Tesseract detecting 1 and 0 as L and O - python

In this image tesseract is detecting the text as LOOOPCS but it is 1000PCS. Command I am using is
tesseract "item_04.png" stdout --psm 6
I have tried all psm values 0 to 13
As per suggestions by other blogs and questions on SO and internet following clipping of image as well as thresholding is also tried.
Also tried -c tessedit_char_whitelist=PCS0123456789 but that gives 00PCS.
But I am not getting 1000PCS. Can someone try these and let me know what am I missing?
Edit:
As per suggestion given by #nathancy, tried using - cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU which worked on this 1 and 0 but failed for below image. It is being detected as LL8gPcs:

You need to preprocess the image. A simple approach is to Otsu's threshold then invert the image so the text is in black with the background in white. Here's the processed image and the result using Pytesseract OCR with --psm 6.
Result
1000PCS
Code
import cv2
import pytesseract
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
# Grayscale, Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Invert and perform text extraction
thresh = 255 - thresh
data = pytesseract.image_to_string(thresh, lang='eng',config='--psm 6')
print(data)
cv2.imshow('thresh', thresh)
cv2.waitKey()

Related

OCR not performing well on clean image | Python Pytesseract

I have been working on project which involves extracting text from an image. I have researched that tesseract is one of the best libraries available and I decided to use the same along with opencv. Opencv is needed for image manipulation.
I have been playing a lot with tessaract engine and it does not seems to be giving the expected results to me. I have attached the image as an reference. Output I got is:
1] =501 [
Instead, expected output is
TM10-50%L
What I have done so far:
Remove noise
Adaptive threshold
Sending it tesseract ocr engine
Are there any other suggestions to improve the algorithm?
Thanks in advance.
Snippet of the code:
import cv2
import sys
import pytesseract
import numpy as np
from PIL import Image
if __name__ == '__main__':
if len(sys.argv) < 2:
print('Usage: python ocr_simple.py image.jpg')
sys.exit(1)
# Read image path from command line
imPath = sys.argv[1]
gray = cv2.imread(imPath, 0)
# Blur
blur = cv2.GaussianBlur(gray,(9,9), 0)
# Binarizing
thres = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 5, 3)
text = pytesseract.image_to_string(thresh)
print(text)
Images attached.
First image is original image. Original image
Second image is what has been fed to tessaract. Input to tessaract
Before performing OCR on an image, it's important to preprocess the image. The idea is to obtain a processed image where the text to extract is in black with the background in white. For this specific image, we need to obtain the ROI before we can OCR.
To do this, we can convert to grayscale, apply a slight Gaussian blur, then adaptive threshold to obtain a binary image. From here, we can apply morphological closing to merge individual letters together. Next we find contours, filter using contour area filtering, and then extract the ROI. We perform text extraction using the --psm 6 configuration option to assume a single uniform block of text. Take a look here for more options.
Detected ROI
Extracted ROI
Result from Pytesseract OCR
TM10=50%L
Code
import cv2
import pytesseract
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
# Grayscale, Gaussian blur, Adaptive threshold
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 5, 5)
# Perform morph close to merge letters together
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
# Find contours, contour area filtering, extract ROI
cnts, _ = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2:]
for c in cnts:
area = cv2.contourArea(c)
if area > 1800 and area < 2500:
x,y,w,h = cv2.boundingRect(c)
ROI = original[y:y+h, x:x+w]
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 3)
# Perform text extraction
ROI = cv2.GaussianBlur(ROI, (3,3), 0)
data = pytesseract.image_to_string(ROI, lang='eng', config='--psm 6')
print(data)
cv2.imshow('ROI', ROI)
cv2.imshow('close', close)
cv2.imshow('image', image)
cv2.waitKey()

py_tesseract doesnt recognize numbers in this image

I am trying to use py-tesseract on google colabs to parse the following image containing readings from a meter. However it fails to get me the result expected. Looks like i need to do some pre-processing on the image. I am new to py-tesseract. Can you please help what i need to do to get this to work?
Here is my current code followed by output seen and the image:
!sudo apt install tesseract-ocr
!pip install pytesseract
import pytesseract
import shutil
import os
import random
try:
from PIL import Image
except ImportError:
import Image
image_path='drive/MyDrive/cropped_image.jpg'
print(pytesseract.image_to_string(image_path, config='--psm 13 --oem=3'))
Output
ey
Image being parsed
Cropped_image
Thanks
Try this:
print(pytesseract.image_to_string(image_path, config='-1 eng --oem 2 --psm 12'))
Output:
194735787
First, you need to preprocess the image which helps to reduce the noise and help in text extraction.
Extract text area from the image
Convert the image to grayscale and sharpen the image
Apply adaptive threshold
Clean the image by performing morphological operations and invert the image
import cv2
import numpy as np
img = cv2.imread('qKiJi.jpg')
#crop the text extraction area
crop = img[200:350, 100:400]
gray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)
sharpen_kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpen = cv2.filter2D(gray, -1, sharpen_kernel)
thresh = cv2.threshold(sharpen, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=1)
result = 255 - close
cv2.imshow('img', crop)
cv2.imshow('sharpen', sharpen)
cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.imshow('result', result)
cv2.waitKey()

Pytesseract with custom font incorrectly classifying numbers

I am trying to detect prices using pytesseract.
However I am having very bad results.
I have one large image with several prices in different locations.
These locations are constant so I am cropping the image down and saving each area as a new image and then trying to detect the text.
I know the text will only contain 0123456789$¢.
I trained my new font using trainyourtesseract.com.
For example, I take this image.
Double it's size, and threshold it to get this.
Run it through tesseract and get an output of 8.
Any help would be appreciated.
def getnumber(self, img):
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh, grey = cv2.threshold(grey, 50, 255, cv2.THRESH_BINARY_INV)
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, grey)
text = pytesseract.image_to_string(Image.open(filename), lang='Droid',
config='--psm 13 --oem 3 -c tessedit_char_whitelist=0123456789.$¢')
os.remove(filename)
return(text)
You're on the right track. When preprocessing the image for OCR, you want to get the text in black with the background in white. The idea is to enlarge the image, Otsu's threshold to get a binary image, then perform OCR. We use --psm 6 to tell Pytesseract to assume a single uniform block of text. Look here for more configuration options. Here's the processed image:
Result from OCR:
2¢
Code
import cv2
import pytesseract
import imutils
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
# Resize, grayscale, Otsu's threshold
image = cv2.imread('1.png')
image = imutils.resize(image, width=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Perform text extraction
data = pytesseract.image_to_string(thresh, lang='eng',config='--psm 6')
print(data)
cv2.imshow('thresh', thresh)
cv2.imwrite('thresh.png', thresh)
cv2.waitKey()
Machine specs:
Windows 10
opencv-python==4.2.0.32
pytesseract==0.2.7
numpy==1.14.5

How to OCR image with Tesseract

I am starting to learn OpenCV and Tesseract, and have trouble with what seems to be a very simple example.
Here is an image that I am trying to OCR, that reads "171 m":
I do some preprocessing. Since blue is the dominant color of the text, I extract the blue channel and apply simple thresholding.
img = cv2.imread('171_m.png')[y, x, 0]
_, thresh = cv2.threshold(img, 150, 255, cv2.THRESH_BINARY_INV)
The resulting image looks like this:
Then throw that into Tesseract, with psm 7 for single line:
text = pytesseract.image_to_string(thresh, config='--psm 7')
print(text)
>>> lim
I also tried to restrict possible characters, and it gets a bit better, but not quite.
text = pytesseract.image_to_string(thresh, config='--psm 7 -c tessedit_char_whitelist=1234567890m')
print(text)
>>> 17m
OpenCV v4.1.1.
Tesseract v5.0.0-alpha.20190708
Any help appreciated.
Before throwing the image into Pytesseract, preprocessing can help. The desired text should be in black while the background should be in white. Here's an approach
Convert image to grayscale and enlarge image
Gaussian blur
Otsu's threshold
Invert image
After converting to grayscale, we enlarge the image using imutils.resize() and Gaussian blur. From here we Otsu's threshold to get a binary image
If you have noisy images, an additional step would be to use morphological operations to smooth or remove noise. But since your image is clean enough, we can simply invert the image to get our result
Output from Pytesseract using --psm 6
171m
import cv2
import pytesseract
import imutils
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
image = cv2.imread('1.png',0)
image = imutils.resize(image, width=400)
blur = cv2.GaussianBlur(image, (7,7), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
result = 255 - thresh
data = pytesseract.image_to_string(result, lang='eng',config='--psm 6')
print(data)
cv2.imshow('thresh', thresh)
cv2.imshow('result', result)
cv2.waitKey()
Disclaimer : This is not a solution, just a trial to partially solve this.
This process works only if you have knowledge of the number of the characters present in the image beforehand. Here is the trial code :
img0 = cv2.imread('171_m.png', 0)
adap_thresh = cv2.adaptiveThreshold(img0, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
text_adth = pytesseract.image_to_string(adap_thresh, config='--psm 7')
After adaptive thresholding, the produced image is like this :
Pytesseract gives output as :
171 mi.
Now, if you know, in advance, the number of characters present, you can slice the string read by pytesseract and get the desired output as '171m'.
I thought your image was not sharp enough, hence I applied the process described at How do I increase the contrast of an image in Python OpenCV to first sharpen your image and then proceed by extracting the blue layer and running the tesseract.
I hope this helps.
import cv2
import pytesseract
img = cv2.imread('test.png') #test.png is your original image
s = 128
img = cv2.resize(img, (s,int(s/2)), 0, 0, cv2.INTER_AREA)
def apply_brightness_contrast(input_img, brightness = 0, contrast = 0):
if brightness != 0:
if brightness > 0:
shadow = brightness
highlight = 255
else:
shadow = 0
highlight = 255 + brightness
alpha_b = (highlight - shadow)/255
gamma_b = shadow
buf = cv2.addWeighted(input_img, alpha_b, input_img, 0, gamma_b)
else:
buf = input_img.copy()
if contrast != 0:
f = 131*(contrast + 127)/(127*(131-contrast))
alpha_c = f
gamma_c = 127*(1-f)
buf = cv2.addWeighted(buf, alpha_c, buf, 0, gamma_c)
return buf
out = apply_brightness_contrast(img,0,64)
b, g, r = cv2.split(out) #spliting and using just the blue
pytesseract.image_to_string(255-b, config='--psm 7 -c tessedit_char_whitelist=1234567890m') # the 255-b here because the image has black backgorund and white numbers, 255-b switches the colors

Incorrect thresholding before string recognition

I'm trying to recognize some text with pytesseract, but before that I have to turn the picture I have into a binary one.
Note that I first resize the picture to make it easier to read for pytesseract.
See below the original picture, the resized one, my code and the result I get, so you can understand my issue..
Original picture
image = cv2.imread('original.png',0)
image = cv2.resize(image,None,fx=2,fy=2,interpolation=cv2.INTER_CUBIC)
cv2.imwrite("resized.png", image)
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
result = 255 - thresh
cv2.imwrite("after_threshold.png", result)
Resized picture
Picture after threshold
Thank you for your help :)
If you remove the resize, it seems to work
Output from Pytesseract
32 Force
120 Initiative
Prospection
25 agilité
53 Vitalité
5 Dommages
1 Résistance Neutre
1 Portée
7% Résistance Feu
import cv2
import pytesseract
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
image = cv2.imread('1.png', 0)
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
result = 255 - thresh
data = pytesseract.image_to_string(result, lang='eng',config='--psm 6')
print(data)
cv2.imshow('thresh', thresh)
cv2.imshow('result', result)
cv2.waitKey()

Categories