Related
I would like to replace an object instance by another instance inside a method like this:
class A:
def method1(self):
self = func(self)
The object is retrieved from a database.
It is unlikely that replacing the 'self' variable will accomplish whatever you're trying to do, that couldn't just be accomplished by storing the result of func(self) in a different variable. 'self' is effectively a local variable only defined for the duration of the method call, used to pass in the instance of the class which is being operated upon. Replacing self will not actually replace references to the original instance of the class held by other objects, nor will it create a lasting reference to the new instance which was assigned to it.
As far as I understand, If you are trying to replace the current object with another object of same type (assuming func won't change the object type) from an member function. I think this will achieve that:
class A:
def method1(self):
newObj = func(self)
self.__dict__.update(newObj.__dict__)
It is not a direct answer to the question, but in the posts below there's a solution for what amirouche tried to do:
Python object conversion
Can I dynamically convert an instance of one class to another?
And here's working code sample (Python 3.2.5).
class Men:
def __init__(self, name):
self.name = name
def who_are_you(self):
print("I'm a men! My name is " + self.name)
def cast_to(self, sex, name):
self.__class__ = sex
self.name = name
def method_unique_to_men(self):
print('I made The Matrix')
class Women:
def __init__(self, name):
self.name = name
def who_are_you(self):
print("I'm a women! My name is " + self.name)
def cast_to(self, sex, name):
self.__class__ = sex
self.name = name
def method_unique_to_women(self):
print('I made Cloud Atlas')
men = Men('Larry')
men.who_are_you()
#>>> I'm a men! My name is Larry
men.method_unique_to_men()
#>>> I made The Matrix
men.cast_to(Women, 'Lana')
men.who_are_you()
#>>> I'm a women! My name is Lana
men.method_unique_to_women()
#>>> I made Cloud Atlas
Note the self.__class__ and not self.__class__.__name__. I.e. this technique not only replaces class name, but actually converts an instance of a class (at least both of them have same id()). Also, 1) I don't know whether it is "safe to replace a self object by another object of the same type in [an object own] method"; 2) it works with different types of objects, not only with ones that are of the same type; 3) it works not exactly like amirouche wanted: you can't init class like Class(args), only Class() (I'm not a pro and can't answer why it's like this).
Yes, all that will happen is that you won't be able to reference the current instance of your class A (unless you set another variable to self before you change it.) I wouldn't recommend it though, it makes for less readable code.
Note that you're only changing a variable, just like any other. Doing self = 123 is the same as doing abc = 123. self is only a reference to the current instance within the method. You can't change your instance by setting self.
What func(self) should do is to change the variables of your instance:
def func(obj):
obj.var_a = 123
obj.var_b = 'abc'
Then do this:
class A:
def method1(self):
func(self) # No need to assign self here
In many cases, a good way to achieve what you want is to call __init__ again. For example:
class MyList(list):
def trim(self,n):
self.__init__(self[:-n])
x = MyList([1,2,3,4])
x.trim(2)
assert type(x) == MyList
assert x == [1,2]
Note that this comes with a few assumptions such as the all that you want to change about the object being set in __init__. Also beware that this could cause problems with inheriting classes that redefine __init__ in an incompatible manner.
Yes, there is nothing wrong with this. Haters gonna hate. (Looking at you Pycharm with your in most cases imaginable, there's no point in such reassignment and it indicates an error).
A situation where you could do this is:
some_method(self, ...):
...
if(some_condition):
self = self.some_other_method()
...
return ...
Sure, you could start the method body by reassigning self to some other variable, but if you wouldn't normally do that with other parametres, why do it with self?
One can use the self assignment in a method, to change the class of instance to a derived class.
Of course one could assign it to a new object, but then the use of the new object ripples through the rest of code in the method. Reassiging it to self, leaves the rest of the method untouched.
class aclass:
def methodA(self):
...
if condition:
self = replace_by_derived(self)
# self is now referencing to an instance of a derived class
# with probably the same values for its data attributes
# all code here remains untouched
...
self.methodB() # calls the methodB of derivedclass is condition is True
...
def methodB(self):
# methodB of class aclass
...
class derivedclass(aclass):
def methodB(self):
#methodB of class derivedclass
...
But apart from such a special use case, I don't see any advantages to replace self.
You can make the instance a singleton element of the class
and mark the methods with #classmethod.
from enum import IntEnum
from collections import namedtuple
class kind(IntEnum):
circle = 1
square = 2
def attr(y): return [getattr(y, x) for x in 'k l b u r'.split()]
class Shape(namedtuple('Shape', 'k,l,b,u,r')):
self = None
#classmethod
def __repr__(cls):
return "<Shape({},{},{},{},{}) object at {}>".format(
*(attr(cls.self)+[id(cls.self)]))
#classmethod
def transform(cls, func):
cls.self = cls.self._replace(**func(cls.self))
Shape.self = Shape(k=1, l=2, b=3, u=4, r=5)
s = Shape.self
def nextkind(self):
return {'k': self.k+1}
print(repr(s)) # <Shape(1,2,3,4,5) object at 139766656561792>
s.transform(nextkind)
print(repr(s)) # <Shape(2,2,3,4,5) object at 139766656561888>
I'm not sure whether this is a great approach to be using, but I'm not hugely experienced with Python so please accept my apologies. I've tried to do some research on this but other related questions have been given alternative problem-specific solutions - none of which apply to my specific case.
I have a class that handles the training/querying of my specific machine learning model. This algorithm is running on a remote sensor, various values are fed into the object which returns None if the algorithm isn't trained. Once trained, it returns either True or False depending on the classification assigned to new inputs. Occasionally, the class updates a couple of threshold parameters and I need to know when this occurs.
I am using sockets to pass messages from the remote sensor to my main server. I didn't want to complicate the ML algorithm class by filling it up with message passing code and so instead I've been handling this in a Main class that imports the "algorithm" class. I want the Main class to be able to determine when the threshold parameters are updated and report this back to the server.
class MyAlgorithmClass:
def feed_value(self):
....
class Main:
def __init__(self):
self._algorithm_data = MyAlgorithmClass()
self._sensor_data_queue = Queue()
def process_data(self):
while True:
sensor_value = self._sensor_data_queue.get()
result, value = self._algorithm_data.feed_value(sensor_value)
if result is None:
# value represents % training complete
self._socket.emit('training', value)
elif result is True:
# value represents % chance that input is categoryA
self._socket.emit('categoryA', value)
elif result is False:
...
My initial idea was to add a property to MyAlgorithmClass with a setter. I could then decorate this in my Main class so that every time the setter is called, I can use the value... for example:
class MyAlgorithmClass:
#property
def param1(self):
return self._param1
#param1.setter
def param1(self, value):
self._param1 = value
class Main:
def __init__(self):
self._algorithm_data = MyAlgorithmClass()
self._sensor_data_queue = Queue()
def watch_param1(func):
def inner(*args):
self._socket.emit('param1_updated', *args)
func(*args)
My problem now, is how do I decorate the self._algorithm_data.param1 setter with watch_param1? If I simply set self._algorithm_data.param1 = watch_param1 then I will just end up setting self._algorithm_data._param1 equal to my function which isn't what I want to do.
I could use getter/setter methods instead of a property, but this isn't very pythonic and as multiple people are modifying this code, I don't want the methods to be replaced/changed for properties by somebody else later on.
What is the best approach here? This is a small example but I will have slightly more complex examples of this later on and I don't want something that will cause overcomplication of the algorithm class. Obviously, another option is the Observer pattern but I'm not sure how appropriate it is here where I only have a single variable to monitor in some cases.
I'm really struggling to get a good solution put together so any advice would be much appreciated.
Thanks in advance,
Tom
Use descriptors. They let you customize attribute lookup, storage, and deletion in Python.
A simplified toy version of your code with descriptors looks something like:
class WatchedParam:
def __init__(self, name):
self.name = name
def __get__(self, instance, insttype=None):
print(f"{self.name} : value accessed")
return getattr(instance, '_' + self.name)
def __set__(self, instance, new_val):
print(f"{self.name} : value set")
setattr(instance, '_' + self.name, new_val)
class MyAlgorithmClass:
param1 = WatchedParam("param1")
param2 = WatchedParam("param2")
def __init__(self, param1, param2, param3):
self.param1 = param1
self.param2 = param2
self.param3 = param3
class Main:
def __init__(self):
self._data = MyAlgorithmClass(10, 20, 50)
m = Main()
m._data.param1 # calls WatchedParam.__get__
m._data.param2 = 100 # calls WatchedParam.__set__
The WatchedParam class is a descriptor and can be used in MyAlgorithmClass to specify the parameters that need to be monitored.
The solution I went for is as follows, using a 'Proxy' subclass which overrides the properties. Eventually, once I have a better understanding of the watched parameters, I won't need to watch them anymore. At this point I will be able to swap out the Proxy for the base class and continue using the code as normal.
class MyAlgorithmClassProxy(MyAlgorithmClass):
#property
def watch_param1(self):
return MyAlgorithmClass.watch_param1.fget(self)
#watch_param1.setter
def watch_param1(self, value):
self._socket.emit('param1_updated', *args)
MyAlgorithmClass.watch_param1.fset(self, value)
Imagine the following code (which is totally useless if taken alone):
# define a property with additional methods
class P(property):
def __init__(self, name):
property.__init__(self,
fget=lambda self: self._get(name),
fset=lambda self, v: self._set(name, v))
self._name = name
def some_fn(self):
print('name: ' + self._name)
# define a class with two 'enhanced' properties
class C:
p1 = P('p1')
p2 = P('p2')
def __init__(self):
self._values = {}
def _get(self, name):
return self._values[name]
def _set(self, name, v):
self._values[name] = v
c = C()
c.p1 = 5
c.p2 = c.p1
print(c.p1, c.p2)
I just create a class C with two properties which have an extra method some_fn().
The problem is now: you can't call some_fn() easily by just writing c.p1.some_fn() because you would evaluate c.p1 first, which results in some value which doesn't provide the method any more.
I've tried to find some workarounds / approaches for calling some_fn in the context of a certain property, not it's value but I'm not happy yet.
My goal is quite simple:
I want to be able read/assign properties without boilerplate:
c.p1 = c.p2 instead of c.p1.set(c.p2.get())
The way I call the extra method/function must be easy to read/write
I want to write code that can be statically verified by pylint, mypy etc. so some_fn('c.p1') is not an option because it can't be checked whether 'c.p1' is a valid attribute of an existing objectc`.
some_fn doesn't have to be a method. It can be a function or any other way to request functionality in context of a property
I don't even need real properties. Any other way to write s.th.
like c.p1 == c.p2 (e.g. using __getattr__/__setattr__) would be fine, too as long as the get/set operations are still trackable.
I collected some code to make clear, what I'm talking about:
# ==== What I want to do ==============
c.p1.some_fn() # <-- this is what I want to write but
# it's invalid since it evaluates to
# 5.some_fn()
some_fn(c.p1) # <-- something like this looks OK, too but
# it evalueates to some_fn(5) (useless)
# ==== These are options that came to mind but I'm not happy with ======
getattr(C, 'p1').some_fn() # <-- this works but it is ugly
some_fn("c.p1") # <-- this is possible, too but I can't
# check integrity statically (pylint/mypy)
c.p1.value = c.p2.value # <-- this is a valid approach but it
c.p1.some_fn() # increases
some_fn(c.p1) # (again) # <-- This can acutally work if you `inspect`
# the call stack inside `C._get()` but
# it's black magic and incredibly slow
with some_fn(): # <-- this can work when `some_fn` changes
c.p1 # some global state which get's evaluated
# inside `C._get()`
My goal is quite simple: I want to be able read/assign properties without boilerplate: c.p1 = c.p2
If that is the goal here, it sounds like you've misunderstood properties, because they already work like that.
class C(object):
#property
def p1(self):
# get value
#p1.setter
def p1(self, val):
# set value
#property
def p2(self):
# get value
#p2.setter
def p2(self, val):
# set value
Then if you have an object c = C(), you can do c.p1 = c.p2, and it'll just work. Sticking more methods onto a property object is the wrong way to go.
If you really want to stick methods onto properties, retrieve the property through the class:
C.p1.some_fn()
I have recently stated trying to use the newer style of classes in Python (those derived from object). As an excersise to familiarise myself with them I am trying to define a class which has a number of class instances as attributes, with each of these class instances describing a different type of data, e.g. 1d lists, 2d arrays, scalars etc. Essentially I wish to be able to write
some_class.data_type.some_variable
where data_type is a class instance describing a collection of variables. Below is my first attempt at implementing this, using just a profiles_1d instance and rather generic names:
class profiles_1d(object):
def __init__(self, x, y1=None, y2=None, y3=None):
self.x = x
self.y1 = y1
self.y2 = y2
self.y3 = y3
class collection(object):
def __init__(self):
self._profiles_1d = None
def get_profiles(self):
return self._profiles_1d
def set_profiles(self, x, *args, **kwargs):
self._profiles_1d = profiles_1d(x, *args, **kwargs)
def del_profiles(self):
self._profiles_1d = None
profiles1d = property(fget=get_profiles, fset=set_profiles, fdel=del_profiles,
doc="One dimensional profiles")
Is the above code roughly an appropriate way of tackling this problem. The examples I have seen of using property just set the value of some variable. Here I require my set method to initialise an instance of some class. If not, any other suggestions of better ways to implement this would be greatly appreciated.
In addition, is the way I am defining my set method ok? Generally the set method, as far as I understand, defines what to do when the user types, in this example,
collection.profiles1d = ...
The only way I can correctly set the attributes of the profiles_1d instance with the above code is to type collection.set_profiles([...], y1=[...], ...), but I think that I shouldn't be directly calling this method. Ideally I would want to type collection.profiles = ([...], y1=[...], ...): is this correct/possible?
Finally, I have seen a decorators mentioned alot with repect to the new style of classes, but this is something I know very little about. Is the use of decorators appropriate here? Is this something I should know more about for this problem?
First, it's good you're learning new-style classes. They've got lots of advantages.
The modern way to make properties in Python is:
class Collection(object):
def __init__(self):
self._profiles_1d = None
#property
def profiles(self):
"""One dimensional profiles"""
return self._profiles_1d
#profiles.setter
def profiles(self, argtuple):
args, kwargs = argtuple
self._profiles_1d = profiles_1d(*args, **kwargs)
#profiles.deleter
def profiles(self):
self._profiles_1d = None
then set profiles by doing
collection = Collection()
collection.profiles = (arg1, arg2, arg3), {'kwarg1':val1, 'kwarg2':val2}
Notice all three methods having the same name.
This is not normally done; either have them pass the attributes to collections constructor or have them create the profiles_1d themselves and then do collections.profiles = myprofiles1d or pass it to the constructor.
When you want the attribute to manage access to itself instead of the class managing access to the attribute, make the attribute a class with a descriptor. Do this if, unlike in the property example above, you actually want the data stored inside the attribute (instead of another, faux-private instance variable). Also, it's good for if you're going to use the same property over and over again -- make it a descriptor and you don't need to write the code multiple times or use a base class.
I actually like the page by #S.Lott -- Building Skills in Python's Attributes, Properties and Descriptors.
When creating propertys (or other descriptors) that need to call other instance methods the naming convention is to prepend an _ to those methods; so your names above would be _get_profiles, _set_profiles, and _del_profiles.
In Python 2.6+ each property is also a decorator, so you don't have to create the (otherwise useless) _name methods:
#property
def test(self):
return self._test
#test.setter
def test(self, newvalue):
# validate newvalue if necessary
self._test = newvalue
#test.deleter
def test(self):
del self._test
It looks like your code is trying to set profiles on the class instead of instances -- if this is so, properties on the class won't work as collections.profiles would be overridden with a profiles_1d object, clobbering the property... if this is really what you want, you'll have to make a metaclass and put the property there instead.
Hopefully you are talking about instances, so the class would look like:
class Collection(object): # notice the capital C in Collection
def __init__(self):
self._profiles_1d = None
#property
def profiles1d(self):
"One dimensional profiles"
return self._profiles_1d
#profiles1d.setter
def profiles1d(self, value):
self._profiles_1d = profiles_1d(*value)
#profiles1d.deleter
def profiles1d(self):
del self._profiles_1d
and then you would do something like:
collection = Collection()
collection.profiles1d = x, y1, y2, y3
A couple things to note: the setter method gets called with only two items: self, and the new value (which is why you were having to call set_profiles1d manually); when doing an assignment, keyword naming is not an option (that only works in function calls, which an assignment is not). If it makes sense for you, you can get fancy and do something like:
collection.profiles1d = (x, dict(y1=y1, y2=y2, y3=y3))
and then change the setter to:
#profiles1d.setter
def profiles1d(self, value):
x, y = value
self._profiles_1d = profiles_1d(x, **y)
which is still fairly readable (although I prefer the x, y1, y2, y3 version myself).
I am programming a simulations for single neurons. Therefore I have to handle a lot of Parameters. Now the Idea is that I have two classes, one for a SingleParameter and a Collection of parameters. I use property() to access the parameter value easy and to make the code more readable. This works perfect for a sinlge parameter but I don't know how to implement it for the collection as I want to name the property in Collection after the SingleParameter. Here an example:
class SingleParameter(object):
def __init__(self, name, default_value=0, unit='not specified'):
self.name = name
self.default_value = default_value
self.unit = unit
self.set(default_value)
def get(self):
return self._v
def set(self, value):
self._v = value
v = property(fget=get, fset=set, doc='value of parameter')
par1 = SingleParameter(name='par1', default_value=10, unit='mV')
par2 = SingleParameter(name='par2', default_value=20, unit='mA')
# par1 and par2 I can access perfectly via 'p1.v = ...'
# or get its value with 'p1.v'
class Collection(object):
def __init__(self):
self.dict = {}
def __getitem__(self, name):
return self.dict[name] # get the whole object
# to get the value instead:
# return self.dict[name].v
def add(self, parameter):
self.dict[parameter.name] = parameter
# now comes the part that I don't know how to implement with property():
# It shoule be something like
# self.__dict__[parameter.name] = property(...) ?
col = Collection()
col.add(par1)
col.add(par2)
col['par1'] # gives the whole object
# Now here is what I would like to get:
# col.par1 -> should result like col['par1'].v
# col.par1 = 5 -> should result like col['par1'].v = 5
Other questions that I put to understand property():
Why do managed attributes just work for class attributes and not for instance attributes in python?
How can I assign a new class attribute via __dict__ in python?
Look at built-in functions getattr and setattr. You'll probably be a lot happier.
Using the same get/set functions for both classes forces you into an ugly hack with the argument list. Very sketchy, this is how I would do it:
In class SingleParameter, define get and set as usual:
def get(self):
return self._s
def set(self, value):
self._s = value
In class Collection, you cannot know the information until you create the property, so you define the metaset/metaget function and particularize them only later with a lambda function:
def metaget(self, par):
return par.s
def metaset(self, value, par):
par.s = value
def add(self, par):
self[par.name] = par
setattr(Collection, par.name,
property(
fget=lambda x : Collection.metaget(x, par),
fset=lambda x, y : Collection.metaset(x,y, par))
Properties are meant to dynamically evaluate attributes or to make them read-only. What you need is customizing attribute access. __getattr__ and __setattr__ do that really fine, and there's also __getattribute__ if __getattr__ is not enough.
See Python docs on customizing attribute access for details.
Have you looked at the traits package? It seems that you are reinventing the wheel here with your parameter classes. Traits also have additional features that might be useful for your type of application (incidently I know a person that happily uses traits in neural simulations).
Now I implemented a solution with set-/getattr:
class Collection(object):
...
def __setattr__(self, name, value):
if 'dict' in self.__dict__:
if name in self.dict:
self[name].v = value
else:
self.__dict__[name] = value
def __getattr__(self, name):
return self[name].v
There is one thing I quite don't like that much: The attributes are not in the __dict__. And if I have them there as well I would have a copy of the value - which can be dangerous...
Finally I succeded to implement the classes with property(). Thanks a lot for the advice. It took me quite a bit to work it out - but I can promise you that this exercise helps you to understand better pythons OOP.
I implemented it also with __getattr__ and __setattr__ but still don't know the advantages and disadvantages to the property-solution. But this seems to be worth another question. The property-solutions seems to be quit clean.
So here is the code:
class SingleParameter(object):
def __init__(self, name, default_value=0, unit='not specified'):
self.name = name
self.default_value = default_value
self.unit = unit
self.set(default_value)
def get(*args):
self = args[0]
print "get(): "
print args
return self._v
def set(*args):
print "set(): "
print args
self = args[0]
value = args[-1]
self._v = value
v = property(fget=get, fset=set, doc='value of parameter')
class Collection(dict):
# inheriting from dict saves the methods: __getitem__ and __init__
def add(self, par):
self[par.name] = par
# Now here comes the tricky part.
# (Note: this property call the get() and set() methods with one
# more argument than the property of SingleParameter)
setattr(Collection, par.name,
property(fget=par.get, fset=par.set))
# Applying the classes:
par1 = SingleParameter(name='par1', default_value=10, unit='mV')
par2 = SingleParameter(name='par2', default_value=20, unit='mA')
col = Collection()
col.add(par1)
col.add(par2)
# Setting parameter values:
par1.v = 13
col.par1 = 14
# Getting parameter values:
par1.v
col.par1
# checking identity:
par1.v is col.par1
# to access the whole object:
col['par1']
As I am new I am not sure how to move on:
how to treat follow up questions (like this itself):
get() is seems to be called twice - why?
oop-design: property vs. "__getattr__ & __setattr__" - when should I use what?
is it rude to check the own answer to the own question as accepted?
is it recommended to rename the title in order to put correlated questions or questions elaborated with the same example into the same context?
Other questions that I put to understand property():
Why do managed attributes just work for class attributes and not for instance attributes in python?
How can I assign a new class attribute via __dict__ in python?
I have a class that does something similar, but I did the following in the collection object:
setattr(self, par.name, par.v)