Related
I would like to put an int into a string. This is what I am doing at the moment:
num = 40
plot.savefig('hanning40.pdf') #problem line
I have to run the program for several different numbers, so I'd like to do a loop. But inserting the variable like this doesn't work:
plot.savefig('hanning', num, '.pdf')
How do I insert a variable into a Python string?
See also
If you tried using + to concatenate a number with a string (or between strings, etc.) and got an error message, see How can I concatenate str and int objects?.
If you are trying to assemble a URL with variable data, do not use ordinary string formatting, because it is error-prone and more difficult than necessary. Specialized tools are available. See Add params to given URL in Python.
If you are trying to assemble a SQL query, do not use ordinary string formatting, because it is a major security risk. This is the cause of "SQL injection" which costs real companies huge amounts of money every year. See for example Python: best practice and securest way to connect to MySQL and execute queries for proper techniques.
If you just want to print (output) the string, you can prepare it this way first, or if you don't need the string for anything else, print each piece of the output individually using a single call to print. See How can I print multiple things (fixed text and/or variable values) on the same line, all at once? for details on both approaches.
Using f-strings:
plot.savefig(f'hanning{num}.pdf')
This was added in 3.6 and is the new preferred way.
Using str.format():
plot.savefig('hanning{0}.pdf'.format(num))
String concatenation:
plot.savefig('hanning' + str(num) + '.pdf')
Conversion Specifier:
plot.savefig('hanning%s.pdf' % num)
Using local variable names (neat trick):
plot.savefig('hanning%(num)s.pdf' % locals())
Using string.Template:
plot.savefig(string.Template('hanning${num}.pdf').substitute(locals()))
See also:
Fancier Output Formatting - The Python Tutorial
Python 3's f-Strings: An Improved String Formatting Syntax (Guide) - RealPython
With the introduction of formatted string literals ("f-strings" for short) in Python 3.6, it is now possible to write this with a briefer syntax:
>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
With the example given in the question, it would look like this
plot.savefig(f'hanning{num}.pdf')
plot.savefig('hanning(%d).pdf' % num)
The % operator, when following a string, allows you to insert values into that string via format codes (the %d in this case). For more details, see the Python documentation:
printf-style String Formatting
You can use + as the normal string concatenation function as well as str().
"hello " + str(10) + " world" == "hello 10 world"
In general, you can create strings using:
stringExample = "someString " + str(someNumber)
print(stringExample)
plot.savefig(stringExample)
If you would want to put multiple values into the string you could make use of format
nums = [1,2,3]
plot.savefig('hanning{0}{1}{2}.pdf'.format(*nums))
Would result in the string hanning123.pdf. This can be done with any array.
Special cases
Depending on why variable data is being used with strings, the general-purpose approaches may not be appropriate.
If you need to prepare an SQL query
Do not use any of the usual techniques for assembling a string. Instead, use your SQL library's functionality for parameterized queries.
A query is code, so it should not be thought about like normal text. Using the library will make sure that any inserted text is properly escaped. If any part of the query could possibly come from outside the program in any way, that is an opportunity for a malevolent user to perform SQL injection. This is widely considered one of the important computer security problems, costing real companies huge amounts of money every year and causing problems for countless customers. Even if you think you know the data is "safe", there is no real upside to using any other approach.
The syntax will depend on the library you are using and is outside the scope of this answer.
If you need to prepare a URL query string
See Add params to given URL in Python. Do not do it yourself; there is no practical reason to make your life harder.
Writing to a file
While it's possible to prepare a string ahead of time, it may be simpler and more memory efficient to just write each piece of data with a separate .write call. Of course, non-strings will still need to be converted to string before writing, which may complicate the code. There is not a one-size-fits-all answer here, but choosing badly will generally not matter very much.
If you are simply calling print
The built-in print function accepts a variable number of arguments, and can take in any object and stringify it using str. Before trying string formatting, consider whether simply passing multiple arguments will do what you want. (You can also use the sep keyword argument to control spacing between the arguments.)
# display a filename, as an example
print('hanning', num, '.pdf', sep='')
Of course, there may be other reasons why it is useful for the program to assemble a string; so by all means do so where appropriate.
It's important to note that print is a special case. The only functions that work this way are ones that are explicitly written to work this way. For ordinary functions and methods, like input, or the savefig method of Matplotlib plots, we need to prepare a string ourselves.
Concatenation
Python supports using + between two strings, but not between strings and other types. To work around this, we need to convert other values to string explicitly: 'hanning' + str(num) + '.pdf'.
Template-based approaches
Most ways to solve the problem involve having some kind of "template" string that includes "placeholders" that show where information should be added, and then using some function or method to add the missing information.
f-strings
This is the recommended approach when possible. It looks like f'hanning{num}.pdf'. The names of variables to insert appear directly in the string. It is important to note that there is not actually such a thing as an "f-string"; it's not a separate type. Instead, Python will translate the code ahead of time:
>>> def example(num):
... return f'hanning{num}.pdf'
...
>>> import dis
>>> dis.dis(example)
2 0 LOAD_CONST 1 ('hanning')
2 LOAD_FAST 0 (num)
4 FORMAT_VALUE 0
6 LOAD_CONST 2 ('.pdf')
8 BUILD_STRING 3
10 RETURN_VALUE
Because it's a special syntax, it can access opcodes that aren't used in other approaches.
str.format
This is the recommended approach when f-strings aren't possible - mainly, because the template string needs to be prepared ahead of time and filled in later. It looks like 'hanning{}.pdf'.format(num), or 'hanning{num}.pdf'.format(num=num)'. Here, format is a method built in to strings, which can accept arguments either by position or keyword.
Particularly for str.format, it's useful to know that the built-in locals, globals and vars functions return dictionaries that map variable names to the contents of those variables. Thus, rather than something like '{a}{b}{c}'.format(a=a, b=b, c=c), we can use something like '{a}{b}{c}'.format(**locals()), unpacking the locals() dict.
str.format_map
This is a rare variation on .format. It looks like 'hanning{num}.pdf'.format_map({'num': num}). Rather than accepting keyword arguments, it accepts a single argument which is a mapping.
That probably doesn't sound very useful - after all, rather than 'hanning{num}.pdf'.format_map(my_dict), we could just as easily write 'hanning{num}.pdf'.format(**my_dict). However, this is useful for mappings that determine values on the fly, rather than ordinary dicts. In these cases, unpacking with ** might not work, because the set of keys might not be determined ahead of time; and trying to unpack keys based on the template is unwieldy (imagine: 'hanning{num}.pdf'.format(num=my_mapping[num]), with a separate argument for each placeholder).
string.Formatter
The string standard library module contains a rarely used Formatter class. Using it looks like string.Formatter().format('hanning{num}.pdf', num=num). The template string uses the same syntax again. This is obviously clunkier than just calling .format on the string; the motivation is to allow users to subclass Formatter to define a different syntax for the template string.
All of the above approaches use a common "formatting language" (although string.Formatter allows changing it); there are many other things that can be put inside the {}. Explaining how it works is beyond the scope of this answer; please consult the documentation. Do keep in mind that literal { and } characters need to be escaped by doubling them up. The syntax is presumably inspired by C#.
The % operator
This is a legacy way to solve the problem, inspired by C and C++. It has been discouraged for a long time, but is still supported. It looks like 'hanning%s.pdf' % num, for simple cases. As you'd expect, literal '%' symbols in the template need to be doubled up to escape them.
It has some issues:
It seems like the conversion specifier (the letter after the %) should match the type of whatever is being interpolated, but that's not actually the case. Instead, the value is converted to the specified type, and then to string from there. This isn't normally necessary; converting directly to string works most of the time, and converting to other types first doesn't help most of the rest of the time. So 's' is almost always used (unless you want the repr of the value, using 'r'). Despite that, the conversion specifier is a mandatory part of the syntax.
Tuples are handled specially: passing a tuple on the right-hand side is the way to provide multiple arguments. This is an ugly special case that's necessary because we aren't using function-call syntax. As a result, if you actually want to format a tuple into a single placeholder, it must be wrapped in a 1-tuple.
Other sequence types are not handled specially, and the different behaviour can be a gotcha.
string.Template
The string standard library module contains a rarely used Template class. Instances provide substitute and safe_substitute methods that work similarly to the built-in .format (safe_substitute will leave placeholders intact rather than raising an exception when the arguments don't match). This should also be considered a legacy approach to the problem.
It looks like string.Template('hanning$num.pdf').substitute(num=num), and is inspired by traditional Perl syntax. It's obviously clunkier than the .format approach, since a separate class has to be used before the method is available. Braces ({}) can be used optionally around the name of the variable, to avoid ambiguity. Similarly to the other methods, literal '$' in the template needs to be doubled up for escaping.
I had a need for an extended version of this: instead of embedding a single number in a string, I needed to generate a series of file names of the form 'file1.pdf', 'file2.pdf' etc. This is how it worked:
['file' + str(i) + '.pdf' for i in range(1,4)]
You can make dict and substitute variables in your string.
var = {"name": "Abdul Jalil", "age": 22}
temp_string = "My name is %(name)s. I am %(age)s years old." % var
Suppose I had a function call as a string, like "log(2, floor(9.4))". I want to deconstruct the call in a way that allows me to access the function name and arguments for the firstmost call and accurately deducts whether a function call as an argument is an argument or not.
For example, the arguments when deconstructing the string above would come to [2, floor(9.4)]
I've already tried to use some string parsing techniques (e.g. splitting on commas), but it doesn't appear to be working.
You can use the ast module:
import ast
data = "log(2, floor(9.4))"
parse_tree = ast.parse(data)
# ast.unparse() is for 3.9+ only.
# If using an earlier version, use the astunparse package instead.
result = [ast.unparse(node) for node in parse_tree.body[0].value.args]
print(result)
This outputs:
['2', 'floor(9.4)']
I pulled the value to iterate over from manually inspecting the output of ast.dump(parse_tree).
Note that I've written something a bit quick and dirty, since there's only one string to parse. If you're looking to parse a lot of these strings (or a larger program), you should create a subclass of ast.NodeVisitor. If you want to also make modifications to the source code, you should create a subclass of ast.NodeTransformer instead.
So what I am trying to do is write a script that lets me input some function and a list of the variables inside it, then processes it into some other formular, computes a result, and then outputs both the new formular and the result as Latex code. Everything works fine as long as I only input variables which do not contain "^", "{", or "}". The problem is, I want to use, or, at the very least, output the names exactly as they are written in my Latex document, and as such they do often contain these characters.
I am aware that there is a built-in Latex-Parser in Sympy, but as I understood it requires some other package (antlr4), and I would like to try to avoid that, since I am planning to distribute the script to my fellow students, and don't want to add another requirement for running the script.
So what I thought of is that I could use the list of variable names (which I input anyway together with their values to allow the program to compute a final result): I tried to define a "transformation", as it is described on the Sympy documentation on parsing. It looks like this:
#Defining the transformation
def can_split(symbol):
#Check if symbol is in one of the lists of inputted values (the two lists contain tuples of variable names[0] and their corresponding values[1])
if symbol not in ([i[0] for i in uncertainValues]+[i[0] for i in certainValues]):
return _token_splittable(symbol)
return False
#Read function definition from TKinter text field, split only by custom defined symbols
function=parse_expr(functionEntry.get("1.0", "end-1c"),transformations = (split_symbols_custom(can_split)))
The problem is that if I run this script, and input e. g. "a^b*c", and the variable names "a^b" and "c", which should normally be read as "the variable 'a^b' multiplied with the variable 'c'"I get the exception: "NameError: name 'a' is not defined".
If anyone could help me with this, or maybe propose another way to do this properly, I would be very thankful. Also, if there is more code or context needed to find a better solution, I'll provide more - I just felt everything would get too long-winding if I explained the whole idea. But as I said, I'll be glad to do that if it helps.
Quick but dirty workaround:
For now I ended up using the dirty method of replacing all problematic characters with unique strings at input, and replacing them with their symbols again before outputting.
I would like to put an int into a string. This is what I am doing at the moment:
num = 40
plot.savefig('hanning40.pdf') #problem line
I have to run the program for several different numbers, so I'd like to do a loop. But inserting the variable like this doesn't work:
plot.savefig('hanning', num, '.pdf')
How do I insert a variable into a Python string?
See also
If you tried using + to concatenate a number with a string (or between strings, etc.) and got an error message, see How can I concatenate str and int objects?.
If you are trying to assemble a URL with variable data, do not use ordinary string formatting, because it is error-prone and more difficult than necessary. Specialized tools are available. See Add params to given URL in Python.
If you are trying to assemble a SQL query, do not use ordinary string formatting, because it is a major security risk. This is the cause of "SQL injection" which costs real companies huge amounts of money every year. See for example Python: best practice and securest way to connect to MySQL and execute queries for proper techniques.
If you just want to print (output) the string, you can prepare it this way first, or if you don't need the string for anything else, print each piece of the output individually using a single call to print. See How can I print multiple things (fixed text and/or variable values) on the same line, all at once? for details on both approaches.
Using f-strings:
plot.savefig(f'hanning{num}.pdf')
This was added in 3.6 and is the new preferred way.
Using str.format():
plot.savefig('hanning{0}.pdf'.format(num))
String concatenation:
plot.savefig('hanning' + str(num) + '.pdf')
Conversion Specifier:
plot.savefig('hanning%s.pdf' % num)
Using local variable names (neat trick):
plot.savefig('hanning%(num)s.pdf' % locals())
Using string.Template:
plot.savefig(string.Template('hanning${num}.pdf').substitute(locals()))
See also:
Fancier Output Formatting - The Python Tutorial
Python 3's f-Strings: An Improved String Formatting Syntax (Guide) - RealPython
With the introduction of formatted string literals ("f-strings" for short) in Python 3.6, it is now possible to write this with a briefer syntax:
>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
With the example given in the question, it would look like this
plot.savefig(f'hanning{num}.pdf')
plot.savefig('hanning(%d).pdf' % num)
The % operator, when following a string, allows you to insert values into that string via format codes (the %d in this case). For more details, see the Python documentation:
printf-style String Formatting
You can use + as the normal string concatenation function as well as str().
"hello " + str(10) + " world" == "hello 10 world"
In general, you can create strings using:
stringExample = "someString " + str(someNumber)
print(stringExample)
plot.savefig(stringExample)
If you would want to put multiple values into the string you could make use of format
nums = [1,2,3]
plot.savefig('hanning{0}{1}{2}.pdf'.format(*nums))
Would result in the string hanning123.pdf. This can be done with any array.
Special cases
Depending on why variable data is being used with strings, the general-purpose approaches may not be appropriate.
If you need to prepare an SQL query
Do not use any of the usual techniques for assembling a string. Instead, use your SQL library's functionality for parameterized queries.
A query is code, so it should not be thought about like normal text. Using the library will make sure that any inserted text is properly escaped. If any part of the query could possibly come from outside the program in any way, that is an opportunity for a malevolent user to perform SQL injection. This is widely considered one of the important computer security problems, costing real companies huge amounts of money every year and causing problems for countless customers. Even if you think you know the data is "safe", there is no real upside to using any other approach.
The syntax will depend on the library you are using and is outside the scope of this answer.
If you need to prepare a URL query string
See Add params to given URL in Python. Do not do it yourself; there is no practical reason to make your life harder.
Writing to a file
While it's possible to prepare a string ahead of time, it may be simpler and more memory efficient to just write each piece of data with a separate .write call. Of course, non-strings will still need to be converted to string before writing, which may complicate the code. There is not a one-size-fits-all answer here, but choosing badly will generally not matter very much.
If you are simply calling print
The built-in print function accepts a variable number of arguments, and can take in any object and stringify it using str. Before trying string formatting, consider whether simply passing multiple arguments will do what you want. (You can also use the sep keyword argument to control spacing between the arguments.)
# display a filename, as an example
print('hanning', num, '.pdf', sep='')
Of course, there may be other reasons why it is useful for the program to assemble a string; so by all means do so where appropriate.
It's important to note that print is a special case. The only functions that work this way are ones that are explicitly written to work this way. For ordinary functions and methods, like input, or the savefig method of Matplotlib plots, we need to prepare a string ourselves.
Concatenation
Python supports using + between two strings, but not between strings and other types. To work around this, we need to convert other values to string explicitly: 'hanning' + str(num) + '.pdf'.
Template-based approaches
Most ways to solve the problem involve having some kind of "template" string that includes "placeholders" that show where information should be added, and then using some function or method to add the missing information.
f-strings
This is the recommended approach when possible. It looks like f'hanning{num}.pdf'. The names of variables to insert appear directly in the string. It is important to note that there is not actually such a thing as an "f-string"; it's not a separate type. Instead, Python will translate the code ahead of time:
>>> def example(num):
... return f'hanning{num}.pdf'
...
>>> import dis
>>> dis.dis(example)
2 0 LOAD_CONST 1 ('hanning')
2 LOAD_FAST 0 (num)
4 FORMAT_VALUE 0
6 LOAD_CONST 2 ('.pdf')
8 BUILD_STRING 3
10 RETURN_VALUE
Because it's a special syntax, it can access opcodes that aren't used in other approaches.
str.format
This is the recommended approach when f-strings aren't possible - mainly, because the template string needs to be prepared ahead of time and filled in later. It looks like 'hanning{}.pdf'.format(num), or 'hanning{num}.pdf'.format(num=num)'. Here, format is a method built in to strings, which can accept arguments either by position or keyword.
Particularly for str.format, it's useful to know that the built-in locals, globals and vars functions return dictionaries that map variable names to the contents of those variables. Thus, rather than something like '{a}{b}{c}'.format(a=a, b=b, c=c), we can use something like '{a}{b}{c}'.format(**locals()), unpacking the locals() dict.
str.format_map
This is a rare variation on .format. It looks like 'hanning{num}.pdf'.format_map({'num': num}). Rather than accepting keyword arguments, it accepts a single argument which is a mapping.
That probably doesn't sound very useful - after all, rather than 'hanning{num}.pdf'.format_map(my_dict), we could just as easily write 'hanning{num}.pdf'.format(**my_dict). However, this is useful for mappings that determine values on the fly, rather than ordinary dicts. In these cases, unpacking with ** might not work, because the set of keys might not be determined ahead of time; and trying to unpack keys based on the template is unwieldy (imagine: 'hanning{num}.pdf'.format(num=my_mapping[num]), with a separate argument for each placeholder).
string.Formatter
The string standard library module contains a rarely used Formatter class. Using it looks like string.Formatter().format('hanning{num}.pdf', num=num). The template string uses the same syntax again. This is obviously clunkier than just calling .format on the string; the motivation is to allow users to subclass Formatter to define a different syntax for the template string.
All of the above approaches use a common "formatting language" (although string.Formatter allows changing it); there are many other things that can be put inside the {}. Explaining how it works is beyond the scope of this answer; please consult the documentation. Do keep in mind that literal { and } characters need to be escaped by doubling them up. The syntax is presumably inspired by C#.
The % operator
This is a legacy way to solve the problem, inspired by C and C++. It has been discouraged for a long time, but is still supported. It looks like 'hanning%s.pdf' % num, for simple cases. As you'd expect, literal '%' symbols in the template need to be doubled up to escape them.
It has some issues:
It seems like the conversion specifier (the letter after the %) should match the type of whatever is being interpolated, but that's not actually the case. Instead, the value is converted to the specified type, and then to string from there. This isn't normally necessary; converting directly to string works most of the time, and converting to other types first doesn't help most of the rest of the time. So 's' is almost always used (unless you want the repr of the value, using 'r'). Despite that, the conversion specifier is a mandatory part of the syntax.
Tuples are handled specially: passing a tuple on the right-hand side is the way to provide multiple arguments. This is an ugly special case that's necessary because we aren't using function-call syntax. As a result, if you actually want to format a tuple into a single placeholder, it must be wrapped in a 1-tuple.
Other sequence types are not handled specially, and the different behaviour can be a gotcha.
string.Template
The string standard library module contains a rarely used Template class. Instances provide substitute and safe_substitute methods that work similarly to the built-in .format (safe_substitute will leave placeholders intact rather than raising an exception when the arguments don't match). This should also be considered a legacy approach to the problem.
It looks like string.Template('hanning$num.pdf').substitute(num=num), and is inspired by traditional Perl syntax. It's obviously clunkier than the .format approach, since a separate class has to be used before the method is available. Braces ({}) can be used optionally around the name of the variable, to avoid ambiguity. Similarly to the other methods, literal '$' in the template needs to be doubled up for escaping.
I had a need for an extended version of this: instead of embedding a single number in a string, I needed to generate a series of file names of the form 'file1.pdf', 'file2.pdf' etc. This is how it worked:
['file' + str(i) + '.pdf' for i in range(1,4)]
You can make dict and substitute variables in your string.
var = {"name": "Abdul Jalil", "age": 22}
temp_string = "My name is %(name)s. I am %(age)s years old." % var
I want to convert a string to a Python statement.
Taking string input from a text file e.g. 'dataframe['Column_name'].sum()'
Executing the string as a Python statement e.g. dataframe['Column_name'].sum()
Storing the result in some variable
It's possible to do this, but not recommended. You do not have any control over what the string contains if it comes from the user. There is probably a better way to achieve what you really want.
If you really, absolutely, unavoidably have to, you can use eval:
x = eval('dataframe["Column_name"].sum()')
But it is probably easier to only take, for example, the column name from the user and use that in a function call:
column_name = "Column_name" # or read it from the file
x = dataframe[column_name].sum()
#previous code
with open("file.txt","r") as f:
x = eval(f.readline())
#the rest of the code, using x however you want
I wouldn't do it if other users are supposed to be able to use the script however they want. If this is for learning purposes of for your own use, it's up to you.