class Mod:
def __init__(self, prefix='', name=None, **kws):
self._prefix = prefix
self.opts = kws
self._name = name
def _reprstring(self, long=False):
out = self._name
opts = []
if len(self._prefix) > 0:
opts.append(f"prefix='{self._prefix}'")
if long:
for k, v in self.opts.items():
opts.append(f"{k}='{v}'")
if len(opts) > 0:
out = f"{out}, {', '.join(opts)}"
return f"Model({out})"
#property
def name(self):
return self._reprstring(long=False)
#name.setter
def name(self, value):
self._name = value
a=Mod(prefix='my_prefix',name='my_name',age=14,size='unknown')
a.name='olo'
print(a.name)
In the above code, is the only way to call _reprstring with long=True by typing a._reprstring(long=True)? This effectively makes the if long statement almost never used, then.
Is there no way of doing so while doing print(a.name)? --> I've tried doing print(a.name(long=True)), but I'm getting the error TypeError: 'str' object is not callable. Is this because python thinks I'm trying to call f"Model({out})"?
Preserve your encapsulation of sensitive functions and data while still supporting the functionality users need by implementing another property.
... #property
... def long_name(self):
... return self._reprstring(True)
...
>>> a=Mod(prefix='my_prefix',name='my_name',age=14,size='unknown')
>>> a.name='olo'
>>> print(a.long_name)
Model(olo, prefix='my_prefix', age='14', size='unknown')
>>>
Related
I have a class in which a method first needs to verify that an attribute is present and otherwise call a function to compute it. Then, ensuring that the attribute is not None, it performs some operations with it. I can see two slightly different design choices:
class myclass():
def __init__(self):
self.attr = None
def compute_attribute(self):
self.attr = 1
def print_attribute(self):
if self.attr is None:
self.compute_attribute()
print self.attr
And
class myclass2():
def __init__(self):
pass
def compute_attribute(self):
self.attr = 1
return self.attr
def print_attribute(self):
try:
attr = self.attr
except AttributeError:
attr = self.compute_attribute()
if attr is not None:
print attr
In the first design, I need to make sure that all the class attributes are set to None in advance, which can become verbose but also clarify the structure of the object.
The second choice seems to be the more widely used one. However, for my purposes (scientific computing related to information theory) using try except blocks everywhere can be a bit of an overkill given that this class doesn't really interact with other classes, it just takes data and computes a bunch of things.
Firstly, you can use hasattr to check if an object has an attribute, it returns True if the attribute exists.
hasattr(object, attribute) # will return True if the object has the attribute
Secondly, You can customise attribute access in Python, you can read more about it here: https://docs.python.org/2/reference/datamodel.html#customizing-attribute-access
Basically, you override the __getattr__ method to achieve this, so something like:
class myclass2():
def init(self):
pass
def compute_attr(self):
self.attr = 1
return self.attr
def print_attribute(self):
print self.attr
def __getattr__(self, name):
if hasattr(self, name) and getattr(self, name)!=None:
return getattr(self, name):
else:
compute_method="compute_"+name;
if hasattr(self, compute_method):
return getattr(self, compute_method)()
Make sure you only use getattr to access the attribute within __getattr__ or you'll end up with infinite recursion
Based on the answer jonrsharpe linked, I offer a third design choice. The idea here is that no special conditional logic is required at all either by the clients of MyClass or by code within MyClass itself. Instead, a decorator is applied to a function that does the (hypothetically expensive) computation of the property, and then that result is stored.
This means that the expensive computation is done lazily (only if a client tries to access the property) and only performed once.
def lazyprop(fn):
attr_name = '_lazy_' + fn.__name__
#property
def _lazyprop(self):
if not hasattr(self, attr_name):
setattr(self, attr_name, fn(self))
return getattr(self, attr_name)
return _lazyprop
class MyClass(object):
#lazyprop
def attr(self):
print('Generating attr')
return 1
def __repr__(self):
return str(self.attr)
if __name__ == '__main__':
o = MyClass()
print(o.__dict__, end='\n\n')
print(o, end='\n\n')
print(o.__dict__, end='\n\n')
print(o)
Output
{}
Generating attr
1
{'_lazy_attr': 1}
1
Edit
Application of Cyclone's answer to OP's context:
class lazy_property(object):
'''
meant to be used for lazy evaluation of an object attribute.
property should represent non-mutable data, as it replaces itself.
'''
def __init__(self, fget):
self.fget = fget
self.func_name = fget.__name__
def __get__(self, obj, cls):
if obj is None:
return None
value = self.fget(obj)
setattr(obj, self.func_name, value)
return value
class MyClass(object):
#lazy_property
def attr(self):
print('Generating attr')
return 1
def __repr__(self):
return str(self.attr)
if __name__ == '__main__':
o = MyClass()
print(o.__dict__, end='\n\n')
print(o, end='\n\n')
print(o.__dict__, end='\n\n')
print(o)
The output is identical to above.
I want to build various setter and getter. Fot not copy and paste the code, I thought something to solve it. Can decorator do it?
#property
def !!variable_name!!(self):
return self.__!!variable_name!!
#!!variable_name!!.setter
def !!variable_name!!(self, input):
self.__!!variable_name!! = input
Is it possible like macro in C?
It's unclear why you would want to do something like this—create a property with setter that ignores its value argument—but the answer is "Yes", you can do it by creating a function that returns a custom property object:
However you can't use # syntax to apply it. Instead you have to utilize it as shown:
def attribute_property(name, input_value):
STORAGE_NAME = '_' + name
#property
def prop(self):
return getattr(self, STORAGE_NAME)
#prop.setter
def prop(self, ignored):
setattr(self, STORAGE_NAME, input_value)
return prop
# EXAMPLE USAGE
class Person(object):
name = attribute_property('name', 'Monty')
def __init__(self, name, age):
self.name = name # ignores value of passed "name" argument!
self.age = age
user = Person('Rodrigo', 42)
print('user.name: {!r}'.format(user.name))
print('user.age: {!r}'.format(user.age))
Output:
user.name: 'Monty'
user.age: 42
Simple answer: Yes, that's possible using the descriptor protocol. For example you want to save variables with a leading underscore and access them without the leading underscore such a descriptor would work:
from six import string_types
class DescriptorSingleLeadingUnderscore(object):
def __init__(self, attr, doc=""):
if not isinstance(attr, string_types):
# Not a string so take the documentation (if avaiable) and name
# from the method.
if attr.__doc__:
doc = attr.__doc__
attr = attr.__name__
self.__doc__ = doc # Set the documentation of the instance.
self.attr = '_' + attr # Add leading underscore to the attribute name
def __get__(self, instance, owner=None):
if instance is None:
return self
return getattr(instance, self.attr, None)
def __set__(self, instance, value):
setattr(instance, self.attr, value)
def __delete__(self, instance):
delattr(instance, self.attr)
class X(object):
someproperty = DescriptorSingleLeadingUnderscore('someproperty')
someproperty1 = DescriptorSingleLeadingUnderscore('someproperty1')
someproperty2 = DescriptorSingleLeadingUnderscore('someproperty2')
someproperty3 = DescriptorSingleLeadingUnderscore('someproperty3')
#DescriptorSingleLeadingUnderscore
def it_also_works_as_decorator(self):
pass # this code is never executed!
And a test case:
>>> x = X()
>>> x.someproperty = 100
>>> x.someproperty
100
>>> x._someproperty
100
>>> x.it_also_works_as_decorator = 100
>>> x.it_also_works_as_decorator
100
>>> x._it_also_works_as_decorator
100
Currently when I want to define a setter and leave getter alone I do this:
#property
def my_property(self):
return self._my_property
#my_property.setter
def my_property(self, value):
value.do_some_magic()
self._my_property = value
Is there any way to make it shorter? I'd like to skip this part as it always look the same:
#property
def my_property(self):
return self._my_property
There's no out of the box solution, but you can try something like this:
def defprop(name):
def getter(self):
return getattr(self, name)
return property(getter)
class C(object):
# ...
my_dictionary = defprop('_my_dictionary')
# ...
That does not save you that many keystrokes though, you still have to duplicate the attribute name. Besides it's less explicit.
Update: after thinking a bit, I've come up with this descriptor-based hackish trick (disclaimer: this is done just for a demonstration, I don't imply it's a good practice unless you have a damn good reason to do so):
class with_default_getter(object):
def __init__(self, func):
self._attr_name = '_{0.__name__}'.format(func)
self._setter = func
def __get__(self, obj, type):
return getattr(obj, self._attr_name)
def __set__(self, obj, value):
return self._setter(obj, value)
Usage:
class C(object):
#with_default_getter
def my_property(self, value):
print 'setting %s'
self._my_property = value
>>> c = C()
>>> c.my_property = 123
setting 123
>>> c.my_property
123
This is pretty much the same as #georg suggests, just unfolds the implementation down to descriptors.
You can make a decorator that auto-creates the getter, following the underscores convention:
def setter(fn):
def _get(self):
return getattr(self, '_' + fn.__name__)
def _set(self, val):
return fn(self, val)
return property(_get, _set)
or more concisely, if you like this style more:
def setter(fn):
return property(
lambda self: getattr(self, '_' + fn.__name__),
fn)
Usage:
class X(object):
#setter
def my_property(self, value):
self._my_property = value + 1
x = X()
x.my_property = 42
print x.my_property # 43
There is no shortcut that I am aware of- remember explicit is better than implicit (from the Zen of python).
It could be that in your code so far, a property is always like that - but you could at some point write a a property getter which fetches an entirely calculated value - in which case your property getter and setter wont look like that at all.
Haveing said that you could write a wrapper which provides those simple default methods as part of the wrapper, if you wish.
def set_my_property(self, value):
value.do_some_magic()
self._my_property = value
my_property = property(fset=set_my_property)
I am using properties to execute some code every time there is a change to an attribute, like this:
class SomeClass(object):
def __init__(self,attr):
self._attr = attr
#property
def attr(self):
return self._attr
#attr.setter
def attr(self,value):
if self._attr != value:
self._on_change()
self._attr = value
def _on_change(self):
print "Do some code here every time attr changes"
And this works great:
>>> a = SomeClass(5)
>>> a.attr = 10
Do some code here every time attr changes
But if I store a mutable object in attr instead, attr can be modified directly, bypassing the setter and my change-detection code:
class Container(object):
def __init__(self,data):
self.data = data
>>> b = SomeClass(Container(5))
>>> b.attr.data = 10
>>>
Let's assume that attr is only ever going to be used to store an object of type Container. Is there an elegant way to modify SomeClass and/or Container to make SomeClass execute _on_change whenever the Container object stored in attr is modified? In other words, I want my output to be:
>>> b = SomeClass(Container(5))
>>> b.attr.data = 10
Do some code here every time attr changes
Here is another solution. Some kind of proxy class. You dont need to modify any classes to monitor attributes changes in them, only wrap object in ChangeTrigger derived class with ovverriden _on_change function:
class ChangeTrigger(object):
def __getattr__(self, name):
obj = getattr(self.instance, name)
# KEY idea for catching contained class attributes changes:
# recursively create ChangeTrigger derived class and wrap
# object in it if getting attribute is class instance/object
if hasattr(obj, '__dict__'):
return self.__class__(obj)
else:
return obj
def __setattr__(self, name, value):
if getattr(self.instance, name) != value:
self._on_change(name, value)
setattr(self.instance, name, value)
def __init__(self, obj):
object.__setattr__(self, 'instance', obj)
def _on_change(self, name, value):
raise NotImplementedError('Subclasses must implement this method')
Example:
class MyTrigger(ChangeTrigger):
def _on_change(self, name, value):
print "New value for attr %s: %s" % (name, value)
class Container(object):
def __init__(self, data):
self.data = data
class SomeClass(object):
attr_class = 100
def __init__(self, attr):
self.attr = attr
self.attr_instance = 5
>>> a = SomeClass(5)
>>> a = MyTrigger(a)
>>>
>>> a.attr = 10
New value for attr attr: 10
>>>
>>> b = SomeClass(Container(5))
>>> b = MyTrigger(b)
>>>
>>> b.attr.data = 10
New value for attr data: 10
>>> b.attr_class = 100 # old value = new value
>>> b.attr_instance = 100
New value for attr attr_instance: 100
>>> b.attr.data = 10 # old value = new value
>>> b.attr.data = 100
New value for attr data: 100
Here is a version of SomeClass and Container that I think has the behavior you are looking for. The idea here being that modifications to Container will call the _on_change() function of the SomeClass instance that is associated with it:
class Container(object):
def __init__(self, data):
self.data = data
def __setattr__(self, name, value):
if not hasattr(self, name) or getattr(self, name) != value:
self.on_change()
super(Container, self).__setattr__(name, value)
def on_change(self):
pass
class SomeClass(object):
def __init__(self, attr):
self._attr = attr
self._attr.on_change = self._on_change
#property
def attr(self):
return self._attr
#attr.setter
def attr(self,value):
if self._attr != value:
self._on_change()
self._attr = value
def _on_change(self):
print "Do some code here every time attr changes"
Example:
>>> b = SomeClass(Container(5))
>>> b.attr.data = 10
Do some code here every time attr changes
>>> b.attr.data = 10 # on_change() not called if the value isn't changing
>>> b.attr.data2 = 'foo' # new properties being add result in an on_change() call
Do some code here every time attr changes
Note that the only change to SomeClass was the second line in __init__(), I just included the full code for completeness and easy testing.
If you want to track changes and don't want to mess with juggling with on_change() methods in different classes you could use functools.partial in the way shown starting here.
This way you can wrap your data and hide it totally. Get/change will be possible only via some methods melded inside that object.
NB: python has no private properties and on convention that we all are grownups and act against rules. In your case users of your api shouldn't change data on container (after creation) directly.
NB: here for those who may be interested in other ways...
Is there any way to avoid calling __init__ on a class while initializing it, such as from a class method?
I am trying to create a case and punctuation insensitive string class in Python used for efficient comparison purposes but am having trouble creating a new instance without calling __init__.
>>> class String:
def __init__(self, string):
self.__string = tuple(string.split())
self.__simple = tuple(self.__simple())
def __simple(self):
letter = lambda s: ''.join(filter(lambda s: 'a' <= s <= 'z', s))
return filter(bool, map(letter, map(str.lower, self.__string)))
def __eq__(self, other):
assert isinstance(other, String)
return self.__simple == other.__simple
def __getitem__(self, key):
assert isinstance(key, slice)
string = String()
string.__string = self.__string[key]
string.__simple = self.__simple[key]
return string
def __iter__(self):
return iter(self.__string)
>>> String('Hello, world!')[1:]
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
String('Hello, world!')[1:]
File "<pyshell#1>", line 17, in __getitem__
string = String()
TypeError: __init__() takes exactly 2 positional arguments (1 given)
>>>
What should I replace string = String(); string.__string = self.__string[key]; string.__simple = self.__simple[key] with to initialize the new object with the slices?
EDIT:
As inspired by the answer written below, the initializer has been edited to quickly check for no arguments.
def __init__(self, string=None):
if string is None:
self.__string = self.__simple = ()
else:
self.__string = tuple(string.split())
self.__simple = tuple(self.__simple())
When feasible, letting __init__ get called (and make the call innocuous by suitable arguments) is preferable. However, should that require too much of a contortion, you do have an alternative, as long as you avoid the disastrous choice of using old-style classes (there is no good reason to use old-style classes in new code, and several good reasons not to)...:
class String(object):
...
bare_s = String.__new__(String)
This idiom is generally used in classmethods which are meant to work as "alternative constructors", so you'll usually see it used in ways such as...:
#classmethod
def makeit(cls):
self = cls.__new__(cls)
# etc etc, then
return self
(this way the classmethod will properly be inherited and generate subclass instances when called on a subclass rather than on the base class).
A trick the standard pickle and copy modules use is to create an empty class, instantiate the object using that, and then assign that instance's __class__ to the "real" class. e.g.
>>> class MyClass(object):
... init = False
... def __init__(self):
... print 'init called!'
... self.init = True
... def hello(self):
... print 'hello world!'
...
>>> class Empty(object):
... pass
...
>>> a = MyClass()
init called!
>>> a.hello()
hello world!
>>> print a.init
True
>>> b = Empty()
>>> b.__class__ = MyClass
>>> b.hello()
hello world!
>>> print b.init
False
But note, this approach is very rarely necessary. Bypassing the __init__ can have some unexpected side effects, especially if you're not familiar with the original class, so make sure you know what you're doing.
Using a metaclass provides a nice solution in this example. The metaclass has limited use but works fine.
>>> class MetaInit(type):
def __call__(cls, *args, **kwargs):
if args or kwargs:
return super().__call__(*args, **kwargs)
return cls.__new__(cls)
>>> class String(metaclass=MetaInit):
def __init__(self, string):
self.__string = tuple(string.split())
self.__simple = tuple(self.__simple())
def __simple(self):
letter = lambda s: ''.join(filter(lambda s: 'a' <= s <= 'z', s))
return filter(bool, map(letter, map(str.lower, self.__string)))
def __eq__(self, other):
assert isinstance(other, String)
return self.__simple == other.__simple
def __getitem__(self, key):
assert isinstance(key, slice)
string = String()
string.__string = self.__string[key]
string.__simple = self.__simple[key]
return string
def __iter__(self):
return iter(self.__string)
>>> String('Hello, world!')[1:]
<__main__.String object at 0x02E78830>
>>> _._String__string, _._String__simple
(('world!',), ('world',))
>>>
Addendum:
After six years, my opinion favors Alex Martelli's answer more than my own approach. With meta-classes still on the mind, the following answer shows how the problem can be solved both with and without them:
#! /usr/bin/env python3
METHOD = 'metaclass'
class NoInitMeta(type):
def new(cls):
return cls.__new__(cls)
class String(metaclass=NoInitMeta if METHOD == 'metaclass' else type):
def __init__(self, value):
self.__value = tuple(value.split())
self.__alpha = tuple(filter(None, (
''.join(c for c in word.casefold() if 'a' <= c <= 'z') for word in
self.__value)))
def __str__(self):
return ' '.join(self.__value)
def __eq__(self, other):
if not isinstance(other, type(self)):
return NotImplemented
return self.__alpha == other.__alpha
if METHOD == 'metaclass':
def __getitem__(self, key):
if not isinstance(key, slice):
raise NotImplementedError
instance = type(self).new()
instance.__value = self.__value[key]
instance.__alpha = self.__alpha[key]
return instance
elif METHOD == 'classmethod':
def __getitem__(self, key):
if not isinstance(key, slice):
raise NotImplementedError
instance = self.new()
instance.__value = self.__value[key]
instance.__alpha = self.__alpha[key]
return instance
#classmethod
def new(cls):
return cls.__new__(cls)
elif METHOD == 'inline':
def __getitem__(self, key):
if not isinstance(key, slice):
raise NotImplementedError
cls = type(self)
instance = cls.__new__(cls)
instance.__value = self.__value[key]
instance.__alpha = self.__alpha[key]
return instance
else:
raise ValueError('METHOD did not have an appropriate value')
def __iter__(self):
return iter(self.__value)
def main():
x = String('Hello, world!')
y = x[1:]
print(y)
if __name__ == '__main__':
main()
Pass another argument to the constructor, like so:
def __init__(self, string, simple = None):
if simple is None:
self.__string = tuple(string.split())
self.__simple = tuple(self.__simple())
else:
self.__string = string
self.__simple = simple
You can then call it like this:
def __getitem__(self, key):
assert isinstance(key, slice)
return String(self.__string[key], self.__simple[key])
Also, I'm not sure it's allowed to name both the field and the method __simple. If only for readability, you should change that.