Bilinear interplotation function from scratch [duplicate] - python

How do I implement bilinear interpolation for image data represented as a numpy array in python?

I found many questions on this topic and many answers, though none were efficient for the common case that the data consists of samples on a grid (i.e. a rectangular image) and represented as a numpy array. This function can take lists as both x and y coordinates and will perform the lookups and summations without need for loops.
def bilinear_interpolate(im, x, y):
x = np.asarray(x)
y = np.asarray(y)
x0 = np.floor(x).astype(int)
x1 = x0 + 1
y0 = np.floor(y).astype(int)
y1 = y0 + 1
x0 = np.clip(x0, 0, im.shape[1]-1);
x1 = np.clip(x1, 0, im.shape[1]-1);
y0 = np.clip(y0, 0, im.shape[0]-1);
y1 = np.clip(y1, 0, im.shape[0]-1);
Ia = im[ y0, x0 ]
Ib = im[ y1, x0 ]
Ic = im[ y0, x1 ]
Id = im[ y1, x1 ]
wa = (x1-x) * (y1-y)
wb = (x1-x) * (y-y0)
wc = (x-x0) * (y1-y)
wd = (x-x0) * (y-y0)
return wa*Ia + wb*Ib + wc*Ic + wd*Id

Related

How to make a code faster to calculate the linear distances from the point Python?

Here is the code:
Outputs = []
for X2, Y2 in X:
Color_Gradient = 0
Lowest = 0
for X1, Y1, grad in zip(Velocity_Momentum[:, 0], Velocity_Momentum[:, 1], Color):
XD = X2 - X1
YD = Y2 - Y1
Distance = math.sqrt((XD * XD) + (YD * YD))
if Lowest == 0 or Lowest > Distance:
Lowest = Distance
Color_Gradient = grad
Outputs.append(Color_Gradient)
print("X2 = ", X2, " Y2 = ", Y2, " Color = ", Color_Gradient)
Here X.shape = (572, 2) Velocity_Momentum = (1000000, 2) Color = (1000000,).
Please let me know how to make it faster. I have tried the code above and it is very very slow. That is not good since I am trying to get the result faster.
Please let me know.
It looks like you are using numpy arrays. With numpy, it is faster to use vectorized operations on whole arrays at the same time, compared to loops. It also usually gives cleaner code.
As I understand it, you want to extract the color corresponding to the smallest (euclidean) distance to a specific point.
Outputs = []
for X2, Y2 in X:
XD = X2 - Velocity_Momentum[:, 0]
YD = Y2 - Velocity_Momentum[:, 1]
Distance = (XD * XD) + (YD * YD)
Color_Gradient = Color[Distance.argmin()]
Outputs.append(Color_Gradient)
print("X2 = ", X2, " Y2 = ", Y2, " Color = ", Color_Gradient)

Drawing Poincare Section using Python

I was about to plot a Poincare section of the following DE, which is quite meaningful to have a periodic potential function V(x) = - cos(x) in this equation.
After calculating the solution using RK4 with time interval dt = 0.001, the one that python drew was as the following plot.
But according to the textbook(referred to 2E by J.M.T. Thompson and H.B. Stewart), the section would look like as
:
it has so much difference. For my personal opinion, since Poincare section does not appear as what writers draw, there must be some error in my code. However, I actually done for other forced oscillation DE, including Duffing's equation, and obtained the identical one as those in the textbook. So, I was wodering if there are some typos in the equation given by the textbook, or somewhere else. I posted my code, but might be quite messy to understand. So appreicate dealing with it.
import numpy as np
import matplotlib.pylab as plt
import matplotlib as mpl
import sys
import time
state = [1]
def print_percent_done(index, total, state, title='Please wait'):
percent_done2 = (index+1)/total*100
percent_done = round(percent_done2, 1)
print(f'\t⏳{title}: {percent_done}% done', end='\r')
if percent_done2 > 99.9 and state[0]:
print('\t✅'); state = [0]
####
no = 1
####
def multiple(n, q):
m = n; i = 0
while m >= 0:
m -= q
i += 1
return min(abs(n - (i - 1)*q), abs(i*q - n))
# system(2)
#Basic info.
filename = 'sinPotentialWell'
# a = 1
# alpha = 0.01
# w = 4
w0 = .5
n = 1000000
h = .01
t_0 = 0
x_0 = 0.1
y_0 = 0
A = [(t_0, x_0, y_0)]
def f(t, x, y):
return y
def g(t, x, y):
return -0.5*y - np.sin(x) + 1.1*np.sin(0.5*t)
for i in range(n):
t0 = A[i][0]; x0 = A[i][1]; y0 = A[i][2]
k1 = f(t0, x0, y0)
u1 = g(t0, x0, y0)
k2 = f(t0 + h/2, x0 + h*k1/2, y0 + h*u1/2)
u2 = g(t0 + h/2, x0 + h*k1/2, y0 + h*u1/2)
k3 = f(t0 + h/2, x0 + h*k2/2, y0 + h*u2/2)
u3 = g(t0 + h/2, x0 + h*k2/2, y0 + h*u2/2)
k4 = f(t0 + h, x0 + h*k3, y0 + h*u3)
u4 = g(t0 + h, x0 + h*k3, y0 + h*u3)
t = t0 + h
x = x0 + (k1 + 2*k2 + 2*k3 + k4)*h/6
y = y0 + (u1 + 2*u2 + 2*u3 + u4)*h/6
A.append([t, x, y])
if i%1000 == 0: print_percent_done(i, n, state, 'Solving given DE')
#phase diagram
print('showing 3d_(x, y, phi) graph')
PHI=[[]]; X=[[]]; Y=[[]]
PHI_period1 = []; X_period1 = []; Y_period1 = []
for i in range(n):
if w0*A[i][0]%(2*np.pi) < 1 and w0*A[i-1][0]%(2*np.pi) > 6:
PHI.append([]); X.append([]); Y.append([])
PHI_period1.append((w0*A[i][0])%(2*np.pi)); X_period1.append(A[i][1]); Y_period1.append(A[i][2])
phi_period1 = np.array(PHI_period1); x_period1 = np.array(X_period1); y_period1 = np.array(Y_period1)
print('showing Poincare Section at phi=0')
plt.plot(x_period1, y_period1, 'gs', markersize = 2)
plt.plot()
plt.title('phi=0 Poincare Section')
plt.xlabel('x'); plt.ylabel('y')
plt.show()
If you factor out some of the computation blocks, you can make the code more flexible and computations more direct. No need to reconstruct something if you can construct it in the first place. You want to catch the points where w0*t is a multiple of 2*pi, so just construct the time loops so you integrate in chunks of 2*pi/w0 and only remember the interesting points.
num_plot_points = 2000
h = .01
t,x,y = t_0,x_0,y_0
x_section,y_section = [],[]
T = 2*np.pi/w0
for k in range(num_plot_points):
t = 0;
while t < T-1.2*h:
x,y = RK4step(t,x,y,h)
t += h
x,y = RK4step(t,x,y,T-t)
if k%100 == 0: print_percent_done(k, num_plot_points, state, 'Solving given DE')
x_section.append(x); y_section.append(y)
with RK4step just containing the code of the RK4 step.
This will not solve the mystery. The veil gets lifted if you consider that x is the angle theta (of a forced pendulum with friction) on a circle. Thus to get points with the same spacial location it needs to be reduced by multiples of 2*pi. Doing that,
plt.plot([x%(2*np.pi) for x in x_section], y_section, 'gs', markersize = 2)
results in the expected plot

zooming into mandelbrot set does not work as planned

I changed some things but i still have a similar problem. I am working on Mandelbrot zoom. I try to zoom in deeper at branches. I count the consecutive points in the set and return the branch if it reaches the defined length. Then I zoom into that area and repeat. But the change gets smaller and the returned branch is nearly the same as the last one.
variables
X0,Y0,X1 = verticies of current area
branch = current branch
n = number of iterations
p = how many times i want to zoom
b = minimum length of branch i am looking for
c = current complex number
z = current value
k = pixel size
the function that returns the branch
def fractal(n, X0, Y0, X1): # searching for new branch
branch = []
k = (X1 - X0) / x_axis # pixel size
b = 5 # the number of black points int the set i am looking for
for y in range(y_axis):
try:
for x in range(x_axis):
c = X0 + k * x + Y0 - k * y * 1.j # new c
z = c
for m in range(n):
if abs(z) <= 2:
z = z * z + c # new z
else:
break
if abs(z) <= 2:
branch.append((x,y)) # the coordinates for those points
else:
if b < len(branch) < 50:
raise BreakOutOfALoop # break if a branch was found
branch = []
except BreakOutOfALoop:
break
return branch, k
the function that calculates the verticies of the new area
def new_area(branch, X0, Y0, X1, k): # calculating new area
print(branch)
X0 = X0 + k * branch[0][0]
Y0 = Y0 - k * branch[0][1]
X1 = X1 + k * branch[-1][0] # new area verticies
return X0, Y0, X1
the loop that calls the functions
for i in range(p):
areaImage = Image.new('RGB', (x_axis,y_axis), "white")
area_pixels = areaImage.load() # image load
branch, k = fractal(n,X0, Y0, X1)
X0, Y0, X1 = new_area(branch, X0, Y0, X1, k)
file_name = "/" + str(i) + "_" + str(n) + "_" + str(x_axis) + "_" + str(y_axis) + ".png" # image save
areaImage = areaImage.save(f"{areaImage_path}{file_name}")
What am I overlooking?
Here are some pictures for different p.
p = 3
p = 10

Solve over-determined system of linear equations

I have a rather simple system of equations of the form:
1*A + 0*B + x2*C + y2*D = x1
0*A + 1*B + y2*C + x2*D = y1
where the pairs (x1,y1) and (x2,y2) are known floats of length N (the system is over-determined), and I need to solve for the A, B, C, D parameters.
I've been playing around with numpy.linalg.lstsq but I can't seem to get the shapes of the matrices right. This is what I have
import numpy as np
N = 10000
x1, y1 = np.random.uniform(0., 5000., (2, N))
x2, y2 = np.random.uniform(0., 5000., (2, N))
# 1*A + 0*B + x2*C + y2*D = x1
# 0*A + 1*B + y2*C + x2*D = y1
l1 = np.array([np.ones(N), np.zeros(N), x2, y2])
l2 = np.array([np.zeros(N), np.ones(N), y2, x2])
M1 = np.array([l1, l2])
M2 = np.array([x1, y1])
ABCD = np.linalg.lstsq(M1, M2)[0]
print(ABCD)
which fails with:
numpy.linalg.linalg.LinAlgError: 3-dimensional array given. Array must be two-dimensional
What am I doing wrong?
Keeping everything else fixed, changing M1 and M2 to
M1 = np.vstack([l1.T, l2.T])
M2 = np.concatenate([x1, y1])
should do the job.
Your concatenation is an issue and also the parameters for lstsq() have to be transposed.
M1 = np.hstack((l1,l2))
M2 = np.hstack((x1,x2))
ABCD = np.linalg.lstsq(M1.T,M2.T)[0]

Best-Fit axis of points on a cylindrical surface

I would like to find the best-fit axis of points that are on a cylindrical surface, using python.
Seems that scipy.linalg.svd is the function to look for.
So to test out, I decide to generate some points, function makeCylinder, from this thread How to generate regular points on cylindrical surface, and estimate the axis.
This is the code:
def rotMatrixAxisAngle(axis, theta, theta2deg=False):
# Load
from math import radians, cos, sin
from numpy import array
# Convert to radians
if theta2deg:
theta = radians(theta)
#
a = cos(theta/2.0)
b, c, d = -array(axis)*sin(theta/2.0)
# Rotation matrix
R = array([ [a*a+b*b-c*c-d*d, 2.0*(b*c-a*d), 2.0*(b*d+a*c)],
[2.0*(b*c+a*d), a*a+c*c-b*b-d*d, 2.0*(c*d-a*b)],
[2.0*(b*d-a*c), 2.0*(c*d+a*b), a*a+d*d-b*b-c*c] ])
return R
def makeCylinder(radius, length, nlength, alpha, nalpha, center, orientation):
# Load
from numpy import array, allclose, linspace, tile, vstack
from numpy import pi, cos, sin, arccos, cross
from numpy.linalg import norm
# Create the length array
I = linspace(0, length, nlength)
# Create alpha array avoid duplication of endpoints
if int(alpha) == 360:
A = linspace(0, alpha, num=nalpha, endpoint=False)/180.0*pi
else:
A = linspace(0, alpha, num=nalpha)/180.0*pi
# Calculate X and Y
X = radius * cos(A)
Y = radius * sin(A)
# Tile/repeat indices so all unique pairs are present
pz = tile(I, nalpha)
px = X.repeat(nlength)
py = Y.repeat(nlength)
# Points
points = vstack(( pz, px, py )).T
## Shift to center
points += array(center) - points.mean(axis=0)
# Orient tube to new vector
ovec = orientation / norm(orientation)
cylvec = array([1,0,0])
if allclose(cylvec, ovec):
return points
# Get orthogonal axis and rotation
oaxis = cross(ovec, cylvec)
rot = arccos(ovec.dot(cylvec))
R = rotMatrixAxisAngle(oaxis, rot)
return points.dot(R)
from numpy.linalg import norm
from numpy.random import rand
from scipy.linalg import svd
for i in xrange(100):
orientation = rand(3)
orientation[0] = 0
orientation /= norm(orientation)
# Generate sample points
points = makeCylinder(radius = 3.0,
length = 20.0, nlength = 20,
alpha = 360, nalpha = 30,
center = [0,0,0],
orientation = orientation)
# Least Square
uu, dd, vv = svd(points - points.mean(axis=0))
asse = vv[0]
assert abs( abs(orientation.dot(asse)) - 1) <= 1e-4, orientation.dot(asse)
As you can see, I generate multiple cylinder whose axis is random (rand(3)).
The funny thing is that svd returns an axis that is absolutely perfect if the first component of orientation is zero (orientation[0] = 0).
If I comment this line the estimated axis is way off.
Update 1:
Even using leastsq on a cylinder equation returns the same behavior:
def bestLSQ1(points):
from numpy import array, sqrt
from scipy.optimize import leastsq
# Expand
points = array(points)
x = points[:,0]
y = points[:,1]
z = points[:,2]
# Calculate the distance of each points from the center (xc, yc, zc)
# http://geometry.puzzles.narkive.com/2HaVJ3XF/geometry-equation-of-an-arbitrary-orientated-cylinder
def calc_R(xc, yc, zc, u1, u2, u3):
return sqrt( (x-xc)**2 + (y-yc)**2 + (z-zc)**2 - ( (x-xc)*u1 + (y-yc)*u2 + (z-zc)*u3 )**2 )
# Calculate the algebraic distance between the data points and the mean circle centered at c=(xc, yc, zc)
def dist(c):
Ri = calc_R(*c)
return Ri - Ri.mean()
# Axes - Minimize residu
xM, yM, zM = points.mean(axis=0)
# Calculate the center
center, ier = leastsq(dist, (xM, yM, zM, 0, 0, 1))
xc, yc, zc, u1, u2, u3 = center
asse = u1, u2, u3
return asse
Despite your interesting approach using svd, you could also do a more intuitive approach with scipy.optimize.leastsq.
This would need a function to calculate distance between the axis and your cloud of points in order to find the best-fitting axis.
The code could be something like shown below (distance_axis_points adapted from alg3dpy):
from numpy.linalg import norm
from numpy.random import rand
from scipy.optimize import leastsq
for i in range(100):
orientation = rand(3)
orientation[0] = 0
orientation /= norm(orientation)
# Generate sample points
points = makeCylinder(radius = 3.0,
length = 20.0, nlength = 20,
alpha = 360, nalpha = 30,
center = [0,0,0],
orientation = orientation)
def dist_axis_points(axis, points):
axis_pt0 = points.mean(axis=0)
axis = np.asarray(axis)
x1 = axis_pt0[0]
y1 = axis_pt0[1]
z1 = axis_pt0[2]
x2 = axis[0]
y2 = axis[1]
z2 = axis[2]
x3 = points[:, 0]
y3 = points[:, 1]
z3 = points[:, 2]
den = ((x1 - x2)**2 + (y1 - y2)**2 + (z1 - z2)**2)
t = ((x1**2 + x2 * x3 - x1 * x3 - x1 * x2 +
y1**2 + y2 * y3 - y1 * y3 - y1 * y2 +
z1**2 + z2 * z3 - z1 * z3 - z1 * z2)/den)
projected_pt = t[:, None]*(axis[None, :] - axis_pt0[None, :]) + axis_pt0[None, :]
return np.sqrt(((points - projected_pt)**2).sum(axis=-1))
popt, pconv = leastsq(dist_axis_points, x0=[1, 1, 1], args=(points,))
popt /= norm(popt)
assert abs(abs(orientation.dot(popt)) - 1) <= 1e-4, orientation.dot(popt)

Categories