH_BINARY)[1]
thresh2 = 255 - thresh2
kernel = np.ones((5 ,191), np.uint8)
close = cv2.morphologyEx(thresh2, cv2.MORPH_CLOSE, kernel)
# get external contours
contours = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# draw contours
result2 = result.copy()
for cntr in contours:
# get bounding boxes
pad = 10
x,y,w,h = cv2.boundingRect(cntr)
cv2.rectangle(result2, (x-pad, y-pad), (x+w+pad, y+h+pad), (0, 0, 255), 4)
cv2.imwrite("john_bboxes.jpg", result2)
cv2.imshow("mask",mask)
cv2.imshow("thresh",thresh)
cv2.imshow("dilate",dilate)
cv2.imshow("result",result)
cv2.imshow("gray2",gray2)
cv2.imshow("thresh2",thresh2)
cv2.imshow("close",close)
cv2.imshow("result2",result2)
cv2.waitKey(0)
cv2.destroyAllWindows()
Bounding Boxes on Your Result:

how to avoid image frame counting, in counting contours?

how to avoid image frame counting, in counting contours?
(opencv python)
there have 6 contours with image frame.i need avoid image frame
You need to use cv2.THRESH_BINARY_INV as a parameter of threshold function.
import numpy as np
import cv2
img = cv2.imread('./tmp.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img = cv2.drawContours(img, contours, -1, (0, 255, 0), 3)
print("num contours = {}".format(len(contours)))
cv2.imwrite("./contours.png", img)
result image:

Removing contours from an image

I have contours which i want to delete from the image, What is the best way to do it ?
image = cv2.imread(path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
retr , thresh = cv2.threshold(gray_image, 190, 255, cv2.THRESH_BINARY_INV)
contours, hier = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
if cv2.contourArea(c) > 20:
x, y, w, h = cv2.boundingRect(c)
##### how to continue from here ?
Create an empty mask in the size of the image:
mask = np.zeros(image.shape[:2], dtype=image.dtype)
Next draw all the contours / boundingrect you want to keep on this mask:
cv2.drawContours(mask, [cnt], 0, (255), -1)
Alternatively you can instead draw the contours you don't want and inverse the mask (this may be more suitable in some situations):
mask= cv2.bitwise_not(mask)
Use the mask on the main image:
result = cv2.bitwise_and(image,image, mask= mask)
Edit: added code after comment.
I assumed this is about the image in your other question, so I applied the code to that image.
Result:
Code:
import numpy as np
import cv2
# load image
image = cv2.imread('image.png')
# create grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# perform threshold
retr , thresh = cv2.threshold(gray_image, 190, 255, cv2.THRESH_BINARY_INV)
# find contours
ret, contours, hier = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# create emtpy mask
mask = np.zeros(image.shape[:2], dtype=image.dtype)
# draw all contours larger than 20 on the mask
for c in contours:
if cv2.contourArea(c) > 20:
x, y, w, h = cv2.boundingRect(c)
cv2.drawContours(mask, [c], 0, (255), -1)
# apply the mask to the original image
result = cv2.bitwise_and(image,image, mask= mask)
#show image
cv2.imshow("Result", result)
cv2.imshow("Image", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

Categories