I have a dictionary with multiple key defined as (arbitrary inputs):
colors = {}
colors['red'] = {}
colors['blue'] = {}
colors['red'][clustname] = np.array([])
colors['blue'][clustname] = np.array([])
basically I want to plot a red v blue graph for each 'cluster'. I have 13 'clusters' in total with differing color values for each. The names in my code are different from the arbitrary ones above, but I figured it would be easier to understand with basic values then to look at the overall code:
colpath = '/home/jacob/PHOTOMETRY/RESTFRAME_COLOURS/' #This is the path to the restframe colors
goodcolindx = {}
colfiledat = {}
colors = {}
colors['UMINV'] = {}
colors['VMINJ'] = {}
colors['NUVMINV'] = {}
colors['id'] = {}
for iclust in range(len(clustname)):
colors['UMINV'][clustname[iclust]] = np.array([])
colors['VMINJ'][clustname[iclust]] = np.array([])
colors['id'][clustname[iclust]] = np.array([])
colors['NUVMINV'][clustname[iclust]] = np.array([])
filepath = catpath + clustname[iclust] + "_totalall_" + extname[iclust] + ".cat"
photdat[clustname[iclust]] = ascii.read(filepath)
filepath = zpath + "compilation_" + clustname[iclust] + ".dat"
zdat[clustname[iclust]] = ascii.read(filepath)
colfilepath = colpath + 'RESTFRAME_MASTER_' + clustname[iclust] + '_indivredshifts.cat'
colfiledat[clustname[iclust]] = ascii.read(colfilepath)
goodcolindx[clustname[iclust]] = np.where((colfiledat[clustname[iclust]]['REDSHIFTUSED'] > 0.9) & \
(colfiledat[clustname[iclust]]['REDSHIFTUSED'] < 1.5) & \
(photdat[clustname[iclust]]['totmask'] == 0) & \
(photdat[clustname[iclust]]['K_flag'] == 0) & \
((zdat[clustname[iclust]]['quality'] == 3) | (zdat[clustname[iclust]]['quality'] == 4)))
goodcolindx[clustname[iclust]] = goodcolindx[clustname[iclust]][0]
for igood in range(len(goodcolindx[clustname[iclust]])):
idstring = str(photdat[clustname[iclust]]['id'][goodcolindx[clustname[iclust]][igood]])
colors['NUVMINV'][clustname[iclust]] = np.append(colors['NUVMINV'][clustname[iclust]], -2.5 *
np.log10(colfiledat[clustname[iclust]]['NUV'][goodcolindx[clustname[iclust]][igood]]
/ colfiledat[clustname[iclust]]['V'][goodcolindx[clustname[iclust]][igood]]))'SpARCS-0035'
colors['UMINV'][clustname[iclust]] = np.append(colors['UMINV'][clustname[iclust]], colfiledat[clustname[iclust]]['UMINV'][goodcolindx[clustname[iclust]][igood]])
colors['id'][clustname[iclust]] = np.append(colors['id'][clustname[iclust]], photdat[clustname[iclust]]['id'][goodcolindx[clustname[iclust]][igood]])
colors['VMINJ'][clustname[iclust]] = np.append(colors['VMINJ'][clustname[iclust]], colfiledat[clustname[iclust]]['VMINJ'][goodcolindx[clustname[iclust]][igood]])
for iclustc in colors:
plt.plot(colors['VMINJ'][clustname[iclustc]], colors['UMINV'][clustname[iclustc]], 'ko')
plt.show()
So in this case, my 'red' is the VMINJ and my 'blue' is the UMINV. I am trying to use a for loop to cycle through all the cluster names that I have, but I keep getting the error back 'String indices must be integers'. I understand the basics of that, but don't know how to fix my code to make plots for each 'red' v 'blue' for each cluster. Any help would be awesome, let me know if you have questions
I figured it out. I changed the for loop to:
for iclust in range(len(clustname)):
plt.plot(colors['UMINV'][clustname[iclust]]....
and that worked
Related
I've been having problems trying to estimate two variables while using fsolve. Below is the code
def f(variables):
#Ideal
n=0 #this is passed as an argument but given in this example for simplicity
P1 = 101325; T1 = 300
q = 'H2:2,O2:1,N2:{}'.format(molno[n])
mech = 'H2O2sandan.cti'
cj_speed,R2,plot_data = CJspeed(P1,T1,q,mech,fullOutput=True)
gas = PostShock_fr(cj_speed, P1, T1, q, mech)
Ta = gas.T; Ps = gas.P;
CVout1 = cvsolve(gas)
taua = CVout1['ind_time']
Tb = Ta*1.01
gas.TPX = Tb,Ps,q
CVout2 = cvsolve(gas)
taub = CVout2['ind_time']
#Constant Volume
k,Ea = variables
T_0_1= Tvn_mg_d[n]
T_vn_1 = Tvn_mg_d[n]
den = rhovn_mg_d[n]
t = np.linspace(0,0.0001,100000000)
qr = Q_mg[n]
perfect_var = T_vn_1,den,Ea,k,qr
sol_t= odeint(ode,T_0_1,t=t,args=(perfect_var,))
index = np.argmax(np.gradient(sol_t[:,0]))
tau_cv_1 = t[index]
T_0_2= Tvn_mg_d[n]*1.01
T_vn_2 = Tvn_mg_d[n]*1.01
den = rhovn_mg_d[n]
t = np.linspace(0,0.0001,100000000)
qr = Q_mg[n]
perfect_var = T_vn_2,den,Ea,k,qr
sol_t= odeint(ode,T_0_2,t=t,args=(perfect_var,))
index = np.argmax(np.gradient(sol_t[:,0]))
tau_cv_2 = t[index]
root1 = taua - t_cv_1
root2 = taub - t_cv_2
return[root1,root2]
import scipy.optimize as opt
k_guess = 95000
Ea_guess = 28*300
solution = opt.fsolve(f,(k_guess,Ea_guess))
print(solution)
I want to find values of k_guess and Ea_guess such that roo1 and roo2 are 0 (i.e. taua = t_cv_1 and taub = t_cv_2). However I don't know if I've used fsolve the right way as the values returned seem to be way off. Am I returning the right thing? I also get the below error:
lsoda-- warning..internal t (=r1) and h (=r2) are
such that in the machine, t + h = t on the next step
(h = step size). solver will continue anyway
What am I doing wrong here?
I'm trying to make a Sankey-plot using Plotly, which follows the filtering of certain documents into either being in scope or out of scope, i.e. 1 source, 2 targets, however some documents are filtered during step 1, some during step 2 etc. This leads to the following Sankey-plot:
Current output
Now what I would ideally like is for it to look something like this:
Ideal output
I've already tried to look through the documentation on : https://plot.ly/python/reference/#sankey but I fail to find what I'm looking for, ideally I would like to implement a feature to prevent the plot from overlapping nodes and links.
This is the code I'm using the generate the plot object:
def genSankeyPlotObject(df, cat_cols=[], value_cols='', visible = False):
### COLORPLATTE TO USE
colorPalette = ['472d3c', '5e3643', '7a444a', 'a05b53', 'bf7958', 'eea160', 'f4cca1', 'b6d53c', '71aa34', '397b44',
'3c5956', '302c2e', '5a5353', '7d7071', 'a0938e', 'cfc6b8', 'dff6f5', '8aebf1', '28ccdf', '3978a8',
'394778', '39314b', '564064', '8e478c', 'cd6093', 'ffaeb6', 'f4b41b', 'f47e1b', 'e6482e', 'a93b3b',
'827094', '4f546b']
### CREATES LABELLIST FROM DEFINED COLUMNS
labelList = []
for catCol in cat_cols:
labelListTemp = list(set(df[catCol].values))
labelList = labelList + labelListTemp
labelList = list(dict.fromkeys(labelList))
### DEFINES THE NUMBER OF COLORS IN THE COLORPALLET
colorNum = len(df[cat_cols[0]].unique()) + len(df[cat_cols[1]].unique()) + len(df[cat_cols[2]].unique())
TempcolorPallet = colorPalette * math.ceil(len(colorPalette)/colorNum)
shuffle(TempcolorPallet)
colorList = TempcolorPallet[0:colorNum]
### TRANSFORMS DF INTO SOURCE -> TARGET PAIRS
for i in range(len(cat_cols)-1):
if i==0:
sourceTargetDf = df[[cat_cols[i],cat_cols[i+1],value_cols]]
sourceTargetDf.columns = ['source','target','count']
else:
tempDf = df[[cat_cols[i],cat_cols[i+1],value_cols]]
tempDf.columns = ['source','target','count']
sourceTargetDf = pd.concat([sourceTargetDf,tempDf])
sourceTargetDf = sourceTargetDf.groupby(['source','target']).agg({'count':'sum'}).reset_index()
### ADDING INDEX TO SOURCE -> TARGET PAIRS
sourceTargetDf['sourceID'] = sourceTargetDf['source'].apply(lambda x: labelList.index(x))
sourceTargetDf['targetID'] = sourceTargetDf['target'].apply(lambda x: labelList.index(x))
### CREATES THE SANKEY PLOT OBJECT
data = go.Sankey(node = dict(pad = 15,
thickness = 20,
line = dict(color = "black",
width = 0.5),
label = labelList,
color = colorList),
link = dict(source = sourceTargetDf['sourceID'],
target = sourceTargetDf['targetID'],
value = sourceTargetDf['count']),
valuesuffix = ' ' + value_cols,
visible = visible)
return data
I know this is not an ideal place for questions of this scope, but I'm not sure where else to ask this or how to break it down. I've been working on a function for the past couple weeks, that runs, but for it to be feasible for my purposes, I need to speed it up 200-300x.
I have an image array, where all pixels of similar color have been averaged and set to that average value. Then I have a 2D array of the same height and width, which labels each unique and non-contiguous feature of the image.
Using these I need to assess the size of each feature and its level of contrast to each of its neighbors. These values are used in an equation and if the output of that equation is below a certain threshold, that feature is merged with its most similar neighbor.
I've uploaded the image and the feature label array (printed with numpy.savetext()) to OneDrive and attached links
code:
def textureRemover(pix, labeledPix, ratio = 1.0):
numElements = numpy.amax(labeledPix)
maxSize = numpy.count_nonzero(labeledPix)
MAXIMUMCONTRAST = 443.405
for regionID in range(numElements):
start = time.clock()
regionID += 1
if regionID not in labeledPix:
continue
#print(regionID)
#print((regionID / numElements) * 100, '%')
neighborIDs = getNeighbors(labeledPix, regionID)
if 0 in neighborIDs:
neighborIDs.remove(0) #remove white value
regionMask = labeledPix == regionID
region = pix[regionMask]
size = numpy.count_nonzero(regionMask)
contrastMin = (ratio - (size / maxSize)) * MAXIMUMCONTRAST
regionMean = region.mean(axis = 0)
if len(neighborIDs) > 200:
contrast = numpy.zeros(labeledPix.shape)
contrast[labeledPix!=0] = numpy.sqrt(numpy.sum((regionMean - pix[labeledPix!=0])**2, axis = -1))
significantMask = (contrast < contrastMin)
significantContrasts = list(numpy.unique(contrast[significantMask]))
significantNeighbors = {}
for significantContrast in significantContrasts:
minContrast = min(significantContrasts)
if labeledPix[contrast == minContrast][0] in neighborIDs:
significantNeighbors[minContrast] = labeledPix[contrast == minContrast][0]
else:
significantContrasts.pop(significantContrasts.index(minContrast))
else:
significantNeighbors = {}
for neighborID in neighborIDs:
neighborMask = labeledPix == neighborID
neighbor = pix[neighborMask]
neighborMean = neighbor.mean(axis = 0)
contrast = numpy.sqrt(numpy.sum((regionMean - neighborMean)**2, axis = -1))
if contrast < contrastMin:
significantNeighbors[contrast] = neighborID
if significantNeighbors:
contrasts = significantNeighbors.keys()
minContrast = min(contrasts)
minNeighbor = significantNeighbors[minContrast]
neighborMask = labeledPix == minNeighbor
neighborSize = numpy.count_nonzero(neighborMask)
if neighborSize <= size:
labeledPix[neighborMask] = regionID
pix[neighborMask] = regionMean
else:
labeledPix[regionMask] = minNeighbor
pix[regionMask] = pix[neighborMask].mean(axis = 0)
print(time.clock() - start)
return pix
pix
labeledPix
I know I'm asking for a lot of help, but I've been stuck on this for a few weeks and am unsure what else I can do. Any help will be greatly appreciated!
Here is an optimized version of most of your logic (I underestimated the amount of work that would be...). I skipped the >200 branch and am using fake data because I couldn't access your link. When I switch off your >200 branch your and my code appear to give the same result but mine is quite a bit faster on the fake example.
Sample output:
original
26.056154000000003
optimized
0.763613000000003
equal
True
Code:
import numpy as np
from numpy.lib.stride_tricks import as_strided
def mockdata(m, n, k):
colors = np.random.random((m, n, 3))
i, j = np.ogrid[:m, :n]
labels = np.round(k*k * (np.sin(0.05 * i) + np.sin(0.05 * j)**2)).astype(int) % k
return colors, labels
DIAG_NEIGHBORS = True
MAXIMUMCONTRAST = 443.405
def textureRemover2(pix, labeledPix, ratio=1.0):
start = time.clock()
pix, labeledPix = pix.copy(), labeledPix.copy()
pixf, labeledPixf = pix.reshape(-1, 3), labeledPix.ravel()
m, n = labeledPix.shape
s, t = labeledPix.strides
# find all sizes in O(n)
sizes = np.bincount(labeledPixf)
n_ids = len(sizes)
# make index for quick access to labeled areas
lblidx = np.split(np.argsort(labeledPixf), np.cumsum(sizes[:-1]))
lblidx[0] = None
# find all mean colors in O(n)
regionMeans = np.transpose([np.bincount(labeledPix.ravel(), px)
/ np.maximum(sizes, 1)
for px in pix.reshape(-1, 3).T])
# find all neighbors in O(n)
horz = set(frozenset(p) for bl in as_strided(labeledPix, (m,n-1,2), (s,t,t))
for p in bl)
vert = set(frozenset(p) for bl in as_strided(labeledPix, (m-1,n,2), (s,t,s))
for p in bl)
nb = horz|vert
if DIAG_NEIGHBORS:
dwnrgt = set(frozenset(p) for bl in as_strided(
labeledPix, (m-1,n-1,2), (s,t,s+t)) for p in bl)
dwnlft = set(frozenset(p) for bl in as_strided(
labeledPix[::-1], (m-1,n-1,2), (-s,t,t-s)) for p in bl)
nb = nb|dwnrgt|dwnlft
nb = {p for p in nb if len(p) == 2 and not 0 in p}
nb_dict = {}
for a, b in nb:
nb_dict.setdefault(a, set()).add(b)
nb_dict.setdefault(b, set()).add(a)
maxSize = labeledPix.size - sizes[0]
for id_ in range(1, n_ids):
nbs = list(nb_dict.get(id_, set()))
if not nbs:
continue
d = regionMeans[id_] - regionMeans[nbs]
d = np.einsum('ij,ij->i', d, d)
mnd = np.argmin(d)
if d[mnd] < ((ratio - sizes[id_]/maxSize) * MAXIMUMCONTRAST)**2:
mn = nbs[mnd]
lrg, sml = (id_, mn) if sizes[id_] >= sizes[mn] else (mn, id_)
sizes[lrg], sizes[sml] = sizes[lrg] + sizes[sml], 0
for nb in nb_dict[sml]:
nb_dict[nb].remove(sml)
nb_dict[nb].add(lrg)
nb_dict[lrg].update(nb_dict[sml])
nb_dict[lrg].remove(lrg)
nb_dict[sml] = set()
pixf[lblidx[sml]] = regionMeans[lrg]
labeledPixf[lblidx[sml]] = lrg
lblidx[lrg], lblidx[sml] = np.r_[lblidx[lrg],lblidx[sml]], None
print(time.clock() - start)
return pix
from scipy.ndimage.morphology import binary_dilation
import time
STRUCTEL = np.ones((3,3), int) if DIAG_NEIGHBORS else np.array([[0,1,0],[1,1,1],[0,1,0]], int)
def getNeighbors(labeledPix, regionID):
nb = set(labeledPix[binary_dilation(labeledPix == regionID, structure=STRUCTEL)])
nb.remove(regionID)
return sorted(nb)
numpy = np
def textureRemover(pix, labeledPix, ratio = 1.0):
pix, labeledPix = pix.copy(), labeledPix.copy()
numElements = numpy.amax(labeledPix)
maxSize = numpy.count_nonzero(labeledPix)
MAXIMUMCONTRAST = 443.405
start = time.clock()
for regionID in range(numElements):
regionID += 1
if regionID not in labeledPix:
continue
#print(regionID)
#print((regionID / numElements) * 100, '%')
neighborIDs = getNeighbors(labeledPix, regionID)
if 0 in neighborIDs:
neighborIDs.remove(0) #remove white value
regionMask = labeledPix == regionID
region = pix[regionMask]
size = numpy.count_nonzero(regionMask)
contrastMin = (ratio - (size / maxSize)) * MAXIMUMCONTRAST
regionMean = region.mean(axis = 0)
if len(neighborIDs) > 20000:
contrast = numpy.zeros(labeledPix.shape)
contrast[labeledPix!=0] = numpy.sqrt(numpy.sum((regionMean - pix[labeledPix!=0])**2, axis = -1))
significantMask = (contrast < contrastMin)
significantContrasts = list(numpy.unique(contrast[significantMask]))
significantNeighbors = {}
for significantContrast in significantContrasts:
minContrast = min(significantContrasts)
if labeledPix[contrast == minContrast][0] in neighborIDs:
significantNeighbors[minContrast] = labeledPix[contrast == minContrast][0]
else:
significantContrasts.pop(significantContrasts.index(minContrast))
else:
significantNeighbors = {}
for neighborID in neighborIDs:
neighborMask = labeledPix == neighborID
neighbor = pix[neighborMask]
neighborMean = neighbor.mean(axis = 0)
contrast = numpy.sqrt(numpy.sum((regionMean - neighborMean)**2, axis = -1))
if contrast < contrastMin:
significantNeighbors[contrast] = neighborID
if significantNeighbors:
contrasts = significantNeighbors.keys()
minContrast = min(contrasts)
minNeighbor = significantNeighbors[minContrast]
neighborMask = labeledPix == minNeighbor
neighborSize = numpy.count_nonzero(neighborMask)
if neighborSize <= size:
labeledPix[neighborMask] = regionID
pix[neighborMask] = regionMean
else:
labeledPix[regionMask] = minNeighbor
pix[regionMask] = pix[neighborMask].mean(axis = 0)
print(time.clock() - start)
return pix
data = mockdata(200, 200, 1000)
print('original')
res0 = textureRemover(*data)
print('optimized')
res2 = textureRemover2(*data)
print('equal')
print(np.allclose(res0, res2))
I am trying to plot a decision tree using ID3 in Python. I am really new to Python and couldn't understand the implementation of the following code. I need to know how I can apply this code to my data.
from math import log
import operator
def entropy(data):
entries = len(data)
labels = {}
for feat in data:
label = feat[-1]
if label not in labels.keys():
labels[label] = 0
labels[label] += 1
entropy = 0.0
for key in labels:
probability = float(labels[key])/entries
entropy -= probability * log(probability,2)
return entropy
def split(data, axis, val):
newData = []
for feat in data:
if feat[axis] == val:
reducedFeat = feat[:axis]
reducedFeat.extend(feat[axis+1:])
newData.append(reducedFeat)
return newData
def choose(data):
features = len(data[0]) - 1
baseEntropy = entropy(data)
bestInfoGain = 0.0;
bestFeat = -1
for i in range(features):
featList = [ex[i] for ex in data]
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
newData = split(data, i, value)
probability = len(newData)/float(len(data))
newEntropy += probability * entropy(newData)
infoGain = baseEntropy - newEntropy
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeat = i
return bestFeat
def majority(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def tree(data,labels):
classList = [ex[-1] for ex in data]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(data[0]) == 1:
return majority(classList)
bestFeat = choose(data)
bestFeatLabel = labels[bestFeat]
theTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [ex[bestFeat] for ex in data]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
theTree[bestFeatLabel][value] = tree(split/(data, bestFeat, value),subLabels)
return theTree
So what I did after this is the following:
infile=open("SData.csv","r")
data=infile.read()
tree(data)
The error which I got is "1 argument is missing" which is the label which I have to define and this is where I don't know what I have to put. I tried the variable for which I have to make the decision tree but it doesn't work:
tree(data,MinTemp)
Here I get an error "MinTemp is not defined".
Please help me out and let me know what I should do to have a look at the tree.
Following is the part of data and I want to generate a tree for MinTemp
MinTemp,Rainfall,Tempat9,RHat9,CAat9,WSat9
high,no,mild,normal,overcast,weak
high,no,mild,normal,cloudy,weak
high,no,mild,normal,cloudy,mild
high,yes,mild,high,cloudy,weak
high,yes,mild,high,cloudy,mild
medium,yes,mild,high,cloudy,mild
high,no,mild,high,overcast,weak
high,no,mild,normal,sunny,weak
high,no,hot,normal,sunny,weak
high,no,hot,normal,overcast,weak
I am a python user new to R. Right now I am dealing with the R package GWmodel.
Looking at the function for the basic GWR, this looks like:
gwr.res <- gwr.basic(GenEl2004 ~ DiffAdd + LARent + SC1 + Unempl + LowEduc + Age18_24 + Age25_44 + Age45_64, data = Dub.voter, bw = 100, kernel = "bisquare", adaptive = TRUE, F123.test = TRUE)
What I need is to collet the mean of the estimate parameters of each variable and append it in a list for any given value of bw (bandwidth).
in python terms this would be like:
LARentMean = []
SC1Mean = []
UnenmplMean = []
LowEducMean = []
Age18_24Mean = []
Age25_44Mean = []
Age45_64Mean = []
for i in range (20,400):
gwrres = gwr.basic(GenEl2004 ~ DiffAdd + LARent + SC1 + Unempl + LowEduc + Age18_24 + Age25_44 + Age45_64, data = Dub.voter, bw = i, kernel = "bisquare", adaptive = TRUE, F123.test = TRUE)
a = gwrres(LARent).mean() #a <- mean(gwrres$SDF$LARent)
b = gwrres(SC1).mean() #b <- mean(gwrres$SDF$SC1)
c = gwrres(Unenmpl).mean() #c <- mean(gwrres$SDF$Unempl)
d = gwrres(lowEduc).mean() #d <- mean(gwrres$SDF$LowEduc)
e = gwrres(Age18_24).mean() #e <- mean(gwrres$SDF$Age18_24)
f = gwrres(Age25_44).mean() #f <- mean(gwrres$SDF$Age25_44)
g = gwrres(Age45_64).mean() #g <- mean(gwrres$SDF$Age45_64)
LARentMean.append(a)
SC1Mean.append(b)
UnenmplMean.append(c)
LowEducMean.append(d)
Age18_24Mean.append(e)
Age25_44Mean.append(f)
Age45_64Mean.append(g)
You can use lapply which will loop to a list, e.g.:
l = lapply(20:400, function(i){
gwr.basic(GenEl2004 ~ DiffAdd + LARent + SC1 + Unempl + LowEduc +
Age18_24 + Age25_44 + Age45_64, data=Dub.voter, bw=i,
kernel="bisquare", adaptive=T, F123.test=T)
})
I have no idea what gwr.basic generates as output, so you may want an extra line to only take the mean (if it puts out more information).