Passing big arguments in change-making problem - python

I have problem with change-making problem algorithm.
My function coin_change_solutions works well with small numbers.
For example if we pass [1,10,25] as coins and 32 as S (change that we want to get) it will return [10,10,10,1,1]. Problem occurs when I want to pass bigger numbers as I want to operate on cents, not on dollars so that I have fixed-point arithmetic (it's a must because operating on floating-point arithmetic won't be a good idea later on).
So when I pass an array with all the denominations in cents [1,5,10,25,50,100,200,500,1000,2000,10000,50000] and 50000 as change my compiler stops and doesn't show any result.
Do you know what should I do so that the algorithm has high efficiency and can be passed all the nominals in cents?
def coin_change_solutions(coins, S):
# create an S x N table for memoization
N = len(coins)
sols = [[[] for n in range(N + 1)] for s in range(S + 1)]
for n in range(0, N + 1):
sols[0][n].append([])
# fill table using bottom-up dynamic programming
for s in range(1, S+1):
for n in range(1, N+1):
without_last = sols[s][n - 1]
if (coins[n - 1] <= s):
with_last = [list(sol) + [coins[n-1]] for sol in sols[s - coins[n - 1]][n]]
else:
with_last = []
sols[s][n] = without_last + with_last
x = min(sols[S][N], key=len)
return x

Not the solution to your query, but a better solution with less space:
dp = [0] + [float('inf') for i in range(S)]
for i in range(1, S+1):
for coin in coins:
if i - coin >= 0:
dp[i] = min(dp[i], dp[i-coin] + 1)
if dp[-1] == float('inf'):
return -1
return dp[-1]
Assume dp[i] is the fewest number of coins making up amount S, then for every coin in coins, dp[i] = min(dp[i - coin] + 1).
The time complexity is O(amount * coins.length) and the space complexity is O(amount).

Related

Trying to define one of Euler's approximations to pi, getting unsupported operand type(s) for 'list and 'int'

I am trying to define a function which will approximate pi in python using one of Euler's methods. His formula is as follows:
My code so far is this:
def pi_euler1(n):
numerator = list(range(2 , n))
for i in numerator:
j = 2
while i * j <= numerator[-1]:
if i * j in numerator:
numerator.remove(i * j)
j += 1
for k in numerator:
if (k + 1) % 4 == 0:
denominator = k + 1
else:
denominator = k - 1
#Because all primes are odd, both numbers inbetween them are divisible by 2,
#and by extension 1 of the 2 numbers is divisible by 4
term = numerator / denominator
I know this is wrong, and also incomplete. I'm just not quite sure what the TypeError that I mentioned earlier actually means. I'm just quite stuck with it, I want to create a list of the terms and then find their products. Am I on the right lines?
Update:
I have worked ways around this, fixing the clearly obvious errors that were prevalent thanks to msconi and Johanc, now with the following code:
import math
def pi_euler1(n):
numerator = list(range(2 , 13 + math.ceil(n*(math.log(n)+math.log(math.log(n))))))
denominator=[]
for i in numerator:
j = 2
while i * j <= numerator[-1]:
if (i * j) in numerator:
numerator.remove(i * j)
j += 1
numerator.remove(2)
for k in numerator:
if (k + 1) % 4 == 0:
denominator.append(k+1)
else:
denominator.append(k-1)
a=1
for i in range(n):
a *= numerator[i] / denominator[i]
return 4*a
This seems to work, when I tried to plot a graph of the errors from pi in a semilogy axes scale, I was getting a domain error, but i needed to change the upper bound of the range to n+1 because log(0) is undefined. Thank you guys
Here is the code with some small modifications to get it working:
import math
def pi_euler1(n):
lim = n * n + 4
numerator = list(range(3, lim, 2))
for i in numerator:
j = 3
while i * j <= numerator[-1]:
if i * j in numerator:
numerator.remove(i * j)
j += 2
euler_product = 1
for k in numerator[:n]:
if (k + 1) % 4 == 0:
denominator = k + 1
else:
denominator = k - 1
factor = k / denominator
euler_product *= factor
return euler_product * 4
print(pi_euler1(3))
print(pi_euler1(10000))
print(math.pi)
Output:
3.28125
3.148427801913721
3.141592653589793
Remarks:
You only want the odd primes, so you can start with a list of odd numbers.
j can start with 3 and increment in steps of 2. In fact, j can start at i because all the multiples of i smaller than i*i are already removed earlier.
In general it is very bad practise to remove elements from the list over which you are iterating. See e.g. this post. Internally, Python uses an index into the list over which it iterates. Coincidently, this is not a problem in this specific case, because only numbers larger than the current are removed.
Also, removing elements from a very long list is very slow, as each time the complete list needs to be moved to fill the gap. Therefore, it is better to work with two separate lists.
You didn't calculate the resulting product, nor did you return it.
As you notice, this formula converges very slowly.
As mentioned in the comments, the previous version interpreted n as the limit for highest prime, while in fact n should be the number of primes. I adapted the code to rectify that. In the above version with a crude limit; the version below tries a tighter approximation for the limit.
Here is a reworked version, without removing from the list you're iterating. Instead of removing elements, it just marks them. This is much faster, so a larger n can be used in a reasonable time:
import math
def pi_euler_v3(n):
if n < 3:
lim = 6
else:
lim = n*n
while lim / math.log(lim) / 2 > n:
lim //= 2
print(n, lim)
numerator = list(range(3, lim, 2))
odd_primes = []
for i in numerator:
if i is not None:
odd_primes.append(i)
if len(odd_primes) >= n:
break
j = i
while i * j < lim:
numerator[(i*j-3) // 2] = None
j += 2
if len(odd_primes) != n:
print(f"Wrong limit calculation, only {len(odd_primes)} primes instead of {n}")
euler_product = 1
for k in odd_primes:
denominator = k + 1 if k % 4 == 3 else k - 1
euler_product *= k / denominator
return euler_product * 4
print(pi_euler_v2(100000))
print(math.pi)
Output:
3.141752253548891
3.141592653589793
In term = numerator / denominator you are dividing a list by a number, which doesn't make sense. Divide k by the denominator in the loop in order to use the numerator element for each of the equation's factors one by one. Then you could multiply them repeatedly to the term term *= i / denominator, which you initialize in the beginning as term = 1.
Another issue is the first loop, which won't give you the first n prime numbers. For example, for n=3, list(range(2 , n)) = [2]. Therefore, the only prime you will get is 2.

For a user input n, and 1<=i<j<=n, find the number of pairs where i*i*i=j*j using python

For a user input n, and 1<=i<j<=n, find the number of pairs where i*i*i=j*j using python
The program needs to take input from the user and if user input is 50, the output should be 3 as there are 3 such pairs :(1,1), (4,8), (9,27)using python.
def solution(n):
count=0
for i in range(1,n):
for j in range(i,n):
if (i**3==j*j):
count+=1
return count
n=int(input())
out=solution(n)
print(out)
This is the function I wrote. It works, but in the site I am practicing, it times out and asks me to optimize it further. What can I do?
You may not count how many time you find a match, but save the indices :
def solution(n):
result = []
for i in range(1, n):
for j in range(i, n):
if i ** 3 == j ** 2:
result.append((i, j))
return result
# with list comprehension
def solution(n):
return [(i, j) for i in range(1, n) for j in range(i, n) if i ** 3 == j ** 2]
OPTIMIZE
By looking at the values, you can determine which values can match, to get i**2 == j**3 t=you need i = x**3 and j = x**2 so one loop is sufficient :
def solution(n):
result = []
for i in range(1, ceil(n ** (1 / 3))):
result.append((i ** 2, i ** 3))
return result
# with list comprehension
def solution(n):
return [(i ** 2, i ** 3) for i in range(1, ceil(n ** (1 / 3)))]
Being a programmer should not prevent to keep one minute away from the computer and thinking about the mathematical problem. As an integer can be factorized as a product of prime factors at a power, i and j have to share the same prime factors, and the equality will be true for each of those prime factors. But for prime factors is is evident that you need to have a common number k with: k2 = i and k3 = j.
So the problem can be reduced to finding all numbers k, k >= 1 and k3 <= n. And the i,j pairs if you need them are just k2, k3
A trivial way is:
def solution(n)
count = 0
for i in range(n):
if i * i * i * i * i * i <= n:
count += 1
else:
break
return count
with one single loop.
But you can guess that the result will be close to n1/6, which will lead immediately to the result:
def solution(n):
def i6(i):
j = i *i * i
return j * j
i = int(n ** (1./6))
if (i == 0): return 1 # should never occur but floating point
# inaccuracy can give WEIRD results
if i6(i) > n:
return i - 1 # still floating point inaccuracy
if i6(i+1) <= n: # over convervative
return i + 1
return i
Only 3 tests whatever the value of n, at least up to 248 (mantissa size of a double value)

How to find sum of cubes of the divisors for every number from 1 to input number x in python where x can be very large

Examples,
1.Input=4
Output=111
Explanation,
1 = 1³(divisors of 1)
2 = 1³ + 2³(divisors of 2)
3 = 1³ + 3³(divisors of 3)
4 = 1³ + 2³ + 4³(divisors of 4)
------------------------
sum = 111(output)
1.Input=5
Output=237
Explanation,
1 = 1³(divisors of 1)
2 = 1³ + 2³(divisors of 2)
3 = 1³ + 3³(divisors of 3)
4 = 1³ + 2³ + 4³(divisors of 4)
5 = 1³ + 5³(divisors of 5)
-----------------------------
sum = 237 (output)
x=int(raw_input().strip())
tot=0
for i in range(1,x+1):
for j in range(1,i+1):
if(i%j==0):
tot+=j**3
print tot
Using this code I can find the answer for small number less than one million.
But I want to find the answer for very large numbers. Is there any algorithm
for how to solve it easily for large numbers?
Offhand I don't see a slick way to make this truly efficient, but it's easy to make it a whole lot faster. If you view your examples as matrices, you're summing them a row at a time. This requires, for each i, finding all the divisors of i and summing their cubes. In all, this requires a number of operations proportional to x**2.
You can easily cut that to a number of operations proportional to x, by summing the matrix by columns instead. Given an integer j, how many integers in 1..x are divisible by j? That's easy: there are x//j multiples of j in the range, so divisor j contributes j**3 * (x // j) to the grand total.
def better(x):
return sum(j**3 * (x // j) for j in range(1, x+1))
That runs much faster, but still takes time proportional to x.
There are lower-level tricks you can play to speed that in turn by constant factors, but they still take O(x) time overall. For example, note that x // j == 1 for all j such that x // 2 < j <= x. So about half the terms in the sum can be skipped, replaced by closed-form expressions for a sum of consecutive cubes:
def sum3(x):
"""Return sum(i**3 for i in range(1, x+1))"""
return (x * (x+1) // 2)**2
def better2(x):
result = sum(j**3 * (x // j) for j in range(1, x//2 + 1))
result += sum3(x) - sum3(x//2)
return result
better2() is about twice as fast as better(), but to get faster than O(x) would require deeper insight.
Quicker
Thinking about this in spare moments, I still don't have a truly clever idea. But the last idea I gave can be carried to a logical conclusion: don't just group together divisors with only one multiple in range, but also those with two multiples in range, and three, and four, and ... That leads to better3() below, which does a number of operations roughly proportional to the square root of x:
def better3(x):
result = 0
for i in range(1, x+1):
q1 = x // i
# value i has q1 multiples in range
result += i**3 * q1
# which values have i multiples?
q2 = x // (i+1) + 1
assert x // q1 == i == x // q2
if i < q2:
result += i * (sum3(q1) - sum3(q2 - 1))
if i+1 >= q2: # this becomes true when i reaches roughly sqrt(x)
break
return result
Of course O(sqrt(x)) is an enormous improvement over the original O(x**2), but for very large arguments it's still impractical. For example better3(10**6) appears to complete instantly, but better3(10**12) takes a few seconds, and better3(10**16) is time for a coffee break ;-)
Note: I'm using Python 3. If you're using Python 2, use xrange() instead of range().
One more
better4() has the same O(sqrt(x)) time behavior as better3(), but does the summations in a different order that allows for simpler code and fewer calls to sum3(). For "large" arguments, it's about 50% faster than better3() on my box.
def better4(x):
result = 0
for i in range(1, x+1):
d = x // i
if d >= i:
# d is the largest divisor that appears `i` times, and
# all divisors less than `d` also appear at least that
# often. Account for one occurence of each.
result += sum3(d)
else:
i -= 1
lastd = x // i
# We already accounted for i occurrences of all divisors
# < lastd, and all occurrences of divisors >= lastd.
# Account for the rest.
result += sum(j**3 * (x // j - i)
for j in range(1, lastd))
break
return result
It may be possible to do better by extending the algorithm in "A Successive Approximation Algorithm for Computing the Divisor Summatory Function". That takes O(cube_root(x)) time for the possibly simpler problem of summing the number of divisors. But it's much more involved, and I don't care enough about this problem to pursue it myself ;-)
Subtlety
There's a subtlety in the math that's easy to miss, so I'll spell it out, but only as it pertains to better4().
After d = x // i, the comment claims that d is the largest divisor that appears i times. But is that true? The actual number of times d appears is x // d, which we did not compute. How do we know that x // d in fact equals i?
That's the purpose of the if d >= i: guarding that comment. After d = x // i we know that
x == d*i + r
for some integer r satisfying 0 <= r < i. That's essentially what floor division means. But since d >= i is also known (that's what the if test ensures), it must also be the case that 0 <= r < d. And that's how we know x // d is i.
This can break down when d >= i is not true, which is why a different method needs to be used then. For example, if x == 500 and i == 51, d (x // i) is 9, but it's certainly not the case that 9 is the largest divisor that appears 51 times. In fact, 9 appears 500 // 9 == 55 times. While for positive real numbers
d == x/i
if and only if
i == x/d
that's not always so for floor division. But, as above, the first does imply the second if we also know that d >= i.
Just for Fun
better5() rewrites better4() for about another 10% speed gain. The real pedagogical point is to show that it's easy to compute all the loop limits in advance. Part of the point of the odd code structure above is that it magically returns 0 for a 0 input without needing to test for that. better5() gives up on that:
def isqrt(n):
"Return floor(sqrt(n)) for int n > 0."
g = 1 << ((n.bit_length() + 1) >> 1)
d = n // g
while d < g:
g = (d + g) >> 1
d = n // g
return g
def better5(x):
assert x > 0
u = isqrt(x)
v = x // u
return (sum(map(sum3, (x // d for d in range(1, u+1)))) +
sum(x // i * i**3 for i in range(1, v)) -
u * sum3(v-1))
def sum_divisors(n):
sum = 0
i = 0
for i in range (1, n) :
if n % i == 0 and n != 0 :
sum = sum + i
# Return the sum of all divisors of n, not including n
return sum
print(sum_divisors(0))
# 0
print(sum_divisors(3)) # Should sum of 1
# 1
print(sum_divisors(36)) # Should sum of 1+2+3+4+6+9+12+18
# 55
print(sum_divisors(102)) # Should be sum of 2+3+6+17+34+51
# 114

Stably computing large quantites through recursion

I have two quantities a & b that are defined by recursion and through reference to another list of values x = [ x_1, x_2, ... x_N ], which will be an input to the program. The program will iterate over all the values in x and update a & b according to:
for n in range(1,N)
a[n] = a[n-1] * exp(+x[n]) + b[n-1] * exp(-x[n])
b[n] = b[n-1] * exp(+x[n]) + a[n-1] * exp(-x[n])
and starting values
a[0] = exp(+x[0])
b[0] = exp(-x[0])
The values in x are not big numbers (always <10) but N will be in the hundreds, and because of all the exponentials the final values of a & b will be very large. I'm worried that because of the form of the recursion where we are constantly multiplying exponentially large numbers with exponentially small ones and adding them this scheme will become quite numerically unstable.
Ideally I would calculate log(a) and log(b) instead to stop the values becoming too large. But because of the recursion scheme that's not possible, unless I compute something much messier like
log_a[n] = x[n] + log_a[n-1] + log( 1 + exp(-2*x[n] + log_b[n-1]-log_a[n-1] ) )
Is numerical stability something I am right to be concerned about here? And if so would something like the log based scheme help to stabilise it?
We can rewrite that first as:
for n in range(1,N)
a[n] = exp(log(a[n-1]) + x[n]) + exp(log(b[n-1]) - x[n])
b[n] = exp(log(b[n-1]) + x[n]) + exp(log(a[n-1]) - x[n]))
Then change our iteration variables:
for n in range(1,N)
log_a[n] = log(exp(log_a[n-1] + x[n]) + exp(log_b[n-1] - x[n]))
log_b[n] = log(exp(log_b[n-1] + x[n]) + exp(log_a[n-1] - x[n]))
Which can be computed more stably using np.logaddexp:
for n in range(1,N)
log_a[n] = np.logaddexp(log_a[n-1] + x[n], log_b[n-1] - x[n])
log_b[n] = np.logaddexp(log_b[n-1] + x[n], log_a[n-1] - x[n])
The implementation of logaddexp can be seen here
As far as I'm aware, all(?) recursive problems can be solved through dynamic programming. For example, the Fibonacci sequence could be expressed like so:
def fibo(n):
if n == 0:
return 0
elif n == 1:
return 1
return fibo(n-1) + fibo(n-2)
Or, iteratively:
n = 10
fibo_nums = [0, 1]
while len(fibo_nums) <= n:
fibo_nums.append(fibo_nums[-2] + fibo_nums[-1])
Presumably if you have a recursive problem you could perform a similar unpacking.

Computing Eulers Totient Function

I am trying to find an efficient way to compute Euler's totient function.
What is wrong with this code? It doesn't seem to be working.
def isPrime(a):
return not ( a < 2 or any(a % i == 0 for i in range(2, int(a ** 0.5) + 1)))
def phi(n):
y = 1
for i in range(2,n+1):
if isPrime(i) is True and n % i == 0 is True:
y = y * (1 - 1/i)
else:
continue
return int(y)
Here's a much faster, working way, based on this description on Wikipedia:
Thus if n is a positive integer, then φ(n) is the number of integers k in the range 1 ≤ k ≤ n for which gcd(n, k) = 1.
I'm not saying this is the fastest or cleanest, but it works.
from math import gcd
def phi(n):
amount = 0
for k in range(1, n + 1):
if gcd(n, k) == 1:
amount += 1
return amount
You have three different problems...
y needs to be equal to n as initial value, not 1
As some have mentioned in the comments, don't use integer division
n % i == 0 is True isn't doing what you think because of Python chaining the comparisons! Even if n % i equals 0 then 0 == 0 is True BUT 0 is True is False! Use parens or just get rid of comparing to True since that isn't necessary anyway.
Fixing those problems,
def phi(n):
y = n
for i in range(2,n+1):
if isPrime(i) and n % i == 0:
y *= 1 - 1.0/i
return int(y)
Calculating gcd for every pair in range is not efficient and does not scales. You don't need to iterate throught all the range, if n is not a prime you can check for prime factors up to its square root, refer to https://stackoverflow.com/a/5811176/3393095.
We must then update phi for every prime by phi = phi*(1 - 1/prime).
def totatives(n):
phi = int(n > 1 and n)
for p in range(2, int(n ** .5) + 1):
if not n % p:
phi -= phi // p
while not n % p:
n //= p
#if n is > 1 it means it is prime
if n > 1: phi -= phi // n
return phi
I'm working on a cryptographic library in python and this is what i'm using. gcd() is Euclid's method for calculating greatest common divisor, and phi() is the totient function.
def gcd(a, b):
while b:
a, b=b, a%b
return a
def phi(a):
b=a-1
c=0
while b:
if not gcd(a,b)-1:
c+=1
b-=1
return c
Most implementations mentioned by other users rely on calling a gcd() or isPrime() function. In the case you are going to use the phi() function many times, it pays of to calculated these values before hand. A way of doing this is by using a so called sieve algorithm.
https://stackoverflow.com/a/18997575/7217653 This answer on stackoverflow provides us with a fast way of finding all primes below a given number.
Oke, now we can replace isPrime() with a search in our array.
Now the actual phi function:
Wikipedia gives us a clear example: https://en.wikipedia.org/wiki/Euler%27s_totient_function#Example
phi(36) = phi(2^2 * 3^2) = 36 * (1- 1/2) * (1- 1/3) = 30 * 1/2 * 2/3 = 12
In words, this says that the distinct prime factors of 36 are 2 and 3; half of the thirty-six integers from 1 to 36 are divisible by 2, leaving eighteen; a third of those are divisible by 3, leaving twelve numbers that are coprime to 36. And indeed there are twelve positive integers that are coprime with 36 and lower than 36: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, and 35.
TL;DR
With other words: We have to find all the prime factors of our number and then multiply these prime factors together using foreach prime_factor: n *= 1 - 1/prime_factor.
import math
MAX = 10**5
# CREDIT TO https://stackoverflow.com/a/18997575/7217653
def sieve_for_primes_to(n):
size = n//2
sieve = [1]*size
limit = int(n**0.5)
for i in range(1,limit):
if sieve[i]:
val = 2*i+1
tmp = ((size-1) - i)//val
sieve[i+val::val] = [0]*tmp
return [2] + [i*2+1 for i, v in enumerate(sieve) if v and i>0]
PRIMES = sieve_for_primes_to(MAX)
print("Primes generated")
def phi(n):
original_n = n
prime_factors = []
prime_index = 0
while n > 1: # As long as there are more factors to be found
p = PRIMES[prime_index]
if (n % p == 0): # is this prime a factor?
prime_factors.append(p)
while math.ceil(n / p) == math.floor(n / p): # as long as we can devide our current number by this factor and it gives back a integer remove it
n = n // p
prime_index += 1
for v in prime_factors: # Now we have the prime factors, we do the same calculation as wikipedia
original_n *= 1 - (1/v)
return int(original_n)
print(phi(36)) # = phi(2**2 * 3**2) = 36 * (1- 1/2) * (1- 1/3) = 36 * 1/2 * 2/3 = 12
It looks like you're trying to use Euler's product formula, but you're not calculating the number of primes which divide a. You're calculating the number of elements relatively prime to a.
In addition, since 1 and i are both integers, so is the division, in this case you always get 0.
With regards to efficiency, I haven't noticed anyone mention that gcd(k,n)=gcd(n-k,n). Using this fact can save roughly half the work needed for the methods involving the use of the gcd. Just start the count with 2 (because 1/n and (n-1)/k will always be irreducible) and add 2 each time the gcd is one.
Here is a shorter implementation of orlp's answer.
from math import gcd
def phi(n): return sum([gcd(n, k)==1 for k in range(1, n+1)])
As others have already mentioned it leaves room for performance optimization.
Actually to calculate phi(any number say n)
We use the Formula
where p are the prime factors of n.
So, you have few mistakes in your code:
1.y should be equal to n
2. For 1/i actually 1 and i both are integers so their evaluation will also be an integer,thus it will lead to wrong results.
Here is the code with required corrections.
def phi(n):
y = n
for i in range(2,n+1):
if isPrime(i) and n % i == 0 :
y -= y/i
else:
continue
return int(y)

Categories