How to avoid data loss using socket and pyqt with multithread - python

I am continuously and simultaneously receiving images from multiple clients to a single server. I have used pyqt5 and QRunnable to achieve this. The code will accept the client connection pass it to a thread and start streaming image and data alongwith it in. However I observed that some images are not received/dropped in each thread. Here is my server side thread code which stream images from the clients:
class threading(QRunnable):
def __init__(self,t1,t2,index,ttype,ptype,test):
super(threading,self).__init__()
self.t1=t1
self.t2=t2
self.ch=index
self.ttype=ttype
self.ptype=ptype
self.test=test
self.top1=""
self.bot1=""
self.img1=np.zeros((161,182,3),dtype=np.uint8)
self.signals=WorkerSignals()
self.top_process=top_data()
self.bot_process=bot_data()
def recvall(self,sock, count):
buf = b''
while count:
if sock:
newbuf = sock.recv(count)
if not newbuf: return None
buf += newbuf
count -= len(newbuf)
return buf
def stream(self,conn):
length = '0'
length = (self.recvall(conn,5))
print ('data len',length)
if(length[3]==35):
stringData = self.recvall(conn, int(length[:3]))
elif(length[4]==35):
stringData = self.recvall(conn, int(length[:4]))
else:
stringData = self.recvall(conn, int(length))
print('act len',int(length))
#print('sting 3',stringData)
data = np.frombuffer(stringData, dtype='uint8')
decimg = cv2.imdecode(data,1)
#conn.close()
return decimg
def run(self):
c=1
print('thread',self.ch,self.test)
global b1,b2,b3,b4,b5,b6
if self.test==2:
for fille in os.listdir(b1[self.ch-1]):
if fille.endswith('.jpg'):
os.remove(b1[self.ch-1]+fille)
for fille in os.listdir(b2[self.ch-1]):
if fille.endswith('.jpg'):
os.remove(b2[self.ch-1]+fille)
for fille in os.listdir(b3[self.ch-1]):
if fille.endswith('.jpg'):
os.remove(b3[self.ch-1]+fille)
for fille in os.listdir(b4[self.ch-1]):
if fille.endswith('.jpg'):
os.remove(b4[self.ch-1]+fille)
for fille in os.listdir(b5[self.ch-1]):
if fille.endswith('.jpg'):
os.remove(b5[self.ch-1]+fille)
for fille in os.listdir(b6[self.ch-1]):
if fille.endswith('.jpg'):
os.remove(b6[self.ch-1]+fille)
for fille in os.listdir(b7[self.ch-1]):
if fille.endswith('.jpg'):
os.remove(b7[self.ch-1]+fille)
while not stopEvent.is_set():
img1=self.stream(self.t1)
d1=convertimg(img1)
if self.ch>=7:
self.bot1=self.recvall(self.t2,30)
if self.ch<=6:
self.top1=self.recvall(self.t2,40)
if self.test>0:
if self.ch<=6:
self.top_process.taskvar(self.top1,img1,self.ttype,self.ptype,self.test,self.ch)
self.top_process.start()
self.top_process.signals.finish.connect(self.sendata,Qt.DirectConnection)
if self.ch>=7:
self.bot_process.taskvar(self.bot1,img1,self.ttype,self.ptype,self.test,self.ch)
self.bot_process.start()
if self.ch==1:
self.signals.i1.emit(d1)
if self.ch==2:
self.signals.i2.emit(d1)
if self.ch==3:
self.signals.i3.emit(d1)
if self.ch==4:
self.signals.i4.emit(d1)
if self.ch==5:
self.signals.i5.emit(d1)
if self.ch==6:
self.signals.i6.emit(d1)
if self.ch==7:
self.signals.i7.emit(d1)
if self.ch==8:
self.signals.i8.emit(d1)
if self.ch==9:
self.signals.i9.emit(d1)
if self.ch==10:
self.signals.i10.emit(d1)
if self.ch==11:
self.signals.i11.emit(d1)
if self.ch==12:
self.signals.i12.emit(d1)
c=c+1
There are 12 clients which simultaneously send one image and one string to the server. Can someone tell me why there is a data loss?? is it a race condition or there is error in receiving code.

One way to solve this is to add a mutex.
from PyQt5.QtCore import QMutex
You put it in your init:
self.mutex = QMutex()
Then you lock that part of your code that receives the picture:
if self.mutex.tryLock():
# receive picture
self.mutex.unlock()
For more info and examples you could check the official documentation of
QMutex
Let me know if it works!

Related

pylibftdi Device.read skips some bytes

I have an FPGA that streams data on the USB bus through an FT2232H and I have observed that about 10% of the data has to be thrown away because some bytes in the frame are missing. Here are the technical details:
FPGA is an Artix 7. A batch of 4002 byte is ready every 9 ms. So that works out to 444,667 byte/s of data.
My laptop runs python 3.7 (from anaconda) on Ubuntu 18.04LTS
The FPGA/FT2232H is opened via the following initialization lines:
SYNCFF = 0x40
SIO_RTS_CTS_HS = (0x1 << 8)
self.device = pylibftdi.Device(mode='t', interface_select=pylibftdi.INTERFACE_A, encoding='latin1')
self.device.ftdi_fn.ftdi_set_bitmode(0xff, SYNCFF)
self.device.ftdi_fn.ftdi_read_data_set_chunksize(0x10000)
self.device.ftdi_fn.ftdi_write_data_set_chunksize(0x10000)
self.device.ftdi_fn.ftdi_setflowctrl(SIO_RTS_CTS_HS)
self.device.flush()
Then the data is read via this simple line:
raw_usb_data = my_fpga.device.read(0x10000)
I have observed the following:
I always get 0x10000 of data per batch, which is what I expect.
Reading 2**16 = 65,536 byte at once using device.read should take 147.4 ms given that a batch is ready every 9 ms. But timing that line gives a mean of 143 ms with a std deviation of 6.6 ms.
My first guess is that there is no buffer/a tiny buffer somewhere and that some information is lost because the OS (priority issue?) or python (garbage collection?) does something else at some point for too long.
How can I reduce the amount of bytes lost while reading the device?
The FT2232H has internal FIFO buffers with a capacity of ~4 kbits. Chances are that you are limited by them. Not sure how pylibftdi deals with them but maybe using an alternative approach might work if you can use the VCP driver. This allows you to address the FT2232H as standard comport e.g. via pyserial.
Some excerpts from one of my projects which actually works for baud rates >12 Mbps (UART is limited to 12 Mbps but e.g. fast opto can reach ~25 Mbps):
import traceback
import serial
import serial.tools.list_ports
import multiprocessing
import multiprocessing.connection
def IO_proc(cntr_pipe, data_pipe):
try:
search_str="USB VID:PID=0403:6010 SER="
ports = [x.device for x in serial.tools.list_ports.comports() if search_str in x.hwid]
baud_rate = 12000000 #only matters for uart and not for fast opto or fifo mode
ser = serial.Serial(port, baud_rate)
while not cntr_pipe.closed:
time.sleep(0)
in_data = ser.read(ser.inWaiting())
[...do some pattern matching, package identification etc...]
data_pipe.send_bytes(in_data)
except EOFError:
ret_code = 2
except Exception as e:
cntr_pipe.send(traceback.format_exc())
cntr_pipe.close()
ret_code = 4
finally:
cntr_pipe.close()
ser.close()
multiprocessing.connection.BUFSIZE = 2 ** 20 #only required for windows
child_cntr, parent_cntr = multiprocessing.Pipe()
child_data, parent_data = multiprocessing.Pipe()
process = multiprocessing.Process(target = IO_proc, args=(child_cntr, child_data))
#called frequently
def update():
if child_cntr.poll():
raise Exception("error",child_cntr.recv())
buf = bytes()
while parent_data.poll():
buf += parent_data.recv_bytes()
[...do something fancy...]
I tried to c&p a minimum example. It is untested so please forgive me if it is not working out of the box. To get this working one actually needs to make sure that the VCP and not the D2XX driver is loaded.
P.S: Actually while scanning through my files I realized that the pylibftdi way should work as well as I use a "decorator" class in case the D2XX driver is loaded:
try: import pylibftdi
except: pylibftdi = None
class pylibftdi_device:
def __init__(self,speed):
self.dev = pylibftdi.Device(interface_select=2)
self.dev.baudrate = speed
self.buf = b''
def write(self, data):
self.dev.write(data)
def read(self, bytecount):
while bytecount > len(self.buf):
self._read()
ret = self.buf[:bytecount]
self.buf = self.buf[bytecount:]
return ret
def flushInput(self):
self.dev.flush_input()#FT_PURGE_RX
self.buf = b''
def _read(self):
self.buf += self.dev.read(2048)
#property
def in_waiting(self):
self._read()
return len(self.buf)
def close(self):
self.dev.close()
def find_device_UART(baudrate=12000000,index=1, search_string="USB VID:PID=0403:6010 SER="):
if pylibftdi:
return pylibftdi_device(baudrate),"pylibftdi_device"
try:
ports = [x.device for x in serial.tools.list_ports.comports() if search_string in x.hwid]
module_logger.info(str(ports))
if len(ports) == 0:
return None,"no device found"
else:
ser = serial.Serial(ports[index],baudrate)
return ser,"found device %s %d"%(ser.name,ser.baudrate)
except serial.SerialException as e:
return None,"error during device detection - \n"+str(e)
So main difference to your example is that the recv buffer is read more frequently and put into a buffer which is then searched for the packets later on. And maybe this all is a complete overkill for your application and you just need to make smaller read calls to ensure the buffers never overflow.

Python/Matlab comm over TCP

Edit
Worked around this problem by switching to UDP. See that updated code snippets after the break.
I'm having trouble with my threaded tcp server in python. The goal is to establish a communication link between Matlab and a Python server to allow for querying a database. This example only works properly once, then I have to restart Matlab to get the message echoed back again.
The Python side:
import SocketServer
from threading import Thread
class service(SocketServer.BaseRequestHandler):
def handle(self):
self.data = 'dummy'
print "Client connected with ", self.client_address
while len(self.data):
self.data = self.request.recv(1024).strip()
print self.data
self.request.sendall(self.data.upper())
print "Client exited"
self.request.close()
class ThreadedTCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer):
pass
t = ThreadedTCPServer(('',1522), service)
t.serve_forever()
And the Matlab Code:
t = ThreadedTCPServer(('',1522), service)
t.serve_forever()
t = tcpip('localhost', 1522);
fopen(t);
% write a message
fwrite(t, 'This is a test message.');
% read the echo
bytes = fread(t, [1, t.BytesAvailable]);
char(bytes)
% close the connection
fclose(t);
So, while i'm expecting the data to get echoed back, this only occurs on the first run, i.e. right after I've started Matlab. If I run it again, I get the message on the python side, but it is not echoed again. Ideas?
The Updated Python Code:
x = np.array([[55, 1000, 45], [20, 3, 10]])
class UDP_Interrupt(SocketServer.BaseRequestHandler):
def setup(self):
pass
def handle(self):
data = self.request[0].strip()
print data
socket = self.request[1]
print "{}{} wrote:".format(self.client_address[0], self.client_address)
print data
print x
socket.sendto(x.tostring('C'), self.client_address)
#scipy.io.savemat('/Users/empire/Documents/MATLAB/hybridQuadSim/quaternionController/models/mapData.mat', mdict={'mapData': x})
def finish(self):
pass
class ThreadedUDPServer(SocketServer.ThreadingMixIn, SocketServer.UDPServer):
pass
if __name__ == "__main__":
map_server = ThreadedUDPServer((HOST, PORT), UDP_Interrupt)
# terminate with Ctrl-C
try:
server_thread = Thread(target=map_server.serve_forever)
server_thread.daemon = False
server_thread.start()
print "Server loop running in thread:", server_thread.name
except KeyboardInterrupt:
sys.exit(0)
And for Matlab:
% connect to the server
t = udp('localhost', 2002);
fopen(t);
% write a message
fwrite(t, 'This is a test message.');
% read the echo
bytes = fread(t, [t.BytesAvailable, 1], 'char');
temp = reshape(bytes, [8 6]);
z = [0,0,0,0,0,0]
for col = 1:6
bytepack=uint64(0);
for row = 1:8
temp(9-row, col)
bytepack = bitshift(temp(9 - row, col),8*(8-row));
z(col) = bitor(bytepack,z(col));
temp(row, col);
end;
end;
% close the connection
fclose(t);
This setup seems to work well enough, but would appreciate any feedback or corrections offered. I would like a more robust solution to the problem of reconstructing the numpy array into a matrix in Matlab.

Using asyncio to read the output of a serial port

I have been doing some port-reading for work, and I need to know if I should use asyncIO to read the data that comes in from this port.
Here's some details about the way in which the system is constructed.
Multiple sensors are being read at the same time and might produce output that goes in at the same time. (all data comes in through a probee ZU10 connected to a usb port) All data must be timestamped as soon as it comes in.
The data is supposed to be processed and then sent to a django webapp through a REST API.
The thing Is, it's really important not to lose any data, I'm asking about this because I believe there must be an easier way to do this than the one I'm thinking of.
The way I want the data to come in is through an asyncronous process that takes in the data into a queue and timestamps it, this way there is no way in which loss of data is present, and timestamping may be no more than a few fractions of a second off, which is not a problem.
If anyone has got any ideas I would be thankful for them
Here's the code I'm using to open the port, take the data in and what I've got so far on the actually reading the meaningful data.
Here's the reading part:
import serial #for port opening
import sys #for exceptions
#
#configure the serial connections (the parameters differs on the device you are connecting to)
class Serializer:
def __init__(self, port, baudrate=9600, timeout=.1):
self.port = serial.Serial(port = port, baudrate=baudrate,
timeout=timeout, writeTimeout=timeout)
def open(self):
''' Abre Puerto Serial'''
self.port.open()
def close(self):
''' Cierra Puerto Serial'''
self.port.close()
def send(self, msg):
''' envía mensaje a dispositivo serial'''
self.port.write(msg)
def recv(self):
''' lee salidas del dispositivo serial '''
return self.port.readline()
PORT = '/dev/ttyUSB0' #Esto puede necesitar cambiarse
# test main class made for testing
def main():
test_port = Serializer(port = PORT)
while True:
print(test_port.recv())
if __name__ == "__main__":
main()
And a bit of what I'm going to be using to filter out the meaningful reads (bear with it, it might be full of awful errors and maybe a terrible RegEx):
import re
from Lector import ChecaPuertos
from Lector import entrada
patterns = [r'^{5}[0-9],2[0-9a-fA-F] $'] #pattern list
class IterPat:
def __init__(self, lect, pat = patterns):
self.pat = pat # lista de patrones posibles para sensores
self.lect = lect # lectura siendo analizada
self.patLen = len(pat) #Largo de patrones
def __iter__(self):
self.iteracion = 0 #crea la variable a iterar.
def __next__(self):
'''
Primero revisa si ya pasamos por todas las iteraciones posibles
luego revisa si la iteración es la que pensabamos, de ser así regresa una
tupla con el patrón correspondiente, y la lectura
de otra forma para el valor de ser mostrado
'''
pattern = re.compile(self.pat[self.iteracion])
comp = pattern.match(self.lect)
if comp == True:
re_value = (self.pattern, self.lect)
return re_value
else:
self.iteración += 1
def main():
puerto = ChecaPuertos.serial_ports()
serial = entrada.Serializer(port = puerto[0])
if serial != open:
serial.open()
while True:
iter = IterPat()
#This is incomplete right here.
I am using asyncio to read/write a serial port with pyserial. I am having my device on the other end of the serial connection write a single byte when it is ready to receive a payload. Asyncio watches for that byte then sends the payload. It looks something like this:
serial_f = serial.Serial(port=dev, baudrate=BAUDRATE, timeout=2)
def write_serial():
status = serial_f.read(1)
serial_f.write(buffer)
loop = asyncio.get_event_loop()
loop.add_reader(serial_f.fileno(), write_serial)

Alternative to tuntap

I'm trying to transmit TCP/IP over a radio that is connected to my computer (specifically, the USRP). Right now, it's done very simply using Tun/Tap to set up a new network interface. Here's the code:
from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import random
import time
import struct
import sys
import os
# from current dir
from transmit_path import transmit_path
from receive_path import receive_path
import fusb_options
#print os.getpid()
#raw_input('Attach and press enter')
# Linux specific...
# TUNSETIFF ifr flags from <linux/tun_if.h>
IFF_TUN = 0x0001 # tunnel IP packets
IFF_TAP = 0x0002 # tunnel ethernet frames
IFF_NO_PI = 0x1000 # don't pass extra packet info
IFF_ONE_QUEUE = 0x2000 # beats me ;)
def open_tun_interface(tun_device_filename):
from fcntl import ioctl
mode = IFF_TAP | IFF_NO_PI
TUNSETIFF = 0x400454ca
tun = os.open(tun_device_filename, os.O_RDWR)
ifs = ioctl(tun, TUNSETIFF, struct.pack("16sH", "gr%d", mode))
ifname = ifs[:16].strip("\x00")
return (tun, ifname)
# /////////////////////////////////////////////////////////////////////////////
# the flow graph
# /////////////////////////////////////////////////////////////////////////////
class my_top_block(gr.top_block):
def __init__(self, mod_class, demod_class,
rx_callback, options):
gr.top_block.__init__(self)
self.txpath = transmit_path(mod_class, options)
self.rxpath = receive_path(demod_class, rx_callback, options)
self.connect(self.txpath);
self.connect(self.rxpath);
def send_pkt(self, payload='', eof=False):
return self.txpath.send_pkt(payload, eof)
def carrier_sensed(self):
"""
Return True if the receive path thinks there's carrier
"""
return self.rxpath.carrier_sensed()
# /////////////////////////////////////////////////////////////////////////////
# Carrier Sense MAC
# /////////////////////////////////////////////////////////////////////////////
class cs_mac(object):
"""
Prototype carrier sense MAC
Reads packets from the TUN/TAP interface, and sends them to the PHY.
Receives packets from the PHY via phy_rx_callback, and sends them
into the TUN/TAP interface.
Of course, we're not restricted to getting packets via TUN/TAP, this
is just an example.
"""
def __init__(self, tun_fd, verbose=False):
self.tun_fd = tun_fd # file descriptor for TUN/TAP interface
self.verbose = verbose
self.tb = None # top block (access to PHY)
def set_top_block(self, tb):
self.tb = tb
def phy_rx_callback(self, ok, payload):
"""
Invoked by thread associated with PHY to pass received packet up.
#param ok: bool indicating whether payload CRC was OK
#param payload: contents of the packet (string)
"""
if self.verbose:
print "Rx: ok = %r len(payload) = %4d" % (ok, len(payload))
if ok:
os.write(self.tun_fd, payload)
def main_loop(self):
"""
Main loop for MAC.
Only returns if we get an error reading from TUN.
FIXME: may want to check for EINTR and EAGAIN and reissue read
"""
min_delay = 0.001 # seconds
while 1:
payload = os.read(self.tun_fd, 10*1024)
if not payload:
self.tb.send_pkt(eof=True)
break
if self.verbose:
print "Tx: len(payload) = %4d" % (len(payload),)
delay = min_delay
while self.tb.carrier_sensed():
sys.stderr.write('B')
time.sleep(delay)
if delay < 0.050:
delay = delay * 2 # exponential back-off
self.tb.send_pkt(payload)
# /////////////////////////////////////////////////////////////////////////////
# main
# /////////////////////////////////////////////////////////////////////////////
def main():
mods = modulation_utils.type_1_mods()
demods = modulation_utils.type_1_demods()
parser = OptionParser (option_class=eng_option, conflict_handler="resolve")
expert_grp = parser.add_option_group("Expert")
parser.add_option("-m", "--modulation", type="choice", choices=mods.keys(),
default='gmsk',
help="Select modulation from: %s [default=%%default]"
% (', '.join(mods.keys()),))
parser.add_option("-v","--verbose", action="store_true", default=False)
expert_grp.add_option("-c", "--carrier-threshold", type="eng_float", default=30,
help="set carrier detect threshold (dB) [default=%default]")
expert_grp.add_option("","--tun-device-filename", default="/dev/net/tun",
help="path to tun device file [default=%default]")
transmit_path.add_options(parser, expert_grp)
receive_path.add_options(parser, expert_grp)
for mod in mods.values():
mod.add_options(expert_grp)
for demod in demods.values():
demod.add_options(expert_grp)
fusb_options.add_options(expert_grp)
(options, args) = parser.parse_args ()
if len(args) != 0:
parser.print_help(sys.stderr)
sys.exit(1)
if options.rx_freq is None or options.tx_freq is None:
sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
parser.print_help(sys.stderr)
sys.exit(1)
# open the TUN/TAP interface
(tun_fd, tun_ifname) = open_tun_interface(options.tun_device_filename)
# Attempt to enable realtime scheduling
r = gr.enable_realtime_scheduling()
if r == gr.RT_OK:
realtime = True
else:
realtime = False
print "Note: failed to enable realtime scheduling"
# If the user hasn't set the fusb_* parameters on the command line,
# pick some values that will reduce latency.
if options.fusb_block_size == 0 and options.fusb_nblocks == 0:
if realtime: # be more aggressive
options.fusb_block_size = gr.prefs().get_long('fusb', 'rt_block_size', 1024)
options.fusb_nblocks = gr.prefs().get_long('fusb', 'rt_nblocks', 16)
else:
options.fusb_block_size = gr.prefs().get_long('fusb', 'block_size', 4096)
options.fusb_nblocks = gr.prefs().get_long('fusb', 'nblocks', 16)
#print "fusb_block_size =", options.fusb_block_size
#print "fusb_nblocks =", options.fusb_nblocks
# instantiate the MAC
mac = cs_mac(tun_fd, verbose=True)
# build the graph (PHY)
tb = my_top_block(mods[options.modulation],
demods[options.modulation],
mac.phy_rx_callback,
options)
mac.set_top_block(tb) # give the MAC a handle for the PHY
if tb.txpath.bitrate() != tb.rxpath.bitrate():
print "WARNING: Transmit bitrate = %sb/sec, Receive bitrate = %sb/sec" % (
eng_notation.num_to_str(tb.txpath.bitrate()),
eng_notation.num_to_str(tb.rxpath.bitrate()))
print "modulation: %s" % (options.modulation,)
print "freq: %s" % (eng_notation.num_to_str(options.tx_freq))
print "bitrate: %sb/sec" % (eng_notation.num_to_str(tb.txpath.bitrate()),)
print "samples/symbol: %3d" % (tb.txpath.samples_per_symbol(),)
#print "interp: %3d" % (tb.txpath.interp(),)
#print "decim: %3d" % (tb.rxpath.decim(),)
tb.rxpath.set_carrier_threshold(options.carrier_threshold)
print "Carrier sense threshold:", options.carrier_threshold, "dB"
print
print "Allocated virtual ethernet interface: %s" % (tun_ifname,)
print "You must now use ifconfig to set its IP address. E.g.,"
print
print " $ sudo ifconfig %s 192.168.200.1" % (tun_ifname,)
print
print "Be sure to use a different address in the same subnet for each machine."
print
tb.start() # Start executing the flow graph (runs in separate threads)
mac.main_loop() # don't expect this to return...
tb.stop() # but if it does, tell flow graph to stop.
tb.wait() # wait for it to finish
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
pass
(Anyone familiar with GNU Radio will recognize this as tunnel.py)
My question is, is there a better way to move packets to and from the kernel than tun/tap? I've been looking at ipip or maybe using sockets, but I'm pretty sure those won't be very fast. Speed is what I'm most concerned with.
Remember that tunnel.py is a really, really rough example, and hasn't been updated in a while. It's not really meant to be a basis for other code, so be careful of how much you rely on the code.
Also, remember that TCP over unreliable radio links has significant issues:
http://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_over_wireless_networks

python chat using poll

I need to built a python chat and I'm stacked in the very final step. I've built the server and the client and I have the following problem while running the code:
server.py 127.0.0.1
-in a separate window client.py 127.0.0.1
-another client
-type the nicknames to chat for both clients and get the correct answer 'yuppie' meaning you are connected
a client try to speak
message is not read by the other client until it doesn't print something, after printing it get the message printed on its screen correctly.
I'd like to get the message without being obliged to print something, it's pretty unrealistic!!! Code of client and server are below in 2 different classes. Thank you!
#! /usr/bin/env python
import socket,sys,select,re
PORT=1060
class Server():
def __init__(self,host):
#building listen_sock
self.listen_sock=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
self.listen_sock.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)
self.listen_sock.bind((host,PORT))
self.listen_sock.listen(20)
#building dict for socket and socket state
self.sockets={self.listen_sock.fileno(): self.listen_sock}
self.socket_state={self.listen_sock.fileno():''}
#building poll object
self.poll=select.poll()
self.poll.register(self.listen_sock,select.POLLIN)
#users' list
self.users_list={}
#DON'T LOOK HERE
#initialize the sender
#self.sender=0
# self.users=re.compile("\s*\$(get users connected)$\s*",re.IGNORECASE)
# self.nick=re.compile("\s*\$\$(\w*\d*)\$\$\s*",re.IGNORECASE)
# self.quit=re.compile("\s*\$(quit)\$\s*",re.IGNORECASE)
#self.commands=[self.users,self.nick,self.quit]
#funcion to receive message from client (work well)
def recv_until(self,fd,suffix):
self.message=''
#checking the end of the message
while not self.message.endswith(suffix):
data=self.sockets[fd].recv(16)
if not data:
raise EOFError('socket closed before we saw %r' % suffix)
self.message+=data
self.message=self.message[:-1]
#delete client (work well)
def del_client(self,fd):
del self.users_list[fd]
del self.socket_state[fd]
self.poll.unregister(fd)
#print the remaining active connections
if not len(self.users_list):
print 'Anyone is connected, waiting for new connection'
else:
print self.users_list
#add new client and change the of the file descriptor for that client (work well)
def new_client(self,fd):
newsock, sockname = self.listen_sock.accept()
print 'new connection from ', newsock.getpeername()
newsock.setblocking(False)
#recording the new connection
fd=newsock.fileno()
self.sockets[fd]=newsock
self.poll.register(fd,select.POLLOUT)
self.socket_state[fd]='ask nick'
#DON'T LOOK HERE
# def handle_query(self,fd):
# for n,command in enumerate(self.commands):
# match=command.search(self.message)
# if n==1 and match:
# self.users_list[self.sockets[fd].getpeername()]=match.group(1)
# print self.users_list
# for value in self.users_list.values():
# self.sockets[fd].sendall(value+'\n')
#starting the main function of the class
def chat(self):
while True:
#here il where the code hangs up waitng and waiting (WORKS BAD)
#return a tuple, identify where (fd) the event (event) is happening
for fd,event in self.poll.poll():
#print the state of each socket and the poll object
print self.socket_state
print self.poll.poll()
#starting the state machine
#remove closed sockets
if event & (select.POLLHUP | select.POLLERR |
select.POLLNVAL):
#deleting the socket closed at fd
self.del_client(fd)
#if the socket referred to is our listen_sock and we have a new connection request
elif self.sockets[fd] is self.listen_sock:
#recording the new entry!
self.new_client(fd)
#managing all the situation where it is necessary to answer to a client
#and changing the state of the socket and that of the sockets[fd]
elif event & select.POLLOUT:
if self.socket_state[fd]=='ask nick':
self.sockets[fd].sendall('identify\n')
self.poll.modify(self.sockets[fd],select.POLLIN)
self.socket_state[fd]='get user'
if self.socket_state[fd]=='invalid nick':
self.sockets[fd].sendall('invalid nick\n')
for value in self.users_list.values():
self.sockets[fd].sendall('\n'+value+'\n')
self.socket_state[fd]='ask nick'
if self.socket_state[fd]=='connected':
print '3'
self.sockets[fd].sendall('yuppie\n')
self.poll.modify(self.sockets[fd],select.POLLIN)
self.socket_state[fd]='ready to communicate'
if self.socket_state[fd]=='ready to receive':
self.sockets[fd].sendall(self.message)
print '4'
self.poll.modify(self.sockets[fd],select.POLLIN)
self.socket_state[fd]='ready to communicate'
#managing all the situation where it is necessary to get values from clients
elif event & select.POLLIN:
if self.socket_state[fd]=='get user':
self.recv_until(fd,'\n')
if self.message not in self.users_list.values():
self.users_list[fd]=self.message
self.poll.modify(self.sockets[fd],select.POLLOUT)
self.socket_state[fd]='connected'
else:
self.poll.modify(self.sockets[fd],select.POLLOUT)
self.socket_state[fd]='invalid nick'
if self.socket_state[fd]=='ready to communicate':
self.recv_until(fd,'\n')
print '5'
for i in self.users_list.keys():
if i!=fd:
self.poll.modify(self.sockets[i],select.POLLOUT)
self.socket_state[i]='ready to receive'
if __name__ == '__main__':
se=Server(sys.argv[1])
se.chat()
#! /usr/bin/env python
import sys,socket,select,threading,time
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
HOST=sys.argv.pop()
PORT=1060
class Client():
def setup(self):
server_address=(HOST,PORT)
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.sock.connect(server_address)
def chat(self):
while True:
time.sleep(1)
text=raw_input('>>> ')
self.sock.sendall(text+'\n')
def rec(self):
while True:
mess=self.sock.recv(16)
if mess:
print '$$$ ', mess,
def start(self):
l=threading.Thread(target=self.rec)
t=threading.Thread(target=self.chat)
t.start()
l.start()
if __name__=='__main__':
cl=Client()
cl.setup()
cl.start()
Next time take a look at http://www.zeromq.org/, it has a nice python binding http://zeromq.github.com/pyzmq/. It's perfect for this kind of stuff.

Categories