Plotting a fairly large point cloud in python using plotly produces a graph with axes (not representative of the data range) and no data points.
The code:
import pandas as pd
import plotly.express as px
import numpy as np
all_res = np.load('fullshelf4_11_2019.npy' )
all_res.shape
(3, 6742382)
np.max(all_res[2])
697.5553566696478
np.min(all_res[2])
-676.311654692491
frm = pd.DataFrame(data=np.transpose(all_res[0:, 0:]),columns=["X", "Y", "Z"])
fig = px.scatter_3d(frm, x='X', y='Y', z='Z')
fig.update_traces(marker=dict(size=4))
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
fig.show()
Alternatively you could generate random data and follow the process through
all_res = np.random.rand(3, 6742382)
Which also produces a blank graph with a axis scales that are incorrect.
So -- what am I doing wrong, and is there a better way to plot such a moderately large data set?
Thanks for your help!
Try plotting using ipyvolume.It can handle large point cloud datasets.
It seems like that's too much data for WebGL to handle. I managed to plot 100k points, but 1M points already caused Jupyter to crash. However, a 3D scatterplot of 6.7 million points is of questionable value anyway. You probably won't be able to make any sense out of it (except for data boundaries maybe) and it will be super slow to rotate etc.
I would try to think of alternative approaches, depending on what you want to do. Maybe pick a representative subset of points and plot those.
I would suggest using pythreejs for a point cloud. It has very good performance, even for a large number of points.
import pythreejs as p3
import numpy as np
N = 1_000_000
# Positions centered around the origin
positions = np.random.normal(loc=0.0, scale=100.0, size=(N, 3)).astype('float32')
# Create a buffer geometry with random color for each point
geometry = p3.BufferGeometry(
attributes={'position': p3.BufferAttribute(array=positions),
'color': p3.BufferAttribute(
array=np.random.random((N, 3)).astype('float32'))})
# Create a points material
material = p3.PointsMaterial(vertexColors='VertexColors', size=1)
# Combine the geometry and material into a Points object
points = p3.Points(geometry=geometry, material=material)
# Create the scene and the renderer
view_width = 700
view_height = 500
camera = p3.PerspectiveCamera(position=[800.0, 0, 0], aspect=view_width/view_height)
scene = p3.Scene(children=[points, camera], background="#DDDDDD")
controller = p3.OrbitControls(controlling=camera)
renderer = p3.Renderer(camera=camera, scene=scene, controls=[controller],
width=view_width, height=view_height)
renderer
Related
I am using data from cdasws to plot dynamic spectra. I am following the example found here https://cdaweb.gsfc.nasa.gov/WebServices/REST/jupyter/CdasWsExample.html
This is my code which I have modified to obtain a dynamic spectra for STEREO.
from cdasws import CdasWs
from cdasws.datarepresentation import DataRepresentation
import matplotlib.pyplot as plt
cdas = CdasWs()
import numpy as np
datasets = cdas.get_datasets(observatoryGroup='STEREO')
for index, dataset in enumerate(datasets):
print(dataset['Id'], dataset['Label'])
variables = cdas.get_variables('STEREO_LEVEL2_SWAVES')
for variable_1 in variables:
print(variable_1['Name'], variable_1['LongDescription'])
data = cdas.get_data('STEREO_LEVEL2_SWAVES', ['avg_intens_ahead'],
'2020-07-11T02:00:00Z', '2020-07-11T03:00:00Z',
dataRepresentation = DataRepresentation.XARRAY)[1]
print(data)
plt.figure(figsize = (15,7))
# plt.ylim(100,1000)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
plt.yscale('log')
sorted_data.transpose().plot()
plt.xlabel("Time",size=18)
plt.ylabel("Frequency (kHz)",size=18)
plt.show()
Using this code gives a plot that looks something like this,
My question is, is there anyway of plotting this spectrum only for a particular frequency? For example, I want to plot just the intensity values at 636 kHz, is there any way I can do that?
Any help is greatly appreciated, I dont understand xarray, I have never worked with it before.
Edit -
Using the command,
data_stereo.avg_intens_ahead.loc[:,625].plot()
generates a plot that looks like,
While this is useful, what I needed is;
for the dynamic spectrum, if i choose a particular frequency like 600khz, can it display something like this (i have just added white boxes to clarify what i mean) -
If you still want the plot to be 2D, but to include a subset of your data along one of the dimensions, you can provide an array of indices or a slice object. For example:
data_stereo.avg_intens_ahead.sel(
frequency=[625]
).plot()
Or
# include a 10% band on either side
data_stereo.avg_intens_ahead.sel(
frequency=slice(625*0.9, 625*1.1)
).plot()
Alternatively, if you would actually like your plot to show white space outside this selected area, you could mask your data with where:
data_stereo.avg_intens_ahead.where(
data_stereo.frequency==625
).plot()
I am just getting started with Holoviews. My questions are on customizing histograms, but also I am sharing a complete example as it may be helpful for other newbies to look at, since the documentation for Holoviews is very thorough but can be overwhelming.
I have a number of time series in text files loaded as Pandas DataFrames where:
each file is for a specific location
at each location about 10 time series were collected, each with about 15,000 points
I am building a small interactive tool where a Selector can be used to choose the location / DataFrame, and then another Selector to pick 3 of 10 of the time series to be plotted together.
My goal is to allow linked zooms (both x and y scales). The questions and code will focus on this aspect of the tool.
I cannot share the actual data I am using, unfortunately, as it is proprietary, but I have created 3 random walks with specific data ranges that are consistent with the actual data.
## preliminaries ##
import pandas as pd
import numpy as np
import holoviews as hv
from holoviews.util.transform import dim
from holoviews.selection import link_selections
from holoviews import opts
from holoviews.operation.datashader import shade, rasterize
import hvplot.pandas
hv.extension('bokeh', width=100)
## create random walks (one location) ##
data_df = pd.DataFrame()
npoints=15000
np.random.seed(71)
x = np.arange(npoints)
y1 = 1300+2.5*np.random.randn(npoints).cumsum()
y2 = 1500+2*np.random.randn(npoints).cumsum()
y3 = 3+np.random.randn(npoints).cumsum()
data_df.loc[:,'x'] = x
data_df.loc[:,'rand1'] = y1
data_df.loc[:,'rand2'] = y2
data_df.loc[:,'rand3'] = y3
This first block is just to plot the data and show how, by design, one of the random walks have different range from the other two:
data_df.hvplot(x='x',y=['rand1','rand2','rand3'],value_label='y',width=800,height=400)
As a result, although hvplot subplots work out of the box (for linking), ranges are different so the scaling is not quite there:
data_df.hvplot(x='x',y=['rand1','rand2','rand3'],
value_label='y',subplots=True,width=800,height=200).cols(1)
So, my first attempt was to adapt the Python-based Points example from Linked brushing in the documentation:
colors = hv.Cycle('Category10').values
dims = ['rand1', 'rand2', 'rand3']
layout = hv.Layout([
hv.Points(data_df, dim).opts(color=c)
for c, dim in zip(colors, [['x', d] for d in dims])
])
link_selections(layout).opts(opts.Points(width=1200, height=300)).cols(1)
That is already an amazing result for a 20 minutes effort!
However, what I would really like is to plot a curve rather than points, and also see a histogram, so I adapted the comprehension syntax to work with Curve (after reading the documentation pages Applying customization, and Composing elements):
colors = hv.Cycle('Category10').values
dims = ['rand1', 'rand2', 'rand3']
layout = hv.Layout([hv.Curve(data_df,'x',dim).opts(height=300,width=1200,
color=c).hist(dim) for c,
dim in zip(colors,[d for d in dims])])
link_selections(layout).cols(1)
Which is almost exactly what I want. But I still struggle with the different layers of opts syntax.
Question 1: with the comprehension from the last code block, how would I make the histogram share color with the curves?
Now, suppose I want to rasterize the plots (although I do not think is quite yet necessary with 15,000 points like in this case), I tried to adapt the first example with Points:
cmaps = ['Blues', 'Greens', 'Reds']
dims = ['rand1', 'rand2', 'rand3']
layout = hv.Layout([
shade(rasterize(hv.Points(data_df, dims),
cmap=c)).opts(width=1200, height = 400).hist(dims[1])
for c, dims in zip(cmaps, [['x', d] for d in dims])
])
link_selections(layout).cols(1)
This is a decent start, but again I struggle with the options/customization.
Question 2: in the above cod block, how would I pass the colormaps (it does not work as it is now), and how do I make the histogram reflect data values as in the previous case (and also have the right colormap)?
Thank you!
Sander answered how to color the histogram, but for the other question about coloring the datashaded plot, Datashader renders your data with a colormap rather than a single color, so the parameter is named cmap rather than color. So you were correct to use cmap in the datashaded case, but (a) cmap is actually a parameter to shade (which does the colormapping of the output of rasterize), and (b) you don't really need shade, as you can let Bokeh do the colormapping in most cases nowadays, in which case cmap is an option rather than an argument. Example:
from bokeh.palettes import Blues, Greens, Reds
cmaps = [Blues[256][200:], Greens[256][200:], Reds[256][200:]]
dims = ['rand1', 'rand2', 'rand3']
layout = hv.Layout([
rasterize(hv.Points(data_df, ds)).opts(cmap=c,width=1200, height = 400).hist(dims[1])
for c, ds in zip(cmaps, [['x', d] for d in dims])
])
link_selections(layout).cols(1)
To answer your first question to make the histogram share the color of the curve, I've added .opts(opts.Histogram(color=c)) to your code.
When you have a layout you can specify the options of an element inside the layout like that.
colors = hv.Cycle('Category10').values
dims = ['rand1', 'rand2', 'rand3']
layout = hv.Layout(
[hv.Curve(data_df,'x',dim)
.opts(height=300,width=600, color=c)
.hist(dim)
.opts(opts.Histogram(color=c))
for c, dim in zip(colors,[d for d in dims])]
)
link_selections(layout).cols(1)
I'm trying to overplot two arrays with different shapes but I'm unable to project one on the top of the other. For example:
#importing the relevant packages
import numpy as np
import matplotlib.pyplot as plt
def overplot(data1,data2):
'''
This function should make a contour plot
of data2 over the data1 plot.
'''
#creating the figure
fig = plt.figure()
#adding an axe
ax = fig.add_axes([1,1,1,1])
#making the plot for the
#first dataset
ax.imshow(data1)
#overplotting the contours
#for the second dataset
ax.contour(data2, projection = data2,
levels = [0.5,0.7])
#showing the figure
plt.show(fig)
return
if __name__ == '__main__':
'''
testing zone
'''
#creating two mock datasets
data1 = np.random.rand(3,3)
data2 = np.random.rand(9,9)
#using the overplot
overplot(data1,data2)
Currently, my output is something like:
While what I actually would like is to project the contours of the second dataset into the first one. This way, if I got images of the same object but with different resolution for the cameras I would be able to do such plots. How can I do that?
Thanks for your time and attention.
It's generally best to make the data match, and then plot it. This way you have complete control over how things are done.
In the simple example you give, you could use repeat along each axis to expand the 3x3 data to match the 9x9 data. That is, you could use, data1b = np.repeat(np.repeat(data1, 3, axis=1), 3, axis=0) to give:
But for the more interesting case of images, like you mention at the end of your question, then the axes probably won't be integer multiples and you'll be better served by a spline or other type interpolation. This difference is an example of why it's better to have control over this yourself, since there are many ways to to this type of mapping.
I am trying to plot contour lines of pressure level. I am using a netCDF file which contain the higher resolution data (ranges from 3 km to 27 km). Due to higher resolution data set, I get lot of pressure values which are not required to be plotted (rather I don't mind omitting certain contour line of insignificant values). I have written some plotting script based on the examples given in this link http://matplotlib.org/basemap/users/examples.html.
After plotting the image looks like this
From the image I have encircled the contours which are small and not required to be plotted. Also, I would like to plot all the contour lines smoother as mentioned in the above image. Overall I would like to get the contour image like this:-
Possible solution I think of are
Find out the number of points required for plotting contour and mask/omit those lines if they are small in number.
or
Find the area of the contour (as I want to omit only circled contour) and omit/mask those are smaller.
or
Reduce the resolution (only contour) by increasing the distance to 50 km - 100 km.
I am able to successfully get the points using SO thread Python: find contour lines from matplotlib.pyplot.contour()
But I am not able to implement any of the suggested solution above using those points.
Any solution to implement the above suggested solution is really appreciated.
Edit:-
# Andras Deak
I used print 'diameter is ', diameter line just above del(level.get_paths()[kp]) line to check if the code filters out the required diameter. Here is the filterd messages when I set if diameter < 15000::
diameter is 9099.66295612
diameter is 13264.7838257
diameter is 445.574234531
diameter is 1618.74618114
diameter is 1512.58974168
However the resulting image does not have any effect. All look same as posed image above. I am pretty sure that I have saved the figure (after plotting the wind barbs).
Regarding the solution for reducing the resolution, plt.contour(x[::2,::2],y[::2,::2],mslp[::2,::2]) it works. I have to apply some filter to make the curve smooth.
Full working example code for removing lines:-
Here is the example code for your review
#!/usr/bin/env python
from netCDF4 import Dataset
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage
from mpl_toolkits.basemap import interp
from mpl_toolkits.basemap import Basemap
# Set default map
west_lon = 68
east_lon = 93
south_lat = 7
north_lat = 23
nc = Dataset('ncfile.nc')
# Get this variable for later calucation
temps = nc.variables['T2']
time = 0 # We will take only first interval for this example
# Draw basemap
m = Basemap(projection='merc', llcrnrlat=south_lat, urcrnrlat=north_lat,
llcrnrlon=west_lon, urcrnrlon=east_lon, resolution='l')
m.drawcoastlines()
m.drawcountries(linewidth=1.0)
# This sets the standard grid point structure at full resolution
x, y = m(nc.variables['XLONG'][0], nc.variables['XLAT'][0])
# Set figure margins
width = 10
height = 8
plt.figure(figsize=(width, height))
plt.rc("figure.subplot", left=.001)
plt.rc("figure.subplot", right=.999)
plt.rc("figure.subplot", bottom=.001)
plt.rc("figure.subplot", top=.999)
plt.figure(figsize=(width, height), frameon=False)
# Convert Surface Pressure to Mean Sea Level Pressure
stemps = temps[time] + 6.5 * nc.variables['HGT'][time] / 1000.
mslp = nc.variables['PSFC'][time] * np.exp(9.81 / (287.0 * stemps) * nc.variables['HGT'][time]) * 0.01 + (
6.7 * nc.variables['HGT'][time] / 1000)
# Contour only at 2 hpa interval
level = []
for i in range(mslp.min(), mslp.max(), 1):
if i % 2 == 0:
if i >= 1006 and i <= 1018:
level.append(i)
# Save mslp values to upload to SO thread
# np.savetxt('mslp.txt', mslp, fmt='%.14f', delimiter=',')
P = plt.contour(x, y, mslp, V=2, colors='b', linewidths=2, levels=level)
# Solution suggested by Andras Deak
for level in P.collections:
for kp,path in enumerate(level.get_paths()):
# include test for "smallness" of your choice here:
# I'm using a simple estimation for the diameter based on the
# x and y diameter...
verts = path.vertices # (N,2)-shape array of contour line coordinates
diameter = np.max(verts.max(axis=0) - verts.min(axis=0))
if diameter < 15000: # threshold to be refined for your actual dimensions!
#print 'diameter is ', diameter
del(level.get_paths()[kp]) # no remove() for Path objects:(
#level.remove() # This does not work. produces ValueError: list.remove(x): x not in list
plt.gcf().canvas.draw()
plt.savefig('dummy', bbox_inches='tight')
plt.close()
After the plot is saved I get the same image
You can see that the lines are not removed yet. Here is the link to mslp array which we are trying to play with http://www.mediafire.com/download/7vi0mxqoe0y6pm9/mslp.txt
If you want x and y data which are being used in the above code, I can upload for your review.
Smooth line
You code to remove the smaller circles working perfectly. However the other question I have asked in the original post (smooth line) does not seems to work. I have used your code to slice the array to get minimal values and contoured it. I have used the following code to reduce the array size:-
slice = 15
CS = plt.contour(x[::slice,::slice],y[::slice,::slice],mslp[::slice,::slice], colors='b', linewidths=1, levels=levels)
The result is below.
After searching for few hours I found this SO thread having simmilar issue:-
Regridding regular netcdf data
But none of the solution provided over there works.The questions similar to mine above does not have proper solutions. If this issue is solved then the code is perfect and complete.
General idea
Your question seems to have 2 very different halves: one about omitting small contours, and another one about smoothing the contour lines. The latter is simpler, since I can't really think of anything else other than decreasing the resolution of your contour() call, just like you said.
As for removing a few contour lines, here's a solution which is based on directly removing contour lines individually. You have to loop over the collections of the object returned by contour(), and for each element check each Path, and delete the ones you don't need. Redrawing the figure's canvas will get rid of the unnecessary lines:
# dummy example based on matplotlib.pyplot.clabel example:
import matplotlib
import numpy as np
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
# difference of Gaussians
Z = 10.0 * (Z2 - Z1)
plt.figure()
CS = plt.contour(X, Y, Z)
for level in CS.collections:
for kp,path in reversed(list(enumerate(level.get_paths()))):
# go in reversed order due to deletions!
# include test for "smallness" of your choice here:
# I'm using a simple estimation for the diameter based on the
# x and y diameter...
verts = path.vertices # (N,2)-shape array of contour line coordinates
diameter = np.max(verts.max(axis=0) - verts.min(axis=0))
if diameter<1: # threshold to be refined for your actual dimensions!
del(level.get_paths()[kp]) # no remove() for Path objects:(
# this might be necessary on interactive sessions: redraw figure
plt.gcf().canvas.draw()
Here's the original(left) and the removed version(right) for a diameter threshold of 1 (note the little piece of the 0 level at the top):
Note that the top little line is removed while the huge cyan one in the middle doesn't, even though both correspond to the same collections element i.e. the same contour level. If we didn't want to allow this, we could've called CS.collections[k].remove(), which would probably be a much safer way of doing the same thing (but it wouldn't allow us to differentiate between multiple lines corresponding to the same contour level).
To show that fiddling around with the cut-off diameter works as expected, here's the result for a threshold of 2:
All in all it seems quite reasonable.
Your actual case
Since you've added your actual data, here's the application to your case. Note that you can directly generate the levels in a single line using np, which will almost give you the same result. The exact same can be achieved in 2 lines (generating an arange, then selecting those that fall between p1 and p2). Also, since you're setting levels in the call to contour, I believe the V=2 part of the function call has no effect.
import numpy as np
import matplotlib.pyplot as plt
# insert actual data here...
Z = np.loadtxt('mslp.txt',delimiter=',')
X,Y = np.meshgrid(np.linspace(0,300000,Z.shape[1]),np.linspace(0,200000,Z.shape[0]))
p1,p2 = 1006,1018
# this is almost the same as the original, although it will produce
# [p1, p1+2, ...] instead of `[Z.min()+n, Z.min()+n+2, ...]`
levels = np.arange(np.maximum(Z.min(),p1),np.minimum(Z.max(),p2),2)
#control
plt.figure()
CS = plt.contour(X, Y, Z, colors='b', linewidths=2, levels=levels)
#modified
plt.figure()
CS = plt.contour(X, Y, Z, colors='b', linewidths=2, levels=levels)
for level in CS.collections:
for kp,path in reversed(list(enumerate(level.get_paths()))):
# go in reversed order due to deletions!
# include test for "smallness" of your choice here:
# I'm using a simple estimation for the diameter based on the
# x and y diameter...
verts = path.vertices # (N,2)-shape array of contour line coordinates
diameter = np.max(verts.max(axis=0) - verts.min(axis=0))
if diameter<15000: # threshold to be refined for your actual dimensions!
del(level.get_paths()[kp]) # no remove() for Path objects:(
# this might be necessary on interactive sessions: redraw figure
plt.gcf().canvas.draw()
plt.show()
Results, original(left) vs new(right):
Smoothing by resampling
I've decided to tackle the smoothing problem as well. All I could come up with is downsampling your original data, then upsampling again using griddata (interpolation). The downsampling part could also be done with interpolation, although the small-scale variation in your input data might make this problem ill-posed. So here's the crude version:
import scipy.interpolate as interp #the new one
# assume you have X,Y,Z,levels defined as before
# start resampling stuff
dN = 10 # use every dN'th element of the gridded input data
my_slice = [slice(None,None,dN),slice(None,None,dN)]
# downsampled data
X2,Y2,Z2 = X[my_slice],Y[my_slice],Z[my_slice]
# same as X2 = X[::dN,::dN] etc.
# upsampling with griddata over original mesh
Zsmooth = interp.griddata(np.array([X2.ravel(),Y2.ravel()]).T,Z2.ravel(),(X,Y),method='cubic')
# plot
plt.figure()
CS = plt.contour(X, Y, Zsmooth, colors='b', linewidths=2, levels=levels)
You can freely play around with the grids used for interpolation, in this case I just used the original mesh, as it was at hand. You can also play around with different kinds of interpolation: the default 'linear' one will be faster, but less smooth.
Result after downsampling(left) and upsampling(right):
Of course you should still apply the small-line-removal algorithm after this resampling business, and keep in mind that this heavily distorts your input data (since if it wasn't distorted, then it wouldn't be smooth). Also, note that due to the crude method used in the downsampling step, we introduce some missing values near the top/right edges of the region under consideraton. If this is a problem, you should consider doing the downsampling based on griddata as I've noted earlier.
This is a pretty bad solution, but it's the only one that I've come up with. Use the get_contour_verts function in this solution you linked to, possibly with the matplotlib._cntr module so that nothing gets plotted initially. That gives you a list of contour lines, sections, vertices, etc. Then you have to go through that list and pop the contours you don't want. You could do this by calculating a minimum diameter, for example; if the max distance between points is less than some cutoff, throw it out.
That leaves you with a list of LineCollection objects. Now if you make a Figure and Axes instance, you can use Axes.add_collection to add all of the LineCollections in the list.
I checked this out really quick, but it seemed to work. I'll come back with a minimum working example if I get a chance. Hope it helps!
Edit: Here's an MWE of the basic idea. I wasn't familiar with plt._cntr.Cntr, so I ended up using plt.contour to get the initial contour object. As a result, you end up making two figures; you just have to close the first one. You can replace checkDiameter with whatever function works. I think you could turn the line segments into a Polygon and calculate areas, but you'd have to figure that out on your own. Let me know if you run into problems with this code, but it at least works for me.
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
def checkDiameter(seg, tol=.3):
# Function for screening line segments. NB: Not actually a proper diameter.
diam = (seg[:,0].max() - seg[:,0].min(),
seg[:,1].max() - seg[:,1].min())
return not (diam[0] < tol or diam[1] < tol)
# Create testing data
x = np.linspace(-1,1, 21)
xx, yy = np.meshgrid(x,x)
z = np.exp(-(xx**2 + .5*yy**2))
# Original plot with plt.contour
fig0, ax0 = plt.subplots()
# Make sure this contour object actually has a tiny contour to remove
cntrObj = ax0.contour(xx,yy,z, levels=[.2,.4,.6,.8,.9,.95,.99,.999])
# Primary loop: Copy contours into a new LineCollection
lineNew = list()
for lineOriginal in cntrObj.collections:
# Get properties of the original LineCollection
segments = lineOriginal.get_segments()
propDict = lineOriginal.properties()
propDict = {key: value for (key,value) in propDict.items()
if key in ['linewidth','color','linestyle']} # Whatever parameters you want to carry over
# Filter out the lines with small diameters
segments = [seg for seg in segments if checkDiameter(seg)]
# Create new LineCollection out of the OK segments
if len(segments) > 0:
lineNew.append(mpl.collections.LineCollection(segments, **propDict))
# Make new plot with only these line collections; display results
fig1, ax1 = plt.subplots()
ax1.set_xlim(ax0.get_xlim())
ax1.set_ylim(ax0.get_ylim())
for line in lineNew:
ax1.add_collection(line)
plt.show()
FYI: The bit with propDict is just to automate bringing over some of the line properties from the original plot. You can't use the whole dictionary at once, though. First, it contains the old plot's line segments, but you can just swap those for the new ones. But second, it appears to contain a number of parameters that are in conflict with each other: multiple linewidths, facecolors, etc. The {key for key in propDict if I want key} workaround is my way to bypass that, but I'm sure someone else can do it more cleanly.
I am trying to create four gabor patches, very similar to those below.
I don't need them to be identical to the pictures below, but similar.
Despite a bit of tinkering, I have been unable to reproduce these images...
I believe they were created in MATLAB originally. I don't have access to the original MATLAB code.
I have the following code in python (2.7.10):
import numpy as np
from scipy.misc import toimage # One can also use matplotlib*
data = gabor_fn(sigma = ???, theta = 0, Lambda = ???, psi = ???, gamma = ???)
toimage(data).show()
*graphing a numpy array with matplotlib
gabor_fn, from here, is defined below:
def gabor_fn(sigma,theta,Lambda,psi,gamma):
sigma_x = sigma;
sigma_y = float(sigma)/gamma;
# Bounding box
nstds = 3;
xmax = max(abs(nstds*sigma_x*numpy.cos(theta)),abs(nstds*sigma_y*numpy.sin(theta)));
xmax = numpy.ceil(max(1,xmax));
ymax = max(abs(nstds*sigma_x*numpy.sin(theta)),abs(nstds*sigma_y*numpy.cos(theta)));
ymax = numpy.ceil(max(1,ymax));
xmin = -xmax; ymin = -ymax;
(x,y) = numpy.meshgrid(numpy.arange(xmin,xmax+1),numpy.arange(ymin,ymax+1 ));
(y,x) = numpy.meshgrid(numpy.arange(ymin,ymax+1),numpy.arange(xmin,xmax+1 ));
# Rotation
x_theta=x*numpy.cos(theta)+y*numpy.sin(theta);
y_theta=-x*numpy.sin(theta)+y*numpy.cos(theta);
gb= numpy.exp(-.5*(x_theta**2/sigma_x**2+y_theta**2/sigma_y**2))*numpy.cos(2*numpy.pi/Lambda*x_theta+psi);
return gb
As you may be able to tell, the only difference (I believe) between the images is contrast. So, gabor_fn would likely needed to be altered to do allow for this (unless I misunderstand one of the params)...I'm just not sure how.
UPDATE:
from math import pi
from matplotlib import pyplot as plt
data = gabor_fn(sigma=5.,theta=pi/2.,Lambda=12.5,psi=90,gamma=1.)
unit = #From left to right, unit was set to 1, 3, 7 and 9.
bound = 0.0009/unit
fig = plt.imshow(
data
,cmap = 'gray'
,interpolation='none'
,vmin = -bound
,vmax = bound
)
plt.axis('off')
The problem you are having is a visualization problem (although, I think you are chossing too large parameters).
By default matplotlib, and scipy's (toimage) use bilinear (or trilinear) interpolation, depending on your matplotlib's configuration script. That's why your image looks so smooth. It is because your pixels values are being interpolated, and you are not displaying the raw kernel you have just calculated.
Try using matplotlib with no interpolation:
from matplotlib import pyplot as plt
plt.imshow(data, 'gray', interpolation='none')
plt.show()
For the following parameters:
data = gabor_fn(sigma=5.,theta=pi/2.,Lambda=25.,psi=90,gamma=1.)
You get this output:
If you reduce lamda to 15, you get something like this:
Additionally, the sigma you choose changes the strength of the smoothing, adding parameters vmin=-1 and vmax=1 to imshow (similar to what #kazemakase) suggested, will give you the desired contrast.
Check this guide for sensible values (and ways to use) gabor kernels:
http://scikit-image.org/docs/dev/auto_examples/plot_gabor.html
It seems like toimage scales the input data so that the min/max values are mapped to black/white.
I do not know what amplitudes to reasonably expect from gabor patches, but you should try something like this:
toimage(data, cmin=-1, cmax=1).show()
This tells toimage what range your data is in. You can try to play around with cmin and cmax, but make sure they are symmetric (i.e. cmin=-x, cmax=x) so that a value of 0 maps to grey.