parse_dates causes grid() to be displaced - python

The following code is a sample showing how the problem arises.
import pandas as pd
import matplotlib.pyplot as plt
#Reading data
data = pd.read_csv("mydata.csv",parse_dates=['date'])
data = data.iloc[0:17, :]
#Plotting data
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111)
ax.plot(data['date'],data['y'],'-o')
ax.set(xlabel='Date', ylabel='y')
ax.grid()
plt.show()
The result is the following: the grid is displaced with respect to data point grid_displaced.
If I remove ,parse_dates=['date'], everything works fine grid_not_displaced.
Here is the link to the data file https://drive.google.com/file/d/1AWcyIKgtDY_xkT_gaUxsiwjq9vLGfMog/view?usp=sharing

Related

How can I plot specific attributes rather than default of all attributes in Time Series

How can I plot specific attributes of a time series and not the default of all attributes in the Data Frame. I would like to make a Time Series of a particular attribute and two particular attributes. Is it possible to make a time series graph of headcount and another time series graph of headcount and tables open? Below is the code I have been using, if I try and call specific variables I get error codes. Thanks in advance
# Load necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Load data
filename = 'https://library.startlearninglabs.uw.edu/DATASCI410/Datasets/JitteredHeadCount.csv'
headcount_df = pd.read_csv(filename)
headcount_df.describe()
headcount_df.columns
ax = plt.figure(figsize=(12, 3)).gca() # define axis
headcount_df.plot(ax = ax)
ax.set_xlabel('Date')
ax.set_ylabel('Number of guests')
ax.set_title('Time series of Casino data')
You might have to mess around with the ticks and some other formatting, but this should get you headed in the right direction.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
filename = 'https://library.startlearninglabs.uw.edu/DATASCI410/Datasets/JitteredHeadCount.csv'
headcount_df = pd.read_csv(filename)
headcount_df['DateFormat'] = pd.to_datetime(headcount_df['DateFormat'].fillna('ffill'))
headcount_df.set_index('DateFormat', inplace=True)
headcount_df.sort_index(inplace=True)
headcount_df_to = headcount_df[['TablesOpen']]
headcount_df_hc_to = headcount_df[['HeadCount', 'TablesOpen']]
fig, axes = plt.subplots(nrows=2, ncols=1,
figsize=(12, 8))
headcount_df_to.plot(ax=axes[0], color=['orange'])
headcount_df_hc_to.plot(ax=axes[1], color=['blue', 'orange'])
axes[0].set_xlabel('Date')
axes[0].set_ylabel('Tables Open')
axes[0].legend(loc='center left', bbox_to_anchor=(1, 0.5))
axes[1].set_xlabel('Date')
axes[1].set_ylabel('Number of guests and Tables Open')
axes[1].legend(loc='center left', bbox_to_anchor=(1, 0.5))
fig.suptitle('Time Series of Casino data')

How can I plot the animation from the csv data with date time information?

first I would like to share the data of csv file.
date, total_cases, total_deaths
12-5-2020,6,2
13-5-2020,7,3
14-5-2020,10,2
15-5-2020,18,5
Now I want to make an animated comparison graph where the x axis will be plotted the dates and y axis will be plotted the total_cases and total_deaths.
from matplotlib import dates as mdate
from matplotlib import pyplot as plt
import matplotlib.animation as animation
import pandas as pd
m=pd.read_csv("covid-data.csv")
m['date']=pd.to_datetime(m['date'])
m.sort_values('date',inplace=True)
cdate=m['date']
ccase=m['total_cases']
cdeath=m['total_deaths']
fig = plt.figure()
ax1 = fig.add_subplot(111)
def animate(i):
ax1.clear()
ax1.plot(cdate,ccase)
ax1.plot(cdate,cdeath)
ani = animation.FuncAnimation(fig, animate, interval=1000)
plt.show()
Now
I can't get our desired output or animation. How can I overcome this issue and get a solution?
Sorry for my english
Check this code:
from matplotlib import dates as mdate
from matplotlib import pyplot as plt
import matplotlib.animation as animation
import pandas as pd
m = pd.read_csv("covid-data.csv")
m['date'] = pd.to_datetime(m['date'], format = '%d-%m-%Y')
m.sort_values('date', inplace = True)
cdate = m['date']
ccase = m['total_cases']
cdeath = m['total_deaths']
fig = plt.figure()
ax1 = fig.add_subplot(111)
def animate(i):
ax1.clear()
ax1.plot(cdate[:i], ccase[:i], label = 'cases')
ax1.plot(cdate[:i], cdeath[:i], label = 'deaths')
ax1.legend(loc = 'upper left')
ax1.set_xlim([cdate.iloc[0],
cdate.iloc[-1]])
ax1.set_ylim([min(ccase.iloc[0], cdeath.iloc[0]),
max(ccase.iloc[-1], cdeath.iloc[-1])])
ax1.xaxis.set_major_locator(mdate.DayLocator(interval = 5))
ax1.xaxis.set_major_formatter(mdate.DateFormatter('%d-%m-%Y'))
ani = animation.FuncAnimation(fig, animate, interval = 1000)
plt.show()
I changed your animate function in order to use the i counter (which increases by 1 at each frame). You can control what you want to change during the animation with this counter. The I added some formatting in order to improve the visualization. The code above gives me this animation:
In order to get an appreciable animation, I added some "fake" data to the one you provided, in order to have more days over which run the animation. Replace them with your data.
In the case of the error
TypeError: 'builtin_function_or_method' object is not subscriptable
Replace the .iloc[0] with [m.index[0]] and the same for .iloc[-1] with [m.index[-1]]. For example ccase.iloc[0] becomes ccase[m.index[0]].

How to plot heat map in matplotlib with label at both side right and left

UPDATED
I have write down a code like the given bellow..
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df = pd.read_csv("data_1.csv",index_col="Group")
print df
fig,ax = plt.subplots(1)
heatmap = ax.pcolor(df)########
ax.pcolor(df,edgecolors='k')
cbar = plt.colorbar(heatmap)##########
plt.ylim([0,12])
ax.invert_yaxis()
locs_y, labels_y = plt.yticks(np.arange(0.5, len(df.index), 1), df.index)
locs_x, labels_x = plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns)
ax.set_xticklabels(labels_x, rotation=10)
ax.set_yticklabels(labels_y,fontsize=10)
plt.show()
Which takes input like given bellow and plot a heat map with the two side leabel left and bottom..
GP1,c1,c2,c3,c4,c5
S1,21,21,20,69,30
S2,28,20,20,39,25
S3,20,21,21,44,21
I further want to add additional labels at right side as given bellow to the data and want to plot a heatmap with three side label. right left and bottom.
GP1,c1,c2,c3,c4,c5
S1,21,21,20,69,30,V1
S2,28,20,20,39,25,V2
S3,20,21,21,44,21,V3
What changes should i incorporate into the code.
Please help ..
You may create a new axis on the right of the plot, called twinx. Then you need to essentially adjust this axis the same way you already did with the first axis.
u = u"""GP1,c1,c2,c3,c4,c5
S1,21,21,20,69,30
S2,28,20,20,39,25
S3,20,21,21,44,21"""
import io
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df= pd.read_csv(io.StringIO(u),index_col="GP1")
fig,ax = plt.subplots(1)
heatmap = ax.pcolor(df, edgecolors='k')
cbar = plt.colorbar(heatmap, pad=0.1)
bx = ax.twinx()
ax.set_yticks(np.arange(0.5, len(df.index), 1))
ax.set_xticks(np.arange(0.5, len(df.columns), 1), )
ax.set_xticklabels(df.columns, rotation=10)
ax.set_yticklabels(df.index,fontsize=10)
bx.set_yticks(np.arange(0.5, len(df.index), 1))
bx.set_yticklabels(["V1","V2","V3"],fontsize=10)
ax.set_ylim([0,12])
bx.set_ylim([0,12])
ax.invert_yaxis()
bx.invert_yaxis()
plt.show()

Setting Image background for a line plot in matplotlib

I am trying to set a background image to a line plot that I have done in matplotlib. While importing the image and using zorder argument also, I am getting two seperate images, in place of a single combined image. Please suggest me a way out. My code is --
import quandl
import pandas as pd
import sys, os
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import itertools
def flip(items, ncol):
return itertools.chain(*[items[i::ncol] for i in range(ncol)])
df = pd.read_pickle('neer.pickle')
rows = list(df.index)
countries = ['USA','CHN','JPN','DEU','GBR','FRA','IND','ITA','BRA','CAN','RUS']
x = range(len(rows))
df = df.pct_change()
fig, ax = plt.subplots(1)
for country in countries:
ax.plot(x, df[country], label=country)
plt.xticks(x, rows, size='small', rotation=75)
#legend = ax.legend(loc='upper left', shadow=True)
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.show(1)
plt.figure(2)
im = plt.imread('world.png')
ax1 = plt.imshow(im, zorder=1)
ax1 = df.iloc[:,:].plot(zorder=2)
handles, labels = ax1.get_legend_handles_labels()
plt.legend(flip(handles, 2), flip(labels, 2), loc=9, ncol=12)
plt.show()
So in the figure(2) I am facing problem and getting two separate plots
In order to overlay background image over plot, we need imshow and extent parameter from matplotlib.
Here is an condensed version of your code. Didn't have time to clean up much.
First a sample data is created for 11 countries as listed in your code. It is then pickled and saved to a file (since there is no pickle file data).
import quandl
import pandas as pd
import sys, os
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import itertools
from scipy.misc import imread
countries = ['USA','CHN','JPN','DEU','GBR','FRA','IND','ITA','BRA','CAN','RUS']
df_sample = pd.DataFrame(np.random.randn(10, 11), columns=list(countries))
df_sample.to_pickle('c:\\temp\\neer.pickle')
Next the pickle file is read and we create bar plot directly from pandas
df = pd.read_pickle('c:\\temp\\neer.pickle')
my_plot = df.plot(kind='bar',stacked=True,title="Plot Over Image")
my_plot.set_xlabel("countries")
my_plot.set_ylabel("some_number")
Next we use imread to read image into plot.
img = imread("c:\\temp\\world.png")
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.imshow(img,zorder=0, extent=[0.1, 10.0, -10.0, 10.0])
plt.show()
Here is an output plot with image as background.
As stated this is crude and can be improved further.
You're creating two separate figures in your code. The first one with fig, ax = plt.subplots(1) and the second with plt.figure(2)
If you delete that second figure, you should be getting closer to your goal

ploting subplot in matplotlib with pandas issue

i am try to plot subplot in matplotlib with pandas but there are issue i am facing. when i am plot subplot not show the date of stock...there is my program
import pandas as pd
import datetime
import matplotlib.pyplot as plt
import pandas.io.data
df = pd.io.data.get_data_yahoo('goog', start=datetime.datetime(2008,1,1),end=datetime.datetime(2014,10,23))
fig = plt.figure()
r = fig.patch
r.set_facecolor('#0070BB')
ax1 = fig.add_subplot(2,1,1, axisbg='#0070BB')
ax1.grid(True)
ax1.plot(df['Close'])
ax2 = fig.add_subplot(2,1,2, axisbg='#0070BB')
ax2.plot(df['Volume'])
plt.show()
run this program own your self and solve date issue.....
When you're calling matplotlib's plot(), you are only giving it one array (e.g. df['Close'] in the first case). When there's only one array, matplotlib doesn't know what to use for the x axis data, so it just uses the index of the array. This is why your x axis shows the numbers 0 to 160: there are presumably 160 items in your array.
Use ax1.plot(df.index, df['Close']) instead, since df.index should hold the date values in your pandas dataframe.
import pandas as pd
import datetime
import matplotlib.pyplot as plt
import pandas.io.data
df = pd.io.data.get_data_yahoo('goog', start=datetime.datetime(2008,1,1),end=datetime.datetime(2014,10,23))
fig = plt.figure()
r = fig.patch
r.set_facecolor('#0070BB')
ax1 = fig.add_subplot(2,1,1, axisbg='#0070BB')
ax1.grid(True)
ax1.plot(df.index, df['Close'])
ax2 = fig.add_subplot(2,1,2, axisbg='#0070BB')
ax2.plot(df.index, df['Volume'])
plt.show()

Categories