I need to run a shell command asynchronously from a Python script. By this I mean that I want my Python script to continue running while the external command goes off and does whatever it needs to do.
I read this post:
Calling an external command in Python
I then went off and did some testing, and it looks like os.system() will do the job provided that I use & at the end of the command so that I don't have to wait for it to return. What I am wondering is if this is the proper way to accomplish such a thing? I tried commands.call() but it will not work for me because it blocks on the external command.
Please let me know if using os.system() for this is advisable or if I should try some other route.
subprocess.Popen does exactly what you want.
from subprocess import Popen
p = Popen(['watch', 'ls']) # something long running
# ... do other stuff while subprocess is running
p.terminate()
(Edit to complete the answer from comments)
The Popen instance can do various other things like you can poll() it to see if it is still running, and you can communicate() with it to send it data on stdin, and wait for it to terminate.
If you want to run many processes in parallel and then handle them when they yield results, you can use polling like in the following:
from subprocess import Popen, PIPE
import time
running_procs = [
Popen(['/usr/bin/my_cmd', '-i %s' % path], stdout=PIPE, stderr=PIPE)
for path in '/tmp/file0 /tmp/file1 /tmp/file2'.split()]
while running_procs:
for proc in running_procs:
retcode = proc.poll()
if retcode is not None: # Process finished.
running_procs.remove(proc)
break
else: # No process is done, wait a bit and check again.
time.sleep(.1)
continue
# Here, `proc` has finished with return code `retcode`
if retcode != 0:
"""Error handling."""
handle_results(proc.stdout)
The control flow there is a little bit convoluted because I'm trying to make it small -- you can refactor to your taste. :-)
This has the advantage of servicing the early-finishing requests first. If you call communicate on the first running process and that turns out to run the longest, the other running processes will have been sitting there idle when you could have been handling their results.
This is covered by Python 3 Subprocess Examples under "Wait for command to terminate asynchronously". Run this code using IPython or python -m asyncio:
import asyncio
proc = await asyncio.create_subprocess_exec(
'ls','-lha',
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE)
# do something else while ls is working
# if proc takes very long to complete, the CPUs are free to use cycles for
# other processes
stdout, stderr = await proc.communicate()
The process will start running as soon as the await asyncio.create_subprocess_exec(...) has completed. If it hasn't finished by the time you call await proc.communicate(), it will wait there in order to give you your output status. If it has finished, proc.communicate() will return immediately.
The gist here is similar to Terrels answer but I think Terrels answer appears to overcomplicate things.
See asyncio.create_subprocess_exec for more information.
What I am wondering is if this [os.system()] is the proper way to accomplish such a thing?
No. os.system() is not the proper way. That's why everyone says to use subprocess.
For more information, read http://docs.python.org/library/os.html#os.system
The subprocess module provides more
powerful facilities for spawning new
processes and retrieving their
results; using that module is
preferable to using this function. Use
the subprocess module. Check
especially the Replacing Older
Functions with the subprocess Module
section.
The accepted answer is very old.
I found a better modern answer here:
https://kevinmccarthy.org/2016/07/25/streaming-subprocess-stdin-and-stdout-with-asyncio-in-python/
and made some changes:
make it work on windows
make it work with multiple commands
import sys
import asyncio
if sys.platform == "win32":
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
async def _read_stream(stream, cb):
while True:
line = await stream.readline()
if line:
cb(line)
else:
break
async def _stream_subprocess(cmd, stdout_cb, stderr_cb):
try:
process = await asyncio.create_subprocess_exec(
*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE
)
await asyncio.wait(
[
_read_stream(process.stdout, stdout_cb),
_read_stream(process.stderr, stderr_cb),
]
)
rc = await process.wait()
return process.pid, rc
except OSError as e:
# the program will hang if we let any exception propagate
return e
def execute(*aws):
""" run the given coroutines in an asyncio loop
returns a list containing the values returned from each coroutine.
"""
loop = asyncio.get_event_loop()
rc = loop.run_until_complete(asyncio.gather(*aws))
loop.close()
return rc
def printer(label):
def pr(*args, **kw):
print(label, *args, **kw)
return pr
def name_it(start=0, template="s{}"):
"""a simple generator for task names
"""
while True:
yield template.format(start)
start += 1
def runners(cmds):
"""
cmds is a list of commands to excecute as subprocesses
each item is a list appropriate for use by subprocess.call
"""
next_name = name_it().__next__
for cmd in cmds:
name = next_name()
out = printer(f"{name}.stdout")
err = printer(f"{name}.stderr")
yield _stream_subprocess(cmd, out, err)
if __name__ == "__main__":
cmds = (
[
"sh",
"-c",
"""echo "$SHELL"-stdout && sleep 1 && echo stderr 1>&2 && sleep 1 && echo done""",
],
[
"bash",
"-c",
"echo 'hello, Dave.' && sleep 1 && echo dave_err 1>&2 && sleep 1 && echo done",
],
[sys.executable, "-c", 'print("hello from python");import sys;sys.exit(2)'],
)
print(execute(*runners(cmds)))
It is unlikely that the example commands will work perfectly on your system, and it doesn't handle weird errors, but this code does demonstrate one way to run multiple subprocesses using asyncio and stream the output.
I've had good success with the asyncproc module, which deals nicely with the output from the processes. For example:
import os
from asynproc import Process
myProc = Process("myprogram.app")
while True:
# check to see if process has ended
poll = myProc.wait(os.WNOHANG)
if poll is not None:
break
# print any new output
out = myProc.read()
if out != "":
print out
Using pexpect with non-blocking readlines is another way to do this. Pexpect solves the deadlock problems, allows you to easily run the processes in the background, and gives easy ways to have callbacks when your process spits out predefined strings, and generally makes interacting with the process much easier.
Considering "I don't have to wait for it to return", one of the easiest solutions will be this:
subprocess.Popen( \
[path_to_executable, arg1, arg2, ... argN],
creationflags = subprocess.CREATE_NEW_CONSOLE,
).pid
But... From what I read this is not "the proper way to accomplish such a thing" because of security risks created by subprocess.CREATE_NEW_CONSOLE flag.
The key things that happen here is use of subprocess.CREATE_NEW_CONSOLE to create new console and .pid (returns process ID so that you could check program later on if you want to) so that not to wait for program to finish its job.
I have the same problem trying to connect to an 3270 terminal using the s3270 scripting software in Python. Now I'm solving the problem with an subclass of Process that I found here:
http://code.activestate.com/recipes/440554/
And here is the sample taken from file:
def recv_some(p, t=.1, e=1, tr=5, stderr=0):
if tr < 1:
tr = 1
x = time.time()+t
y = []
r = ''
pr = p.recv
if stderr:
pr = p.recv_err
while time.time() < x or r:
r = pr()
if r is None:
if e:
raise Exception(message)
else:
break
elif r:
y.append(r)
else:
time.sleep(max((x-time.time())/tr, 0))
return ''.join(y)
def send_all(p, data):
while len(data):
sent = p.send(data)
if sent is None:
raise Exception(message)
data = buffer(data, sent)
if __name__ == '__main__':
if sys.platform == 'win32':
shell, commands, tail = ('cmd', ('dir /w', 'echo HELLO WORLD'), '\r\n')
else:
shell, commands, tail = ('sh', ('ls', 'echo HELLO WORLD'), '\n')
a = Popen(shell, stdin=PIPE, stdout=PIPE)
print recv_some(a),
for cmd in commands:
send_all(a, cmd + tail)
print recv_some(a),
send_all(a, 'exit' + tail)
print recv_some(a, e=0)
a.wait()
There are several answers here but none of them satisfied my below requirements:
I don't want to wait for command to finish or pollute my terminal with subprocess outputs.
I want to run bash script with redirects.
I want to support piping within my bash script (for example find ... | tar ...).
The only combination that satiesfies above requirements is:
subprocess.Popen(['./my_script.sh "arg1" > "redirect/path/to"'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True)
Related
I need to run a shell command asynchronously from a Python script. By this I mean that I want my Python script to continue running while the external command goes off and does whatever it needs to do.
I read this post:
Calling an external command in Python
I then went off and did some testing, and it looks like os.system() will do the job provided that I use & at the end of the command so that I don't have to wait for it to return. What I am wondering is if this is the proper way to accomplish such a thing? I tried commands.call() but it will not work for me because it blocks on the external command.
Please let me know if using os.system() for this is advisable or if I should try some other route.
subprocess.Popen does exactly what you want.
from subprocess import Popen
p = Popen(['watch', 'ls']) # something long running
# ... do other stuff while subprocess is running
p.terminate()
(Edit to complete the answer from comments)
The Popen instance can do various other things like you can poll() it to see if it is still running, and you can communicate() with it to send it data on stdin, and wait for it to terminate.
If you want to run many processes in parallel and then handle them when they yield results, you can use polling like in the following:
from subprocess import Popen, PIPE
import time
running_procs = [
Popen(['/usr/bin/my_cmd', '-i %s' % path], stdout=PIPE, stderr=PIPE)
for path in '/tmp/file0 /tmp/file1 /tmp/file2'.split()]
while running_procs:
for proc in running_procs:
retcode = proc.poll()
if retcode is not None: # Process finished.
running_procs.remove(proc)
break
else: # No process is done, wait a bit and check again.
time.sleep(.1)
continue
# Here, `proc` has finished with return code `retcode`
if retcode != 0:
"""Error handling."""
handle_results(proc.stdout)
The control flow there is a little bit convoluted because I'm trying to make it small -- you can refactor to your taste. :-)
This has the advantage of servicing the early-finishing requests first. If you call communicate on the first running process and that turns out to run the longest, the other running processes will have been sitting there idle when you could have been handling their results.
This is covered by Python 3 Subprocess Examples under "Wait for command to terminate asynchronously". Run this code using IPython or python -m asyncio:
import asyncio
proc = await asyncio.create_subprocess_exec(
'ls','-lha',
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE)
# do something else while ls is working
# if proc takes very long to complete, the CPUs are free to use cycles for
# other processes
stdout, stderr = await proc.communicate()
The process will start running as soon as the await asyncio.create_subprocess_exec(...) has completed. If it hasn't finished by the time you call await proc.communicate(), it will wait there in order to give you your output status. If it has finished, proc.communicate() will return immediately.
The gist here is similar to Terrels answer but I think Terrels answer appears to overcomplicate things.
See asyncio.create_subprocess_exec for more information.
What I am wondering is if this [os.system()] is the proper way to accomplish such a thing?
No. os.system() is not the proper way. That's why everyone says to use subprocess.
For more information, read http://docs.python.org/library/os.html#os.system
The subprocess module provides more
powerful facilities for spawning new
processes and retrieving their
results; using that module is
preferable to using this function. Use
the subprocess module. Check
especially the Replacing Older
Functions with the subprocess Module
section.
The accepted answer is very old.
I found a better modern answer here:
https://kevinmccarthy.org/2016/07/25/streaming-subprocess-stdin-and-stdout-with-asyncio-in-python/
and made some changes:
make it work on windows
make it work with multiple commands
import sys
import asyncio
if sys.platform == "win32":
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
async def _read_stream(stream, cb):
while True:
line = await stream.readline()
if line:
cb(line)
else:
break
async def _stream_subprocess(cmd, stdout_cb, stderr_cb):
try:
process = await asyncio.create_subprocess_exec(
*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE
)
await asyncio.wait(
[
_read_stream(process.stdout, stdout_cb),
_read_stream(process.stderr, stderr_cb),
]
)
rc = await process.wait()
return process.pid, rc
except OSError as e:
# the program will hang if we let any exception propagate
return e
def execute(*aws):
""" run the given coroutines in an asyncio loop
returns a list containing the values returned from each coroutine.
"""
loop = asyncio.get_event_loop()
rc = loop.run_until_complete(asyncio.gather(*aws))
loop.close()
return rc
def printer(label):
def pr(*args, **kw):
print(label, *args, **kw)
return pr
def name_it(start=0, template="s{}"):
"""a simple generator for task names
"""
while True:
yield template.format(start)
start += 1
def runners(cmds):
"""
cmds is a list of commands to excecute as subprocesses
each item is a list appropriate for use by subprocess.call
"""
next_name = name_it().__next__
for cmd in cmds:
name = next_name()
out = printer(f"{name}.stdout")
err = printer(f"{name}.stderr")
yield _stream_subprocess(cmd, out, err)
if __name__ == "__main__":
cmds = (
[
"sh",
"-c",
"""echo "$SHELL"-stdout && sleep 1 && echo stderr 1>&2 && sleep 1 && echo done""",
],
[
"bash",
"-c",
"echo 'hello, Dave.' && sleep 1 && echo dave_err 1>&2 && sleep 1 && echo done",
],
[sys.executable, "-c", 'print("hello from python");import sys;sys.exit(2)'],
)
print(execute(*runners(cmds)))
It is unlikely that the example commands will work perfectly on your system, and it doesn't handle weird errors, but this code does demonstrate one way to run multiple subprocesses using asyncio and stream the output.
I've had good success with the asyncproc module, which deals nicely with the output from the processes. For example:
import os
from asynproc import Process
myProc = Process("myprogram.app")
while True:
# check to see if process has ended
poll = myProc.wait(os.WNOHANG)
if poll is not None:
break
# print any new output
out = myProc.read()
if out != "":
print out
Using pexpect with non-blocking readlines is another way to do this. Pexpect solves the deadlock problems, allows you to easily run the processes in the background, and gives easy ways to have callbacks when your process spits out predefined strings, and generally makes interacting with the process much easier.
Considering "I don't have to wait for it to return", one of the easiest solutions will be this:
subprocess.Popen( \
[path_to_executable, arg1, arg2, ... argN],
creationflags = subprocess.CREATE_NEW_CONSOLE,
).pid
But... From what I read this is not "the proper way to accomplish such a thing" because of security risks created by subprocess.CREATE_NEW_CONSOLE flag.
The key things that happen here is use of subprocess.CREATE_NEW_CONSOLE to create new console and .pid (returns process ID so that you could check program later on if you want to) so that not to wait for program to finish its job.
I have the same problem trying to connect to an 3270 terminal using the s3270 scripting software in Python. Now I'm solving the problem with an subclass of Process that I found here:
http://code.activestate.com/recipes/440554/
And here is the sample taken from file:
def recv_some(p, t=.1, e=1, tr=5, stderr=0):
if tr < 1:
tr = 1
x = time.time()+t
y = []
r = ''
pr = p.recv
if stderr:
pr = p.recv_err
while time.time() < x or r:
r = pr()
if r is None:
if e:
raise Exception(message)
else:
break
elif r:
y.append(r)
else:
time.sleep(max((x-time.time())/tr, 0))
return ''.join(y)
def send_all(p, data):
while len(data):
sent = p.send(data)
if sent is None:
raise Exception(message)
data = buffer(data, sent)
if __name__ == '__main__':
if sys.platform == 'win32':
shell, commands, tail = ('cmd', ('dir /w', 'echo HELLO WORLD'), '\r\n')
else:
shell, commands, tail = ('sh', ('ls', 'echo HELLO WORLD'), '\n')
a = Popen(shell, stdin=PIPE, stdout=PIPE)
print recv_some(a),
for cmd in commands:
send_all(a, cmd + tail)
print recv_some(a),
send_all(a, 'exit' + tail)
print recv_some(a, e=0)
a.wait()
There are several answers here but none of them satisfied my below requirements:
I don't want to wait for command to finish or pollute my terminal with subprocess outputs.
I want to run bash script with redirects.
I want to support piping within my bash script (for example find ... | tar ...).
The only combination that satiesfies above requirements is:
subprocess.Popen(['./my_script.sh "arg1" > "redirect/path/to"'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True)
I want code like this:
if True:
run('ABC.PY')
else:
if ScriptRunning('ABC.PY):
stop('ABC.PY')
run('ABC.PY'):
Basically, I want to run a file, let's say abc.py, and based on some conditions. I want to stop it, and run it again from another python script. Is it possible?
I am using Windows.
You can use python Popen objects for running processes in a child process
So run('ABC.PY') would be p = Popen("python 'ABC.PY'")
if ScriptRunning('ABC.PY) would be if p.poll() == None
stop('ABC.PY') would be p.kill()
This is a very basic example for what you are trying to achieve
Please checkout subprocess.Popen docs to fine tune your logic for running the script
import subprocess
import shlex
import time
def run(script):
scriptArgs = shlex.split(script)
commandArgs = ["python"]
commandArgs.extend(scriptArgs)
procHandle = subprocess.Popen(commandArgs, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
return procHandle
def isScriptRunning(procHandle):
return procHandle.poll() is None
def stopScript(procHandle):
procHandle.terminate()
time.sleep(5)
# Forcefully terminate the script
if isScriptRunning(procHandle):
procHandle.kill()
def getOutput(procHandle):
# stderr will be redirected to stdout due "stderr=subprocess.STDOUT" argument in Popen call
stdout, _ = procHandle.communicate()
returncode = procHandle.returncode
return returncode, stdout
def main():
procHandle = run("main.py --arg 123")
time.sleep(5)
isScriptRunning(procHandle)
stopScript(procHandle)
print getOutput(procHandle)
if __name__ == "__main__":
main()
One thing that you should be aware about is stdout=subprocess.PIPE.
If your python script has a very large output, the pipes may overflow causing your script to block until .communicate is called over the handle.
To avoid this, pass a file handle to stdout, like this
fileHandle = open("main_output.txt", "w")
subprocess.Popen(..., stdout=fileHandle)
In this way, the output of the python process will be dumped into the file.(You will have to modily the getOutput() function too for this)
import subprocess
process = None
def run_or_rerun(flag):
global process
if flag:
assert(process is None)
process = subprocess.Popen(['python', 'ABC.PY'])
process.wait() # must wait or caller will hang
else:
if process.poll() is None: # it is still running
process.terminate() # terminate process
process = subprocess.Popen(['python', 'ABC.PY']) # rerun
process.wait() # must wait or caller will hang
I'm trying to terminate a subprocess pid if a string is in the output, but it is not working. What is wrong?
import subprocess
import shlex
if "PING" in subprocess.check_call(shlex.split("ping -c 10 gogole.com")):
subprocess.check_call(shlex.split("ping -c 10 gogole.com")).terminate()
Please refere to the documentation for the methods you call. First of all, check_call executes until the process is finished, then returns the return code from the process. I'm not sure how you intend to find "PING" from a return code, which is typically an integer.
If it is there, look at the body of your if statement: you fork a totally new instance of ping, wait for it to complete, and then try to terminate the return code.
I recommend that you work through a tutorial on subprocesses. Learn how to grab a process handle and invoke operations on that. You'll need to get a handle on the output stream, look for "PING" in that, and then call terminate on the process handle you got at invocation.
import subprocess, os
run = "ping -c 10 google.com"
log = ""
process = subprocess.Popen(run, stdout=subprocess.PIPE, shell=True)
while True:
out = process.stdout.read(1)
log +=out
print log
if out == '' and process.poll() != None:
break
if "PING" in log:
print "terminated!"
process.kill()
process.terminate()
break
I have to record a wav file and at the same time I have to analyze it with sox. I am using fifo type file for this operation.
So here I need to start 2 threads at the same time but even if I use the threads I am not able to achieve what I wanna do. Always one executing first and then the other. I want them to be in parallel so that I can do some stuff.
#this should be in one thread
def test_wav(self):
""" analyze the data """
bashCommand = "sox {} -n stat".format(self.__rawfile)
while self.__rec_thread.is_alive():
process = subprocess.Popen(bashCommand.split(),stdout=subprocess.PIPE,stderr=subprocess.PIPE)
wav_output = process.communicate()[1] #sox outputs the details in stderr
#do something and return
#this should be in another thread
def record_wav(self):
bashCommand = "arecord -d 10 -c 2 -r 48000 -f S32_LE > {}".format(self.__rawfile)
pid = subprocess.Popen(bashCommand.split())
pid.wait()
if pid.returncode != 0:
raise RecordException("Failed while recording with error {}".format(pid.returncode))
I tried the following code to make them threads but failed(Always one executing first and then the other. I want them to be in parallel so that I can do some stuff).
imported from threading import Thread
self.__rec_thread = Thread(target = self.record_wav())
amp_thread = Thread(target = self.test_wav())
self.__rec_thread.start()
amp_thread.start()
EDIT: First its executing the record(it minimum takes 10 sec because of the option -d 10) function completely and then the test wav function. Its like calling them one after another.
... target = self.record_wav() ...
is calling record_wav(): it executes immediately, and the program doesn't proceed until record_wav() completes. You almost always want to pass a function (or method) object to target=, almost never the result of executing the function/method. So just lose the parentheses:
... target = self.record_wav ...
if you probably use python3, you can use asyncio to run the shell command in goroutines way.
import asyncio
import sys
async def execute(command, cwd=None, shell=True):
process = await asyncio.create_subprocess_exec(*command,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
cwd=cwd,
shell=shell)
std_out, std_err = await process.communicate()
error = std_err.decode().strip()
result = std_out.decode().strip()
print(result)
print(error)
return result
if sys.platform == "win32":
loop = asyncio.ProactorEventLoop()
asyncio.set_event_loop(loop)
else:
loop = asyncio.get_event_loop()
try:
loop.run_until_complete(
asyncio.gather(execute(["bash", "-c", "echo hello && sleep 2"]), execute(["bash", "-c", "echo ok && sleep 1"])))
except Exception as e:
raise e
finally:
loop.close()
I need to run a shell command asynchronously from a Python script. By this I mean that I want my Python script to continue running while the external command goes off and does whatever it needs to do.
I read this post:
Calling an external command in Python
I then went off and did some testing, and it looks like os.system() will do the job provided that I use & at the end of the command so that I don't have to wait for it to return. What I am wondering is if this is the proper way to accomplish such a thing? I tried commands.call() but it will not work for me because it blocks on the external command.
Please let me know if using os.system() for this is advisable or if I should try some other route.
subprocess.Popen does exactly what you want.
from subprocess import Popen
p = Popen(['watch', 'ls']) # something long running
# ... do other stuff while subprocess is running
p.terminate()
(Edit to complete the answer from comments)
The Popen instance can do various other things like you can poll() it to see if it is still running, and you can communicate() with it to send it data on stdin, and wait for it to terminate.
If you want to run many processes in parallel and then handle them when they yield results, you can use polling like in the following:
from subprocess import Popen, PIPE
import time
running_procs = [
Popen(['/usr/bin/my_cmd', '-i %s' % path], stdout=PIPE, stderr=PIPE)
for path in '/tmp/file0 /tmp/file1 /tmp/file2'.split()]
while running_procs:
for proc in running_procs:
retcode = proc.poll()
if retcode is not None: # Process finished.
running_procs.remove(proc)
break
else: # No process is done, wait a bit and check again.
time.sleep(.1)
continue
# Here, `proc` has finished with return code `retcode`
if retcode != 0:
"""Error handling."""
handle_results(proc.stdout)
The control flow there is a little bit convoluted because I'm trying to make it small -- you can refactor to your taste. :-)
This has the advantage of servicing the early-finishing requests first. If you call communicate on the first running process and that turns out to run the longest, the other running processes will have been sitting there idle when you could have been handling their results.
This is covered by Python 3 Subprocess Examples under "Wait for command to terminate asynchronously". Run this code using IPython or python -m asyncio:
import asyncio
proc = await asyncio.create_subprocess_exec(
'ls','-lha',
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE)
# do something else while ls is working
# if proc takes very long to complete, the CPUs are free to use cycles for
# other processes
stdout, stderr = await proc.communicate()
The process will start running as soon as the await asyncio.create_subprocess_exec(...) has completed. If it hasn't finished by the time you call await proc.communicate(), it will wait there in order to give you your output status. If it has finished, proc.communicate() will return immediately.
The gist here is similar to Terrels answer but I think Terrels answer appears to overcomplicate things.
See asyncio.create_subprocess_exec for more information.
What I am wondering is if this [os.system()] is the proper way to accomplish such a thing?
No. os.system() is not the proper way. That's why everyone says to use subprocess.
For more information, read http://docs.python.org/library/os.html#os.system
The subprocess module provides more
powerful facilities for spawning new
processes and retrieving their
results; using that module is
preferable to using this function. Use
the subprocess module. Check
especially the Replacing Older
Functions with the subprocess Module
section.
The accepted answer is very old.
I found a better modern answer here:
https://kevinmccarthy.org/2016/07/25/streaming-subprocess-stdin-and-stdout-with-asyncio-in-python/
and made some changes:
make it work on windows
make it work with multiple commands
import sys
import asyncio
if sys.platform == "win32":
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
async def _read_stream(stream, cb):
while True:
line = await stream.readline()
if line:
cb(line)
else:
break
async def _stream_subprocess(cmd, stdout_cb, stderr_cb):
try:
process = await asyncio.create_subprocess_exec(
*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE
)
await asyncio.wait(
[
_read_stream(process.stdout, stdout_cb),
_read_stream(process.stderr, stderr_cb),
]
)
rc = await process.wait()
return process.pid, rc
except OSError as e:
# the program will hang if we let any exception propagate
return e
def execute(*aws):
""" run the given coroutines in an asyncio loop
returns a list containing the values returned from each coroutine.
"""
loop = asyncio.get_event_loop()
rc = loop.run_until_complete(asyncio.gather(*aws))
loop.close()
return rc
def printer(label):
def pr(*args, **kw):
print(label, *args, **kw)
return pr
def name_it(start=0, template="s{}"):
"""a simple generator for task names
"""
while True:
yield template.format(start)
start += 1
def runners(cmds):
"""
cmds is a list of commands to excecute as subprocesses
each item is a list appropriate for use by subprocess.call
"""
next_name = name_it().__next__
for cmd in cmds:
name = next_name()
out = printer(f"{name}.stdout")
err = printer(f"{name}.stderr")
yield _stream_subprocess(cmd, out, err)
if __name__ == "__main__":
cmds = (
[
"sh",
"-c",
"""echo "$SHELL"-stdout && sleep 1 && echo stderr 1>&2 && sleep 1 && echo done""",
],
[
"bash",
"-c",
"echo 'hello, Dave.' && sleep 1 && echo dave_err 1>&2 && sleep 1 && echo done",
],
[sys.executable, "-c", 'print("hello from python");import sys;sys.exit(2)'],
)
print(execute(*runners(cmds)))
It is unlikely that the example commands will work perfectly on your system, and it doesn't handle weird errors, but this code does demonstrate one way to run multiple subprocesses using asyncio and stream the output.
I've had good success with the asyncproc module, which deals nicely with the output from the processes. For example:
import os
from asynproc import Process
myProc = Process("myprogram.app")
while True:
# check to see if process has ended
poll = myProc.wait(os.WNOHANG)
if poll is not None:
break
# print any new output
out = myProc.read()
if out != "":
print out
Using pexpect with non-blocking readlines is another way to do this. Pexpect solves the deadlock problems, allows you to easily run the processes in the background, and gives easy ways to have callbacks when your process spits out predefined strings, and generally makes interacting with the process much easier.
Considering "I don't have to wait for it to return", one of the easiest solutions will be this:
subprocess.Popen( \
[path_to_executable, arg1, arg2, ... argN],
creationflags = subprocess.CREATE_NEW_CONSOLE,
).pid
But... From what I read this is not "the proper way to accomplish such a thing" because of security risks created by subprocess.CREATE_NEW_CONSOLE flag.
The key things that happen here is use of subprocess.CREATE_NEW_CONSOLE to create new console and .pid (returns process ID so that you could check program later on if you want to) so that not to wait for program to finish its job.
I have the same problem trying to connect to an 3270 terminal using the s3270 scripting software in Python. Now I'm solving the problem with an subclass of Process that I found here:
http://code.activestate.com/recipes/440554/
And here is the sample taken from file:
def recv_some(p, t=.1, e=1, tr=5, stderr=0):
if tr < 1:
tr = 1
x = time.time()+t
y = []
r = ''
pr = p.recv
if stderr:
pr = p.recv_err
while time.time() < x or r:
r = pr()
if r is None:
if e:
raise Exception(message)
else:
break
elif r:
y.append(r)
else:
time.sleep(max((x-time.time())/tr, 0))
return ''.join(y)
def send_all(p, data):
while len(data):
sent = p.send(data)
if sent is None:
raise Exception(message)
data = buffer(data, sent)
if __name__ == '__main__':
if sys.platform == 'win32':
shell, commands, tail = ('cmd', ('dir /w', 'echo HELLO WORLD'), '\r\n')
else:
shell, commands, tail = ('sh', ('ls', 'echo HELLO WORLD'), '\n')
a = Popen(shell, stdin=PIPE, stdout=PIPE)
print recv_some(a),
for cmd in commands:
send_all(a, cmd + tail)
print recv_some(a),
send_all(a, 'exit' + tail)
print recv_some(a, e=0)
a.wait()
There are several answers here but none of them satisfied my below requirements:
I don't want to wait for command to finish or pollute my terminal with subprocess outputs.
I want to run bash script with redirects.
I want to support piping within my bash script (for example find ... | tar ...).
The only combination that satiesfies above requirements is:
subprocess.Popen(['./my_script.sh "arg1" > "redirect/path/to"'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True)