I have a textfile that contains 2 columns of data. They are separated with unfix number of whitespace/s. I want to load it on a pandas DataFrame.
Example:
306.000000 1.125783
307.000000 0.008101
308.000000 -0.005917
309.000000 0.003784
310.000000 -0.516513
Please note that it also starts with whitespace/s.
My desired output would be like:
output = {'Wavelength': [306.000000, 307.000000, 308.000000, 309.000000, 310.000000],
'Reflectance': [1.125783, 0.008101, -0.005917, 0.003784, -0.516513]}
df = pd.DataFrame(data=output)
Use read_csv:
df = pd.read_csv('file.txt', sep='\\s+', names=['Wavelength', 'Reflectance'], header=None)
Related
I hope you are well I have the following string:
"{\"code\":0,\"description\":\"Done\",\"response\":{\"id\":\"8-717-2346\",\"idType\":\"CIP\",\"suscriptionId\":\"92118213\"},....\"childProducts\":[]}}"...
To which I'm trying to capture the attributes: id, idType and subscriptionId and map them as a dataframe, but the entire body of the .cvs puts it in a single row so it is almost impossible for me to work without index
desired output:
id, idType, suscriptionID
0. '7-84-1811', 'CIP', 21312421412
1. '1-232-42', 'IO' , 21421e324
My code:
import pandas as pd
import json
path = '/example.csv'
df = pd.read_csv(path)
normalize_df = json.load(df)
print(df)
Considering your string is in JSON format, you can do this.
drop columns, transpose, and get headers right.
toEscape = "{\"code\":0,\"description\":\"Done\",\"response\":{\"id\":\"8-717-2346\",\"idType\":\"CIP\",\"suscriptionId\":\"92118213\"}}"
json_string = toEscape.encode('utf-8').decode('unicode_escape')
df = pd.read_json(json_string)
df = df.drop(["code","description"], axis=1)
df = df.transpose().reset_index().drop("index", axis=1)
df.to_csv("user_details.csv")
the output looks like this:
id idType suscriptionId
0 8-717-2346 CIP 92118213
Thank you for the question.
Hi there i am trying to figure out how to replace a specific data of csv file. i have a file which is base or location data of id's.
https://store8.gofile.io/download/5b031959-e0b0-4dbf-aec6-264e0b87fd09/service%20block.xlsx (sheet 2 had data ).
The file which i want to replace data using id is below
https://store8.gofile.io/download/6e13a19a-bac8-4d16-8692-e4435eed2a08/Serp.csv
Highlighted part need to be deleted after filling location.
import pandas as pd
df1= pd.read_excel("serp.xlsx", header=None)
df2= pd.read_excel("flocnam.xlsx", header=None)
df1 = df1[0].str.split(";", expand=True)
df1[4] = df1[4].apply(lambda x: v[-1] if (v := x.split()) else "")
df2[1] = df2[1].apply(lambda x: x.split("-")[0])
m = dict(zip(df2[1], df2[0]))
df1[4]= df1[4].replace(m)
print(df1)
df1.to_csv ("test.csv")
It worked but not how i wanted.
https://store8.gofile.io/download/c0ae7e05-c0e2-4f43-9d13-da12ddf73a8d/test.csv
trying to replace it like this.(desired output)
Thank you for being Supportive community❤️
If I understand correctly, you simply need to specify the separator ;
>>> df.to_csv(‘test.csv’, sep=‘;’, index_label=False)
In Excel, I have to separate the following value from one cell into two:
2016-12-12 (r=0.1)
2016-12-13* (r=0.7)
How do I do that in Python so that in the Excel file, dates and "r=#" will be in different cells? And also, is there a way to automatically remove the "*" sign?
This task is pretty straight forward if you use pandas:
Build a test file:
import pandas as pd
df_out = pd.DataFrame(
['2016-12-12 (r=0.1)', '2016-12-13* (r=0.7)'], columns=['data'])
df_out.to_excel('test.xlsx')
Code to convert string:
def convert_date(row):
return pd.Series([c.strip('*').strip('(').strip(')')
for c in row.split()])
Test code:
# read in test file
df_in = pd.read_excel('test.xlsx')
print(df_in)
# build a new dataframe
df_new = df_in['data'].apply(convert_date)
df_new.columns = ['date', 'r']
print(df_new)
# save the dataframe
df_new.to_excel('test2.xlsx')
Results:
data
0 2016-12-12 (r=0.1)
1 2016-12-13* (r=0.7)
date r
0 2016-12-12 r=0.1
1 2016-12-13 r=0.7
my input data looks like(input.txt):
AGAP2 TCGA-BL-A0C8-01A-11R-A10U-07 66.7328
AGAP2 TCGA-BL-A13I-01A-11R-A13Y-07 186.8366
AGAP3 TCGA-BL-A13J-01A-11R-A10U-07 183.3767
AGAP3 TCGA-BL-A3JM-01A-12R-A21D-07 33.2927
AGAP3 TCGA-BT-A0S7-01A-11R-A10U-07 57.9040
AGAP3 TCGA-BT-A0YX-01A-11R-A10U-07 99.8540
AGAP4 TCGA-BT-A20J-01A-11R-A14Y-07 88.8278
AGAP4 TCGA-BT-A20N-01A-11R-A14Y-07 129.7021
i want the output.txt looks like :
TCGA-BL-A0C8-01A-11R-A10U-07 TCGA-BL-A13I-01A-11R-A13Y-07 ...
AGAP2 66.7328 186.8366
AGAP3 0 0
Using pandas: read csv, create pivot and write csv.
import pandas as pd
df = pd.read_table("input.txt", names="xy", sep=r'\s+')
# reset index first - we need named column
new = df.reset_index().pivot(index="index", columns='x', values='y')
new.fillna(0, inplace=True)
new.to_csv("output.csv", sep='\t') # tab separated
Reshaping and Pivot Tables
EDIT: filling empty values
I have the following data:
Example:
DRIVER_ID;TIMESTAMP;POSITION
156;2014-02-01 00:00:00.739166+01;POINT(41.8836718276551 12.4877775603346)
I want to create a pandas dataframe with 4 columns that are the id, time, longitude, latitude.
So far, I got:
cur_cab = pd.DataFrame.from_csv(
path,
sep=";",
header=None,
parse_dates=[1]).reset_index()
cur_cab.columns = ['cab_id', 'datetime', 'point']
path specifies the .txt file containing the data.
I already wrote a function that returns the longitude and latitude values from the point formated string.
How do I expand the data frame with the additional column and the splitted values ?
After loading, if you're using a recent version of pandas then you can use the vectorised str methods to parse the column:
In [87]:
df['pos_x'], df['pos_y']= df['point'].str[6:-1].str.split(expand=True)
df
Out[87]:
cab_id datetime \
0 156 2014-01-31 23:00:00.739166
point pos_x pos_y
0 POINT(41.8836718276551 12.4877775603346) 0 1
Also you should stop using from_csv it's no longer updated, use the top level read_csv so your loading code would be:
cur_cab = pd.read_csv(
path,
sep=";",
header=None,
parse_dates=[1],
names=['cab_id', 'datetime', 'point'],
skiprows=1)