Tensorboard smoothing - python

I downloaded the CSV files from tesnorboard in order to plot the losses myself as I want them Smoothed.
This is currently my code:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('C:\\Users\\ali97\\Desktop\\Project\\Database\\Comparing Outlier Fractions\\10 Percent (MAE)\\MSE Validation.csv',usecols=['Step','Value'],low_memory=True)
df2 = pd.read_csv('C:\\Users\\ali97\\Desktop\\Project\\Database\\Comparing Outlier Fractions\\15 Percent (MAE)\\MSE Validation.csv',usecols=['Step','Value'],low_memory=True)
df3 = pd.read_csv('C:\\Users\\ali97\\Desktop\\Project\\Database\\Comparing Outlier Fractions\\20 Percent (MAE)\\MSE Validation.csv',usecols=['Step','Value'],low_memory=True)
plt.plot(df['Step'],df['Value'] , 'r',label='10% Outlier Frac.' )
plt.plot(df2['Step'],df2['Value'] , 'g',label='15% Outlier Frac.' )
plt.plot(df3['Step'],df3['Value'] , 'b',label='20% Outlier Frac.' )
plt.xlabel('Epochs')
plt.ylabel('Validation score')
plt.show()
I was reading how to smooth the graph and I found out another member here wrote the code on how tensorboard actually smooths graphs, but I really don't know how to implement it in my code.
def smooth(scalars: List[float], weight: float) -> List[float]: # Weight between 0 and 1
last = scalars[0] # First value in the plot (first timestep)
smoothed = list()
for point in scalars:
smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value
smoothed.append(smoothed_val) # Save it
last = smoothed_val # Anchor the last smoothed value
return smoothed
Thank you.

If you are working with pandas library you can use the function ewm (Pandas EWM) and ajust the alpha factor to get a good approximation of the smooth function from tensorboard.
df.ewm(alpha=(1 - ts_factor)).mean()
CSV file mse_data.csv
step value
0 0.000000 9.716303
1 0.200401 9.753981
2 0.400802 9.724551
3 0.601202 7.926591
4 0.801603 10.181700
.. ... ...
495 99.198400 0.298243
496 99.398800 0.314511
497 99.599200 -1.119387
498 99.799600 -0.374202
499 100.000000 1.150465
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("mse_data.csv")
print(df)
TSBOARD_SMOOTHING = [0.5, 0.85, 0.99]
smooth = []
for ts_factor in TSBOARD_SMOOTHING:
smooth.append(df.ewm(alpha=(1 - ts_factor)).mean())
for ptx in range(3):
plt.subplot(1,3,ptx+1)
plt.plot(df["value"], alpha=0.4)
plt.plot(smooth[ptx]["value"])
plt.title("Tensorboard Smoothing = {}".format(TSBOARD_SMOOTHING[ptx]))
plt.grid(alpha=0.3)
plt.show()

Related

Find intersection points for two stock timeseries

Background
I am trying to find intersection points of two series. In this stock example, I would like to find the intersection points of SMA20 & SMA50. Simple Moving Average (SMA) is commonly used as stock indicators, combined with intersections and other strategies will help one to make decision. Below is the code example.
Code
You can run the following with jupyter.
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
datafile = 'output_XAG_D1_20200101_to_20200601.csv'
#This creates a dataframe from the CSV file:
data = pd.read_csv(datafile, index_col = 'Date')
#This selects the 'Adj Close' column
close = data['BidClose']
#This converts the date strings in the index into pandas datetime format:
close.index = pd.to_datetime(close.index)
close
sma20 = close.rolling(window=20).mean()
sma50 = close.rolling(window=50).mean()
priceSma_df = pd.DataFrame({
'BidClose' : close,
'SMA 20' : sma20,
'SMA 50' : sma50
})
priceSma_df.plot()
plt.show()
Sample Data
This is the data file used in example output_XAG_D1_20200101_to_20200601.csv
Date,BidOpen,BidHigh,BidLow,BidClose,AskOpen,AskHigh,AskLow,AskClose,Volume
01.01.2020 22:00:00,1520.15,1531.26,1518.35,1527.78,1520.65,1531.75,1518.73,1531.73,205667
01.02.2020 22:00:00,1527.78,1553.43,1526.72,1551.06,1531.73,1553.77,1528.17,1551.53,457713
01.05.2020 22:00:00,1551.06,1588.16,1551.06,1564.4,1551.53,1590.51,1551.53,1568.32,540496
01.06.2020 22:00:00,1564.4,1577.18,1555.2,1571.62,1568.32,1577.59,1555.54,1575.56,466430
01.07.2020 22:00:00,1571.62,1611.27,1552.13,1554.79,1575.56,1611.74,1552.48,1558.72,987671
01.08.2020 22:00:00,1554.79,1561.24,1540.08,1549.78,1558.72,1561.58,1540.5,1553.73,473799
01.09.2020 22:00:00,1549.78,1563.0,1545.62,1562.44,1553.73,1563.41,1545.96,1562.95,362002
01.12.2020 22:00:00,1562.44,1562.44,1545.38,1545.46,1562.95,1563.06,1546.71,1549.25,280809
01.13.2020 22:00:00,1545.46,1548.77,1535.78,1545.1,1549.25,1549.25,1536.19,1548.87,378200
01.14.2020 22:00:00,1545.1,1558.04,1543.79,1554.89,1548.87,1558.83,1546.31,1558.75,309719
01.15.2020 22:00:00,1554.89,1557.98,1547.91,1551.18,1558.75,1558.75,1548.24,1554.91,253944
01.16.2020 22:00:00,1551.18,1561.12,1549.28,1556.68,1554.91,1561.55,1549.59,1557.15,239186
01.19.2020 22:00:00,1556.68,1562.69,1556.25,1560.77,1557.15,1562.97,1556.61,1561.17,92020
01.20.2020 22:00:00,1560.77,1568.49,1546.21,1556.8,1561.17,1568.87,1546.56,1558.5,364753
01.21.2020 22:00:00,1556.8,1559.18,1550.07,1558.59,1558.5,1559.47,1550.42,1559.31,238468
01.22.2020 22:00:00,1558.59,1567.83,1551.8,1562.45,1559.31,1568.16,1552.11,1564.17,365518
01.23.2020 22:00:00,1562.45,1575.77,1556.44,1570.39,1564.17,1576.12,1556.76,1570.87,368529
01.26.2020 22:00:00,1570.39,1588.41,1570.39,1580.51,1570.87,1588.97,1570.87,1582.33,510524
01.27.2020 22:00:00,1580.51,1582.93,1565.31,1567.15,1582.33,1583.3,1565.79,1570.62,384205
01.28.2020 22:00:00,1567.15,1577.93,1563.27,1576.7,1570.62,1578.22,1563.61,1577.25,328766
01.29.2020 22:00:00,1576.7,1585.87,1572.19,1573.23,1577.25,1586.18,1572.44,1575.33,522371
01.30.2020 22:00:00,1573.23,1589.98,1570.82,1589.75,1575.33,1590.37,1571.14,1590.31,482710
02.02.2020 22:00:00,1589.75,1593.09,1568.65,1575.62,1590.31,1595.82,1569.85,1578.35,488585
02.03.2020 22:00:00,1575.62,1579.56,1548.95,1552.55,1578.35,1579.87,1549.31,1556.4,393037
02.04.2020 22:00:00,1552.55,1562.3,1547.34,1554.62,1556.4,1562.64,1547.72,1556.42,473172
02.05.2020 22:00:00,1554.62,1568.14,1552.39,1565.08,1556.42,1568.51,1552.73,1567.0,365580
02.06.2020 22:00:00,1565.08,1574.02,1559.82,1570.11,1567.0,1574.33,1560.7,1570.55,424269
02.09.2020 22:00:00,1570.11,1576.9,1567.9,1571.05,1570.55,1577.25,1568.21,1573.34,326606
02.10.2020 22:00:00,1571.05,1573.92,1561.92,1566.12,1573.34,1574.27,1562.24,1568.12,310037
02.11.2020 22:00:00,1566.12,1570.39,1561.45,1564.26,1568.12,1570.71,1561.91,1567.02,269032
02.12.2020 22:00:00,1564.26,1578.24,1564.26,1574.5,1567.02,1578.52,1565.81,1576.63,368438
02.13.2020 22:00:00,1574.5,1584.87,1572.44,1584.49,1576.63,1585.29,1573.28,1584.91,250788
02.16.2020 22:00:00,1584.49,1584.49,1578.7,1580.79,1584.91,1584.91,1579.06,1581.31,101499
02.17.2020 22:00:00,1580.79,1604.97,1580.79,1601.06,1581.31,1605.33,1581.31,1603.08,321542
02.18.2020 22:00:00,1601.06,1612.83,1599.41,1611.27,1603.08,1613.4,1599.77,1613.34,357488
02.19.2020 22:00:00,1611.27,1623.62,1603.74,1618.48,1613.34,1623.98,1604.12,1621.27,535148
02.20.2020 22:00:00,1618.48,1649.26,1618.48,1643.42,1621.27,1649.52,1619.19,1643.87,590262
02.23.2020 22:00:00,1643.42,1689.22,1643.42,1658.62,1643.87,1689.55,1643.87,1659.07,1016570
02.24.2020 22:00:00,1658.62,1660.76,1624.9,1633.19,1659.07,1661.52,1625.5,1636.23,1222774
02.25.2020 22:00:00,1633.19,1654.88,1624.74,1640.4,1636.23,1655.23,1625.11,1642.59,1004692
02.26.2020 22:00:00,1640.4,1660.3,1635.15,1643.99,1642.59,1660.6,1635.6,1646.42,1084115
02.27.2020 22:00:00,1643.99,1649.39,1562.74,1584.95,1646.42,1649.84,1563.22,1585.58,1174015
03.01.2020 22:00:00,1584.95,1610.94,1575.29,1586.55,1585.58,1611.26,1575.88,1590.33,1115889
03.02.2020 22:00:00,1586.55,1649.16,1586.55,1640.19,1590.33,1649.6,1589.43,1644.16,889364
03.03.2020 22:00:00,1640.19,1652.81,1631.73,1635.95,1644.16,1653.51,1632.1,1639.05,589438
03.04.2020 22:00:00,1635.95,1674.51,1634.91,1669.36,1639.05,1674.9,1635.3,1672.83,643444
03.05.2020 22:00:00,1669.36,1692.1,1641.61,1673.89,1672.83,1692.65,1642.75,1674.46,1005737
03.08.2020 21:00:00,1673.89,1703.19,1656.98,1678.31,1674.46,1703.52,1657.88,1679.2,910166
03.09.2020 21:00:00,1678.31,1680.43,1641.37,1648.71,1679.2,1681.18,1641.94,1649.75,943377
03.10.2020 21:00:00,1648.71,1671.15,1632.9,1634.42,1649.75,1671.56,1633.31,1637.07,793816
03.11.2020 21:00:00,1634.42,1650.28,1560.5,1578.29,1637.07,1650.8,1560.92,1580.01,1009172
03.12.2020 21:00:00,1578.29,1597.85,1504.34,1528.99,1580.01,1598.36,1505.14,1530.09,1052940
03.15.2020 21:00:00,1528.99,1575.2,1451.08,1509.12,1530.09,1576.05,1451.49,1512.94,1196812
03.16.2020 21:00:00,1509.12,1553.91,1465.4,1528.57,1512.94,1554.21,1466.1,1529.43,1079729
03.17.2020 21:00:00,1528.57,1545.93,1472.49,1485.85,1529.43,1546.74,1472.99,1486.75,976857
03.18.2020 21:00:00,1485.85,1500.68,1463.49,1471.89,1486.75,1501.6,1464.64,1474.16,833803
03.19.2020 21:00:00,1471.89,1516.07,1454.46,1497.01,1474.16,1516.57,1455.93,1497.82,721471
03.22.2020 21:00:00,1497.01,1560.86,1482.21,1551.45,1497.82,1561.65,1483.22,1553.09,707830
03.23.2020 21:00:00,1551.45,1631.23,1551.45,1621.05,1553.09,1638.75,1553.09,1631.35,164862
03.24.2020 21:00:00,1621.05,1636.23,1588.82,1615.77,1631.35,1650.03,1601.29,1618.47,205272
03.25.2020 21:00:00,1615.77,1642.96,1587.7,1628.31,1618.47,1649.81,1599.87,1633.29,152804
03.26.2020 21:00:00,1628.31,1630.48,1606.76,1617.5,1633.29,1638.48,1616.9,1622.8,307278
03.29.2020 21:00:00,1617.5,1631.48,1602.51,1620.91,1622.8,1643.86,1612.55,1623.77,291653
03.30.2020 21:00:00,1620.91,1626.55,1573.37,1574.9,1623.77,1627.31,1575.24,1579.1,371507
03.31.2020 21:00:00,1574.9,1600.41,1560.13,1590.13,1579.1,1603.42,1570.75,1592.43,412780
04.01.2020 21:00:00,1590.13,1619.76,1582.42,1612.07,1592.43,1621.1,1583.37,1614.49,704652
04.02.2020 21:00:00,1612.07,1625.21,1605.39,1618.63,1614.49,1626.83,1607.69,1621.37,409490
04.05.2020 21:00:00,1618.63,1668.35,1608.59,1657.77,1621.37,1670.98,1609.7,1663.43,381690
04.06.2020 21:00:00,1657.77,1671.95,1641.84,1644.84,1663.43,1677.53,1643.4,1650.46,286313
04.07.2020 21:00:00,1644.84,1656.39,1640.1,1644.06,1650.46,1657.43,1643.46,1646.66,219464
04.08.2020 21:00:00,1644.06,1689.66,1643.05,1682.16,1646.66,1691.13,1644.83,1686.74,300111
04.12.2020 21:00:00,1682.16,1722.25,1677.35,1709.16,1686.74,1725.48,1680.49,1718.28,280905
04.13.2020 21:00:00,1709.16,1747.04,1708.56,1726.18,1718.28,1748.88,1709.36,1729.72,435098
04.14.2020 21:00:00,1726.18,1730.53,1706.67,1714.35,1729.72,1732.97,1708.95,1717.25,419065
04.15.2020 21:00:00,1714.35,1738.65,1707.83,1715.99,1717.25,1740.35,1708.93,1720.09,615105
04.16.2020 21:00:00,1715.99,1718.46,1677.16,1683.2,1720.09,1720.09,1680.55,1684.97,587875
04.19.2020 21:00:00,1683.2,1702.49,1671.1,1694.71,1684.97,1703.46,1672.02,1697.29,412116
04.20.2020 21:00:00,1694.71,1697.66,1659.42,1683.4,1697.29,1698.44,1662.3,1686.58,502893
04.21.2020 21:00:00,1683.4,1718.21,1679.61,1713.67,1686.58,1719.19,1680.71,1716.91,647622
04.22.2020 21:00:00,1713.67,1738.59,1706.93,1729.89,1716.91,1739.47,1707.72,1731.83,751833
04.23.2020 21:00:00,1729.89,1736.31,1710.56,1726.74,1731.83,1736.98,1711.03,1727.71,608827
04.26.2020 21:00:00,1726.74,1727.55,1705.99,1713.36,1727.71,1728.55,1706.72,1715.29,698217
04.27.2020 21:00:00,1713.36,1716.52,1691.41,1707.66,1715.29,1718.02,1692.51,1710.22,749906
04.28.2020 21:00:00,1707.66,1717.42,1697.65,1711.58,1710.22,1718.57,1698.4,1715.42,630720
04.29.2020 21:00:00,1711.58,1721.94,1681.36,1684.97,1715.42,1722.79,1681.91,1687.92,631609
04.30.2020 21:00:00,1684.97,1705.87,1669.62,1699.92,1687.92,1706.33,1670.81,1701.66,764742
05.03.2020 21:00:00,1699.92,1714.75,1691.46,1700.42,1701.66,1715.83,1692.96,1702.17,355859
05.04.2020 21:00:00,1700.42,1711.64,1688.55,1703.04,1702.17,1712.55,1690.42,1706.71,415576
05.05.2020 21:00:00,1703.04,1708.1,1681.6,1685.18,1706.71,1708.71,1682.33,1688.33,346814
05.06.2020 21:00:00,1685.18,1721.95,1683.59,1715.17,1688.33,1722.53,1684.8,1716.91,379103
05.07.2020 21:00:00,1715.17,1723.54,1701.49,1704.06,1716.91,1724.42,1702.1,1705.25,409225
05.10.2020 21:00:00,1704.06,1712.02,1691.75,1696.68,1705.25,1713.03,1692.45,1697.58,438010
05.11.2020 21:00:00,1696.68,1710.94,1693.56,1701.46,1697.58,1711.31,1693.92,1703.32,369988
05.12.2020 21:00:00,1701.46,1718.11,1698.86,1716.09,1703.32,1718.69,1699.4,1718.63,518107
05.13.2020 21:00:00,1716.09,1736.16,1710.79,1727.71,1718.63,1736.55,1711.33,1731.38,447401
05.14.2020 21:00:00,1727.71,1751.56,1727.71,1743.94,1731.38,1752.1,1728.89,1744.96,561909
05.17.2020 21:00:00,1743.94,1765.3,1727.4,1731.73,1744.96,1765.92,1728.08,1732.99,495628
05.18.2020 21:00:00,1731.73,1747.76,1725.05,1743.52,1732.99,1748.24,1726.29,1746.9,596250
05.19.2020 21:00:00,1743.52,1753.8,1742.04,1747.22,1746.9,1754.28,1742.62,1748.48,497960
05.20.2020 21:00:00,1747.22,1748.7,1717.14,1726.56,1748.48,1751.18,1717.39,1727.82,557122
05.21.2020 21:00:00,1726.56,1740.06,1723.33,1735.67,1727.82,1740.7,1724.41,1736.73,336867
05.24.2020 21:00:00,1735.67,1735.67,1721.61,1727.88,1736.73,1736.73,1721.83,1730.25,164650
05.25.2020 21:00:00,1727.88,1735.39,1708.48,1710.1,1730.25,1735.99,1709.34,1712.21,404914
05.26.2020 21:00:00,1710.1,1715.93,1693.57,1708.36,1712.21,1716.3,1694.04,1709.85,436519
05.27.2020 21:00:00,1708.36,1727.42,1703.41,1717.28,1709.85,1727.93,1705.85,1721.0,416306
05.28.2020 21:00:00,1717.28,1737.58,1712.55,1731.2,1721.0,1738.26,1713.24,1732.07,399698
05.31.2020 21:00:00,1731.2,1744.51,1726.98,1738.73,1732.07,1745.11,1727.93,1742.56,365219
Problem
This is the result for this code and I'm looking for ways to find intersections for SMA20 (yellow) and SMA50 (green) lines and thus able to get alerts whenever these lines cross.
Solution
Print out intersections indication crossing from above or below relative to each series.
import numpy as np
g20=sma20.values
g50=sma50.values
# np.sign(...) return -1, 0 or 1
# np.diff(...) return value difference for (n-1) - n, to obtain intersections
# np.argwhere(...) remove zeros, preserves turning points only
idx20 = np.argwhere(np.diff(np.sign(g20 - g50))).flatten()
priceSma_df.plot()
plt.scatter(close.index[idx20], sma50[idx20], color='red')
plt.show()
import numpy as np
f=close.values
g20=sma20.values
g50=sma50.values
idx20 = np.argwhere(np.diff(np.sign(f - g20))).flatten()
idx50 = np.argwhere(np.diff(np.sign(f - g50))).flatten()
priceSma_df = pd.DataFrame({
'BidClose' : close,
'SMA 20' : sma20,
'SMA 50' : sma50
})
priceSma_df.plot()
plt.scatter(close.index[idx20], sma20[idx20], color='orange')
plt.scatter(close.index[idx50], sma50[idx50], color='green')
plt.show()

Distribution plot is showing flat pdf

I tried to plot the Probability Density Function (PDF) plot of my data after finding the best parameters, but the plot is showing a flat line instead of a curve.
Is it a matter of scaling?
Is it a problem of Continuous or Discrete data? Data file is available here
The purpose here is to get the best distribution fittings and then plot PDF function.
My data values are so small like: 0.21, 1.117 .etc. The data statistics and PDF plots are shown below:
My script is given below:
from time import time
from datetime import datetime
start_time = datetime.now()
import pandas as pd
pd.options.display.float_format = '{:.4f}'.format
import numpy as np
import pickle
import scipy
import scipy.stats
import matplotlib.pyplot as plt
data= pd.read_csv("line_RXC_data.csv",usecols=['R'],parse_dates=True, squeeze=True)
df=data
y_std=df
# del yy
import warnings
warnings.filterwarnings("ignore")
# Create an index array (x) for data
y=df
#
# Create an index array (x) for data
x = np.arange(len(y))
size = len(y)
#simple visualisation of the data
plt.hist(y)
plt.title("Histogram of resistance ")
plt.xlabel("Resistance data visualization ")
plt.ylabel("Frequency")
plt.show()
y_df = pd.DataFrame(y)
tt=y_df.describe()
print(tt)
dist_names = [
'foldcauchy',
'beta',
'expon',
'exponnorm',
'norm',
'lognorm',
'dweibull',
'pareto',
'gamma'
]
x = np.arange(len(df))
size = len(df)
y_std = df
y=df
chi_square = []
p_values = []
# Set up 50 bins for chi-square test
# Observed data will be approximately evenly distrubuted aross all bins
percentile_bins = np.linspace(0,100,51)
percentile_cutoffs = np.percentile(y_std, percentile_bins)
observed_frequency, bins = (np.histogram(y_std, bins=percentile_cutoffs))
cum_observed_frequency = np.cumsum(observed_frequency)
# Loop through candidate distributions
for distribution in dist_names:
s1 = time()
# Set up distribution and get fitted distribution parameters
dist = getattr(scipy.stats, distribution)
# print("1")
param = dist.fit(y_std)
# print("2")
# Obtain the KS test P statistic, round it to 5 decimal places
p = scipy.stats.kstest(y_std, distribution, args=param)[1]
p = np.around(p, 5)
p_values.append(p)
# print("3")
# Get expected counts in percentile bins
# This is based on a 'cumulative distrubution function' (cdf)
cdf_fitted = dist.cdf(percentile_cutoffs, *param[:-2], loc=param[-2],
scale=param[-1])
# print("4")
expected_frequency = []
for bin in range(len(percentile_bins)-1):
expected_cdf_area = cdf_fitted[bin+1] - cdf_fitted[bin]
expected_frequency.append(expected_cdf_area)
# calculate chi-squared
expected_frequency = np.array(expected_frequency) * size
cum_expected_frequency = np.cumsum(expected_frequency)
ss = sum (((cum_expected_frequency - cum_observed_frequency) ** 2) / cum_observed_frequency)
chi_square.append(ss)
print(f"chi_square {distribution} time: {time() - s1}")
# print("std of predicted probability : ", np.std(cum_observed_frequency))
# Collate results and sort by goodness of fit (best at top)
results = pd.DataFrame()
results['Distribution'] = dist_names
results['chi_square'] = chi_square
results['p_value'] = p_values
results.sort_values(['chi_square'], inplace=True)
# Report results
print ('\nDistributions sorted by goodness of fit:')
print ('----------------------------------------')
print (results)
#%%
# Divide the observed data into 100 bins for plotting (this can be changed)
number_of_bins = 100
bin_cutoffs = np.linspace(np.percentile(y,0), np.percentile(y,99),number_of_bins)
# Create the plot
plt.figure(figsize=(7, 4))
h = plt.hist(y, bins = bin_cutoffs, color='0.70')
# Get the top three distributions from the previous phase
number_distributions_to_plot = 5
dist_names = results['Distribution'].iloc[0:number_distributions_to_plot]
#%%
# Create an empty list to stroe fitted distribution parameters
parameters = []
# Loop through the distributions ot get line fit and paraemters
for dist_name in dist_names:
# Set up distribution and store distribution paraemters
dist = getattr(scipy.stats, dist_name)
param = dist.fit(y)
parameters.append(param)
# Get line for each distribution (and scale to match observed data)
pdf_fitted = dist.pdf(x, *param[:-2], loc=param[-2], scale=param[-1])
scale_pdf = np.trapz (h[0], h[1][:-1]) / np.trapz (pdf_fitted, x)
pdf_fitted *= scale_pdf
# Add the line to the plot
plt.plot(pdf_fitted, label=dist_name)
# Set the plot x axis to contain 99% of the data
# This can be removed, but sometimes outlier data makes the plot less clear
plt.xlim(0,np.percentile(y,99))
# Add legend and display plotfig = plt.figure(figsize=(8,5))
plt.legend()
plt.title(u'Data distribution charateristics) \n' )
plt.xlabel(u'Resistance')
plt.ylabel('Frequency )')
plt.show()
# Store distribution paraemters in a dataframe (this could also be saved)
dist_parameters = pd.DataFrame()
dist_parameters['Distribution'] = (
results['Distribution'].iloc[0:number_distributions_to_plot])
dist_parameters['Distribution parameters'] = parameters
# Print parameter results
print ('\nDistribution parameters:')
print ('------------------------')
for index, row in dist_parameters.iterrows():
print ('\nDistribution:', row[0])
print ('Parameters:', row[1] )
If you look at the following categorical frequency analysis, you'll see that you have only 15 distinct values spread across the range with large gaps in between—not a continuum of values. Half the observations have the value 0.211, with another ~36% occurring at the value 1.117, ~8% at 0.194, and ~4% at 0.001. I think it's a mistake to treat this as continuous data.

Analysing height difference from columns and selecting max difference in Python

I have a .csv file containing x y data from transects (.csv file here).
The file can contain a few dozen transects (example only 4).
I want to calculate the elevation change from each transect and then select the transect with the highest elevation change.
x y lines
0 3.444 1
0.009 3.445 1
0.180 3.449 1
0.027 3.449 1
...
0 2.115 2
0.008 2.115 2
0.017 2.115 2
0.027 2.116 2
I've tried to calculate the change with pandas.dataframe.diff but I'm unable to select the highest elevation change from this.
UPDATE: I found a way to calculate the height difference for 1 transect. The goal is now to loop this script through the different other transects and let it select the transect with the highest difference. Not sure how to create a loop from this...
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.signal import savgol_filter, find_peaks, find_peaks_cwt
from pandas import read_csv
import csv
df = pd.read_csv('transect4.csv', delimiter=',', header=None, names=['x', 'y', 'lines'])
df_1 = df ['lines'] == 1
df1 = df[df_1]
plt.plot(df1['x'], df1['y'], label='Original Topography')
#apply a Savitzky-Golay filter
smooth = savgol_filter(df1.y.values, window_length = 351, polyorder = 5)
#find the maximums
peaks_idx_max, _ = find_peaks(smooth, prominence = 0.01)
#reciprocal, so mins will become max
smooth_rec = 1/smooth
#find the mins now
peaks_idx_mins, _ = find_peaks(smooth_rec, prominence = 0.01)
plt.xlabel('Distance')
plt.ylabel('Height')
plt.plot(df1['x'], smooth, label='Smoothed Topography')
#plot them
plt.scatter(df1.x.values[peaks_idx_max], smooth[peaks_idx_max], s = 55,
c = 'green', label = 'Local Max Cusp')
plt.scatter(df1.x.values[peaks_idx_mins], smooth[peaks_idx_mins], s = 55,
c = 'black', label = 'Local Min Cusp')
plt.legend(loc='upper left')
plt.show()
#Export to csv
df['Cusp_max']=False
df['Cusp_min']=False
df.loc[df1.x[peaks_idx_max].index, 'Cusp_max']=True
df.loc[df1.x[peaks_idx_mins].index, 'Cusp_min']=True
data=df[df['Cusp_max'] | df['Cusp_min']]
data.to_csv(r'Cusp_total.csv')
#Calculate height difference
my_data=pd.read_csv('Cusp_total.csv', delimiter=',', header=0, names=['ID', 'x', 'y', 'lines'])
df_1 = df ['lines'] == 1
df1 = df[df_1]
df1_diff=pd.DataFrame(my_data)
df1_diff['Diff_Cusps']=df1_diff['y'].diff(-1)
#Only use positive numbers for average
df1_pos = df_diff[df_diff['Diff_Cusps'] > 0]
print("Average Height Difference: ", (df1_pos['Diff_Cusps'].mean()), "m")
Ideally, the script would select the transect with the highest elevation change from an unknown number of transects in the .csv file, which will then be exported to a new .csv file.
You need to groupby by column lines.
Not sure if this is what you meant when you say elevation change but this gives difference of elevations (max(y) - min(y)) for each group, where groups are formed by all rows sharing same value of 'line'each group representing one such value. This should help you with what you are missing in your logic, (sorry can't put more time in).
frame = pd.read_csv('transect4.csv', header=None, names=['x', 'y', 'lines'])
groups = frame.groupby('lines')
groups['y'].max() - groups['y'].min()
# Should give you max elevations of each group.

Averaging several time-series together with confidence interval (with test code)

Sounds very complicated but a simple plot will make it easy to understand:
I have three curves of cumulative sum of some values over time, which are the blue lines.
I want to average (or somehow combine in a statistically correct way) the three curves into one smooth curve and add confidence interval.
I tried one simple solution - combining all the data into one curve, average it with the "rolling" function in pandas, getting the standard deviation for it. I plotted those as the purple curve with the confidence interval around it.
The problem with my real data, and as illustrated in the plot above is the curve isn't smooth at all, also there are sharp jumps in the confidence interval which also isn't a good representation of the 3 separate curves as there is no jumps in them.
Is there a better way to represent the 3 different curves in one smooth curve with a nice confidence interval?
I supply a test code, tested on python 3.5.1 with numpy and pandas (don't change the seed in order to get the same curves).
There are some constrains - increasing the number of points for the "rolling" function isn't a solution for me because some of my data is too short for that.
Test code:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
np.random.seed(seed=42)
## data generation - cumulative analysis over time
df1_time = pd.DataFrame(np.random.uniform(0,1000,size=50), columns=['time'])
df1_values = pd.DataFrame(np.random.randint(0,10000,size=100), columns=['vals'])
df1_combined_sorted = pd.concat([df1_time, df1_values], axis = 1).sort_values(by=['time'])
df1_combined_sorted_cumulative = np.cumsum(df1_combined_sorted['vals'])
df2_time = pd.DataFrame(np.random.uniform(0,1000,size=50), columns=['time'])
df2_values = pd.DataFrame(np.random.randint(1000,13000,size=100), columns=['vals'])
df2_combined_sorted = pd.concat([df2_time, df2_values], axis = 1).sort_values(by=['time'])
df2_combined_sorted_cumulative = np.cumsum(df2_combined_sorted['vals'])
df3_time = pd.DataFrame(np.random.uniform(0,1000,size=50), columns=['time'])
df3_values = pd.DataFrame(np.random.randint(0,4000,size=100), columns=['vals'])
df3_combined_sorted = pd.concat([df3_time, df3_values], axis = 1).sort_values(by=['time'])
df3_combined_sorted_cumulative = np.cumsum(df3_combined_sorted['vals'])
## combining the three curves
df_all_vals_cumulative = pd.concat([df1_combined_sorted_cumulative,.
df2_combined_sorted_cumulative, df3_combined_sorted_cumulative]).reset_index(drop=True)
df_all_time = pd.concat([df1_combined_sorted['time'],
df2_combined_sorted['time'], df3_combined_sorted['time']]).reset_index(drop=True)
df_all = pd.concat([df_all_time, df_all_vals_cumulative], axis = 1)
## creating confidence intervals
df_all_sorted = df_all.sort_values(by=['time'])
ma = df_all_sorted.rolling(10).mean()
mstd = df_all_sorted.rolling(10).std()
## plotting
plt.fill_between(df_all_sorted['time'], ma['vals'] - 2 * mstd['vals'],
ma['vals'] + 2 * mstd['vals'],color='b', alpha=0.2)
plt.plot(df_all_sorted['time'],ma['vals'], c='purple')
plt.plot(df1_combined_sorted['time'], df1_combined_sorted_cumulative, c='blue')
plt.plot(df2_combined_sorted['time'], df2_combined_sorted_cumulative, c='blue')
plt.plot(df3_combined_sorted['time'], df3_combined_sorted_cumulative, c='blue')
matplotlib.use('Agg')
plt.show()
First of all, your sample code could be re-written to make better use of pd. For example
np.random.seed(seed=42)
## data generation - cumulative analysis over time
def get_data(max_val, max_time=1000):
times = pd.DataFrame(np.random.uniform(0,max_time,size=50), columns=['time'])
vals = pd.DataFrame(np.random.randint(0,max_val,size=100), columns=['vals'])
df = pd.concat([times, vals], axis = 1).sort_values(by=['time']).\
reset_index().drop('index', axis=1)
df['cumulative'] = df.vals.cumsum()
return df
# generate the dataframes
df1,df2,df3 = (df for df in map(get_data, [10000, 13000, 4000]))
dfs = (df1, df2, df3)
# join
df_all = pd.concat(dfs, ignore_index=True).sort_values(by=['time'])
# render function
def render(window=10):
# compute rolling means and confident intervals
mean_val = df_all.cumulative.rolling(window).mean()
std_val = df_all.cumulative.rolling(window).std()
min_val = mean_val - 2*std_val
max_val = mean_val + 2*std_val
plt.figure(figsize=(16,9))
for df in dfs:
plt.plot(df.time, df.cumulative, c='blue')
plt.plot(df_all.time, mean_val, c='r')
plt.fill_between(df_all.time, min_val, max_val, color='blue', alpha=.2)
plt.show()
The reason your curves aren't that smooth is maybe your rolling window is not large enough. You can increase this window size to get smoother graphs. For example render(20) gives:
while render(30) gives:
Although, the better way might be imputing each of df['cumulative'] to the entire time window and compute the mean/confidence interval on these series. With that in mind, we can modify the code as follows:
np.random.seed(seed=42)
## data generation - cumulative analysis over time
def get_data(max_val, max_time=1000):
times = pd.DataFrame(np.random.uniform(0,max_time,size=50), columns=['time'])
vals = pd.DataFrame(np.random.randint(0,max_val,size=100), columns=['vals'])
# note that we set time as index of the returned data
df = pd.concat([times, vals], axis = 1).dropna().set_index('time').sort_index()
df['cumulative'] = df.vals.cumsum()
return df
df1,df2,df3 = (df for df in map(get_data, [10000, 13000, 4000]))
dfs = (df1, df2, df3)
# rename column for later plotting
for i,df in zip(range(3),dfs):
df.rename(columns={'cumulative':f'cummulative_{i}'}, inplace=True)
# concatenate the dataframes with common time index
df_all = pd.concat(dfs,sort=False).sort_index()
# interpolate each cumulative column linearly
df_all.interpolate(inplace=True)
# plot graphs
mean_val = df_all.iloc[:,1:].mean(axis=1)
std_val = df_all.iloc[:,1:].std(axis=1)
min_val = mean_val - 2*std_val
max_val = mean_val + 2*std_val
fig, ax = plt.subplots(1,1,figsize=(16,9))
df_all.iloc[:,1:4].plot(ax=ax)
plt.plot(df_all.index, mean_val, c='purple')
plt.fill_between(df_all.index, min_val, max_val, color='blue', alpha=.2)
plt.show()
and we get:

Pandas finding local max and min

I have a pandas data frame with two columns one is temperature the other is time.
I would like to make third and fourth columns called min and max. Each of these columns would be filled with nan's except where there is a local min or max, then it would have the value of that extrema.
Here is a sample of what the data looks like, essentially I am trying to identify all the peaks and low points in the figure.
Are there any built in tools with pandas that can accomplish this?
The solution offered by fuglede is great but if your data is very noisy (like the one in the picture) you will end up with lots of misleading local extremes. I suggest that you use scipy.signal.argrelextrema() method. The .argrelextrema() method has its own limitations but it has a useful feature where you can specify the number of points to be compared, kind of like a noise filtering algorithm. for example:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.signal import argrelextrema
# Generate a noisy AR(1) sample
np.random.seed(0)
rs = np.random.randn(200)
xs = [0]
for r in rs:
xs.append(xs[-1] * 0.9 + r)
df = pd.DataFrame(xs, columns=['data'])
n = 5 # number of points to be checked before and after
# Find local peaks
df['min'] = df.iloc[argrelextrema(df.data.values, np.less_equal,
order=n)[0]]['data']
df['max'] = df.iloc[argrelextrema(df.data.values, np.greater_equal,
order=n)[0]]['data']
# Plot results
plt.scatter(df.index, df['min'], c='r')
plt.scatter(df.index, df['max'], c='g')
plt.plot(df.index, df['data'])
plt.show()
Some points:
you might need to check the points afterward to ensure there are no twine points very close to each other.
you can play with n to filter the noisy points
argrelextrema returns a tuple and the [0] at the end extracts a numpy array
Assuming that the column of interest is labelled data, one solution would be
df['min'] = df.data[(df.data.shift(1) > df.data) & (df.data.shift(-1) > df.data)]
df['max'] = df.data[(df.data.shift(1) < df.data) & (df.data.shift(-1) < df.data)]
For example:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Generate a noisy AR(1) sample
np.random.seed(0)
rs = np.random.randn(200)
xs = [0]
for r in rs:
xs.append(xs[-1]*0.9 + r)
df = pd.DataFrame(xs, columns=['data'])
# Find local peaks
df['min'] = df.data[(df.data.shift(1) > df.data) & (df.data.shift(-1) > df.data)]
df['max'] = df.data[(df.data.shift(1) < df.data) & (df.data.shift(-1) < df.data)]
# Plot results
plt.scatter(df.index, df['min'], c='r')
plt.scatter(df.index, df['max'], c='g')
df.data.plot()
using Numpy
ser = np.random.randint(-40, 40, 100) # 100 points
peak = np.where(np.diff(ser) < 0)[0]
or
double_difference = np.diff(np.sign(np.diff(ser)))
peak = np.where(double_difference == -2)[0]
using Pandas
ser = pd.Series(np.random.randint(2, 5, 100))
peak_df = ser[(ser.shift(1) < ser) & (ser.shift(-1) < ser)]
peak = peak_df.index
You can do something similar to Foad's .argrelextrema() solution, but with the Pandas .rolling() function:
# Find local peaks
n = 5 #rolling period
local_min_vals = df.loc[df['data'] == df['data'].rolling(n, center=True).min()]
local_max_vals = df.loc[df['data'] == df['data'].rolling(n, center=True).max()]
plt.scatter(local_min_vals.index, local_min_vals, c='r')
plt.scatter(local_max_vals.index, local_max_vals, c='g')

Categories