I'm working on sample task where I need to highlight unusual marks on any mobile devices. I'm trying with opencv python. But, I'm not getting actual contors for the unusual marks.
Input image is like:
And output image is expected as below:
I'm trying something like below, but it didn't work.
import cv2
from matplotlib import pyplot as plt
blurValue = 15
img_path = "input.jpg"
# reading the image
image = cv2.imread(img_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (blurValue, blurValue), 0)
edged = cv2.Canny(image, 100, 255)
#applying closing function
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))
closed = cv2.morphologyEx(edged, cv2.MORPH_CLOSE, kernel)
lower = np.array([4, 20, 93])
upper = np.array([83, 79, 166])
# hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# blur = cv2.GaussianBlur(hsv, (blurValue, blurValue), 0)
mask = cv2.inRange(closed, lower, upper)
result_1 = cv2.bitwise_and(frame, frame, mask = mask)
cnts = cv2.findContours(result_1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)
plt.imshow(image)
plt.title("image")
plt.show()
Any help will be appreciated. Thank you.
My suggestion would be to use adaptive thresholding and filter on area (and possibly other characteristics). Here is my code and results using Python OpenCV.
Input:
import cv2
import numpy as np
# read image
img = cv2.imread("iphone.jpg")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# apply gaussian blur
blur = cv2.GaussianBlur(gray, (29,29), 0)
# do adaptive threshold on gray image
thresh = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 51, 3)
# apply morphology open then close
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17, 17))
open = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
close = cv2.morphologyEx(open, cv2.MORPH_CLOSE, kernel)
# Get contours
cnts = cv2.findContours(close, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
result = img.copy()
for c in cnts:
area = cv2.contourArea(c)
if area < 10000 and area > 5000:
cv2.drawContours(result, [c], -1, (0, 255, 0), 2)
# write results to disk
cv2.imwrite("iphone_thresh.jpg", thresh)
cv2.imwrite("iphone_close.jpg", close)
cv2.imwrite("iphone_markings.jpg", result)
# display it
cv2.imshow("IMAGE", img)
cv2.imshow("THRESHOLD", thresh)
cv2.imshow("CLOSED", close)
cv2.imshow("RESULT", result)
cv2.waitKey(0)
Thresholded Image:
Morphology Processed Image:
Final Result:
I would also suggest that you align the image with a known clean iPhone image and create a mask of the camera and logo, etc., markings so that you can filter the results to exclude those (and perhaps even the border of the camera outline).
Related
I have the image, i have removed the noise (dots in the background) and, I want to draw a bounding box around the block of text In image how can I do it using python OpenCV
Input image:
Noise Removed Image:
Here is the code used to remove noise in background Where i can change to save images with bounding boxes around the text
import cv2
import matplotlib.pyplot as plt
import glob
import os
def remove_dots(image_path,outdir):
image = cv2.imread(image_path)
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,51,9)
# Create horizontal kernel then dilate to connect text contours
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
dilate = cv2.dilate(thresh, kernel, iterations=2)
# Find contours and filter out noise using contour approximation and area filtering
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
x,y,w,h = cv2.boundingRect(c)
area = w * h
ar = w / float(h)
if area > 1200 and area < 50000 and ar <8:
cv2.drawContours(mask, [c], -1, (255,255,255), -1)
# Bitwise-and input image and mask to get result
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
result = cv2.bitwise_and(image, image, mask=mask)
result[mask==0] = (255,255,255) # Color background white
cv2.imwrite(os.path.join(outdir,os.path.basename(image_path)),result)
for jpgfile in glob.glob(r'C:\custom\TableDetectionWork\text_detection_dataset/*'):
print(jpgfile)
remove_dots(jpgfile,r'C:\custom\TableDetectionWork\textdetect/')
You can do that by using a horizontal morphology filter to merge the letters in a mask image. Then find the contours. Then get the bounding boxes.
Input:
import cv2
import numpy as np
img = cv2.imread("john.jpg")
# convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# threshold
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# invert
thresh = 255 - thresh
# apply horizontal morphology close
kernel = np.ones((5 ,191), np.uint8)
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# get external contours
contours = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# draw contours
result = img.copy()
for cntr in contours:
# get bounding boxes
pad = 10
x,y,w,h = cv2.boundingRect(cntr)
cv2.rectangle(result, (x-pad, y-pad), (x+w+pad, y+h+pad), (0, 0, 255), 4)
# save result
cv2.imwrite("john_bbox.png",result)
# display result
cv2.imshow("thresh", thresh)
cv2.imshow("morph", morph)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Morphology Closed Image:
Bounding Boxes Image:
Here is the core of your code modified to do what you want in Python/OpenCV. It is just adding my code to the end of your code.
Input:
import cv2
import numpy as np
image = cv2.imread("john.jpg")
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,51,9)
# Create horizontal kernel then dilate to connect text contours
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
dilate = cv2.dilate(thresh, kernel, iterations=2)
# Find contours and filter out noise using contour approximation and area filtering
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
x,y,w,h = cv2.boundingRect(c)
area = w * h
ar = w / float(h)
if area > 1200 and area < 50000 and ar <8:
cv2.drawContours(mask, [c], -1, (255,255,255), -1)
# Bitwise-and input image and mask to get result
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
result = cv2.bitwise_and(image, image, mask=mask)
result[mask==0] = (255,255,255) # Color background white
# NEW CODE HERE TO END _____________________________________________________________
gray2 = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
thresh2 = cv2.threshold(gray2, 128, 255, cv2.THRESH_BINARY)[1]
thresh2 = 255 - thresh2
kernel = np.ones((5 ,191), np.uint8)
close = cv2.morphologyEx(thresh2, cv2.MORPH_CLOSE, kernel)
# get external contours
contours = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# draw contours
result2 = result.copy()
for cntr in contours:
# get bounding boxes
pad = 10
x,y,w,h = cv2.boundingRect(cntr)
cv2.rectangle(result2, (x-pad, y-pad), (x+w+pad, y+h+pad), (0, 0, 255), 4)
cv2.imwrite("john_bboxes.jpg", result2)
cv2.imshow("mask",mask)
cv2.imshow("thresh",thresh)
cv2.imshow("dilate",dilate)
cv2.imshow("result",result)
cv2.imshow("gray2",gray2)
cv2.imshow("thresh2",thresh2)
cv2.imshow("close",close)
cv2.imshow("result2",result2)
cv2.waitKey(0)
cv2.destroyAllWindows()
Bounding Boxes on Your Result:
i'm trying to find specific contours having red outlines. Below is the code, I'm trying on this image :
import numpy as np
import cv2
image = cv2.imread('C:/Users/htc/Desktop/image.png')
original = image.copy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lower = np.array([0,50,50], dtype="uint8")
upper = np.array([10, 255,255], dtype="uint8")
mask = cv2.inRange(image, lower, upper)
# Find contours
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Extract contours depending on OpenCV version
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
print(len(cnts))
# Iterate through contours and filter by the number of vertices
for c in cnts:
perimeter = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * perimeter, True)
if len(approx) > 5:
cv2.drawContours(original, [c], -1, (36, 255, 12), -1)
cv2.imshow('mask', mask)
cv2.imshow('original', original)
cv2.waitKey()
Output
the length of contour i'm getting is 14 which is not correct. The correct output will be 3. Where i'm doing wrong?
If you can notice, there are breaks in your mask image due to which many contours are being detected. To correct this (if you only want the count), you can dilate the mask image obtained before finding the contours as shown below.
mask = cv2.inRange(image, lower, upper)
# Dilating the mask
kernel = np.ones((3, 3), dtype=np.uint8)
mask = cv2.dilate(mask, kernel, iterations=2)
# Find contours
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
Just add a step at the beginning where you blur the picture a little bit.
image = cv2.GaussianBlur(image, (3, 3), 0, 0, cv2.BORDER_DEFAULT)
I am trying to detect black shape on photo like this.
So far i have picture with shape but still on there is many lines and noise and from that i cannot use the findContours() because it's also mark the line. Can You give me some advice or help with this task. I will be so grateful for help!
Original image
Binary image
import cv2
import numpy as np
import imutils
def color_seg(choice):
if choice == 'blue':
lower_hue = np.array([100,30,30])
upper_hue = np.array([150,148,255])
elif choice == 'white':
lower_hue = np.array([0,0,0])
upper_hue = np.array([0,0,255])
elif choice == 'black':
lower_hue = np.array([0,0,0])
upper_hue = np.array([50,50,100])
return lower_hue, upper_hue
# Take each frame
frame = cv2.imread('11.jpg')
#frame = cv2.imread('images/road_1.jpg')
frame = imutils.resize(frame, height = 500)
chosen_color = 'black'
# Convert BGR to HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# define range of a color in HSV
lower_hue, upper_hue = color_seg(chosen_color)
# Threshold the HSV image to get only blue colors
mask = cv2.inRange(hsv, lower_hue, upper_hue)
kernel = np.ones((5,5),np.uint8)
erosion = cv2.erode(mask,kernel,iterations = 10)
erosion = cv2.filter2D(mask,-1,kernel)
erosion = cv2.GaussianBlur(mask,(5,5),cv2.BORDER_DEFAULT)
cv2.imshow('frame',frame)
cv2.imshow('mask',mask)
cv2.waitKey(0)
You're on the right track. After obtaining your binary image you need to perform morphological operations to filter out noise and isolate the object. Afterwards, we can find contours then filter using contour approximation and contour area. We draw the detected region onto a blank mask then bitwise-and with the original image. Here's the steps:
Binary image
Morphological operations
Detected region in green
Isolated result after bitwise operations
Code
import numpy as np
import cv2
# Color threshold
image = cv2.imread('1.jpg')
original = image.copy()
blank = np.zeros(image.shape, dtype=np.uint8)
blur = cv2.GaussianBlur(image, (7,7), 0)
hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
lower = np.array([0, 0, 0])
upper = np.array([179, 93, 97])
mask = cv2.inRange(hsv, lower, upper)
# Morph operations
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7,7))
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
close = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel, iterations=2)
# Find contours and filter using contour approximation + contour area
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
area = cv2.contourArea(c)
if len(approx) > 3 and area > 1000:
cv2.drawContours(image, [c], -1, (36,255,12), -1)
cv2.drawContours(blank, [c], -1, (255,255,255), -1)
# Bitwise-and for result
blank = cv2.cvtColor(blank, cv2.COLOR_BGR2GRAY)
result = cv2.bitwise_and(original,original,mask=blank)
result[blank==0] = (255,255,255)
cv2.imshow('mask', mask)
cv2.imshow('opening', opening)
cv2.imshow('close', close)
cv2.imshow('result', result)
cv2.imshow('image', image)
cv2.waitKey()
i have a problem with my python code. I want to make image processing with chest X-rays in order to obtain a lung pattern. but my code results still have little stains. how to get rid of these small objects
and this is my code
import cv2
import numpy as np
from skimage import morphology
im = cv2.imread('image.jpg')
ret, thresh = cv2.threshold(im, 150, 255, cv2.THRESH_BINARY)
kernel = np.ones((5, 5), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
cleaned = morphology.remove_small_objects(opening, min_size=62, connectivity=2)
cv2.imshow("cleaned", cleaned)
cv2.waitKey(0)
P.S :
when i try with the matlab code, the small object can be removed with this code
K=bwareaopen(~K,1500); %Remove small object (area) pixels less than 1500 pixels
and that code can remove small object well:
You can filter using contour area then apply morpholgical closing to fill the small holes in the image. Here's the result:
import cv2
# Load image, convert to grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread('1.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Filter using contour area and remove small noise
cnts = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
area = cv2.contourArea(c)
if area < 5500:
cv2.drawContours(thresh, [c], -1, (0,0,0), -1)
# Morph close and invert image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = 255 - cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
cv2.imshow('thresh', thresh)
cv2.imshow('close', close)
cv2.waitKey()
From the Documentation for bwareaopen you can find the algorithm that is used in the method, which is:
Determine the connected components:
CC = bwconncomp(BW, conn);
Compute the area of each component:
S = regionprops(CC, 'Area');
Remove small objects:
L = labelmatrix(CC);
BW2 = ismember(L, find([S.Area] >= P));
You could simply follow these steps to get to the result.
I am trying to extract handwritten characters from field boxes
My desired output would be the character segments with the boxes removed. So far, I've tried defining contours and filtering by area but that hasn't yielded any good results.
# Reading image and binarization
im = cv2.imread('test.png')
char_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
char_bw = cv2.adaptiveThreshold(char_gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 75, 10)
# Applying erosion and dilation
kernel = np.ones((5,5), np.uint8)
img_erosion = cv2.erode(char_bw, kernel, iterations=1)
img_dilation = cv2.dilate(img_erosion, kernel, iterations=1)
# Find Canny edges
edged = cv2.Canny(img_dilation, 100, 200)
# Finding Contours
edged_copy = edged.copy()
im2, cnts, hierarchy = cv2.findContours(edged_copy, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print("Number of Contours found = " + str(len(cnts)))
# Draw all contours
cv2.drawContours(im, cnts, -1, (0, 255, 0), 3)
# Filter using area and save
for no, c in enumerate(cnts):
area = cv2.contourArea(c)
if area > 100:
contour = c
(x, y, w, h) = cv2.boundingRect(contour)
img = im[y:y+h, x:x+w]
cv2.imwrite(f'./cnts/cnt-{no}.png', img_dilation)
Here's a simple approach:
Obtain binary image. We load the image, enlarge using imutils.resize(), convert to grayscale, and perform Otsu's thresholding to obtain a binary image
Remove horizontal lines. We create a horizontal kernel then perform morphological opening and remove the horizontal lines using cv2.drawContours
Remove vertical lines. We create a vertical kernel then perform morphological opening and remove the vertical lines using cv2.drawContours
Here's a visualization of each step:
Binary image
Detected lines/boxes to remove highlighted in green
Result
Code
import cv2
import numpy as np
import imutils
# Load image, enlarge, convert to grayscale, Otsu's threshold
image = cv2.imread('1.png')
image = imutils.resize(image, width=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Remove horizontal
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25,1))
detect_horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detect_horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(image, [c], -1, (255,255,255), 5)
# Remove vertical
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,25))
detect_vertical = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
cnts = cv2.findContours(detect_vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(image, [c], -1, (255,255,255), 5)
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()