Swap multiple indices in 2d array - python

Problem
For the following array:
import numpy as np
arr = np.array([[i for i in range(10)] for j in range(5)])
# arr example
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
For each row in arr, I'm attempting to swap n (in this case 2) indices according to some 2d array, such as.
swap = np.random.choice(arr.shape[1], [arr.shape[0], 2], replace=False)
# swap example
array([[8, 1],
[5, 0],
[7, 2],
[9, 4],
[3, 6]])
Question
I tried arr[:, swap] = arr[:, swap[:, ::-1]], but this performs every swap for each row, rather than only swapping indices row by row. The behaviour I am trying to achieve is given below. Is this possible without iterating over swap?
for idx, s in enumerate(swap):
arr[idx, s] = arr[idx, s[::-1]]
# new arr with indices swapped
array([[0, 8, 2, 3, 4, 5, 6, 7, 1, 9],
[5, 1, 2, 3, 4, 0, 6, 7, 8, 9],
[0, 1, 7, 3, 4, 5, 6, 2, 8, 9],
[0, 1, 2, 3, 9, 5, 6, 7, 8, 4],
[0, 1, 2, 6, 4, 5, 3, 7, 8, 9]])

You can to use a "helper" array to index arr. The helper coerces arr into the correct shape.
import numpy as np
arr = np.array([[i for i in range(10)] for j in range(5)])
swap = np.array([[8, 1], [5, 0], [7, 2], [9, 4], [3, 6]])
helper = np.arange(arr.shape[0])[:, None]
# helper is
# array([[0],
# [1],
# [2],
# [3],
# [4]])
# arr[helper] is
# array([[[0, 8, 2, 3, 4, 5, 6, 7, 1, 9]],
# [[5, 1, 2, 3, 4, 0, 6, 7, 8, 9]],
# [[0, 1, 7, 3, 4, 5, 6, 2, 8, 9]],
# [[0, 1, 2, 3, 9, 5, 6, 7, 8, 4]],
# [[0, 1, 2, 6, 4, 5, 3, 7, 8, 9]]])
arr[helper, swap] = arr[helper, swap[:, ::-1]]
# arr is
# array([[0, 8, 2, 3, 4, 5, 6, 7, 1, 9],
# [5, 1, 2, 3, 4, 0, 6, 7, 8, 9],
# [0, 1, 7, 3, 4, 5, 6, 2, 8, 9],
# [0, 1, 2, 3, 9, 5, 6, 7, 8, 4],
# [0, 1, 2, 6, 4, 5, 3, 7, 8, 9]])

Related

Is there an alternate way to do the same without for loop?

I have two numpy arrays A and l. The dimension of A is (n, x, y) and the dimension of l is (n,1). I get the result as follows:
res = []
for i in range(n):
res.append(A[i, x, l[i])
This way of getting the result is very time consuming for a larger value of n. Is there an alternative to get the same result quickly?
If 0<=l[i]<y for all values of i:
>>> n,x,y = 4,5,6
>>> A = np.random.randint(0,10,(n,x,y))
array([[[3, 3, 3, 8, 7, 0],
[8, 1, 1, 5, 3, 8],
[0, 1, 0, 4, 1, 3],
[2, 2, 1, 8, 6, 5],
[2, 5, 9, 2, 6, 3]],
[[9, 7, 4, 6, 7, 7],
[1, 7, 0, 4, 9, 6],
[8, 0, 8, 6, 7, 8],
[1, 9, 7, 8, 7, 6],
[2, 4, 6, 3, 6, 8]],
[[2, 8, 5, 7, 9, 4],
[7, 2, 2, 5, 2, 1],
[0, 8, 6, 4, 1, 2],
[6, 9, 9, 0, 2, 4],
[9, 9, 1, 6, 7, 0]],
[[3, 8, 4, 3, 5, 6],
[5, 3, 7, 7, 4, 6],
[9, 0, 7, 9, 2, 1],
[1, 6, 2, 2, 9, 5],
[5, 0, 9, 0, 5, 2]]])
>>> l = np.random.randint(low=0, high=y-1, size=(n,1))
array([[0],
[1],
[3],
[1]])
>>> x0 = 2
>>> res = []
>>> for i in range(n):
res.append(A[i, x0, l[i])
>>> res
[array([0]), array([0]), array([4]), array([0])]
numpy:
>>> A[range(n), 2, l.flatten()]
array([0, 0, 4, 0])
what about list comprehension?
res=[A[i, x, l[i] for i in range(n)]

How to get k top elements of multidimensional array along a axis instead of one that argmax gives

I have a prediction in the format of np.argmax(model.predict(X),axis=2) which returns one element.How to predict top k elements using numpy
The link provided by #desertnaut covers the 1D case. It is, however, not entirely trivial to generalize the good answer to "ND along axis".
Here is an example where we find the top 2 along axis 1:
>>> a = np.random.randint(0, 9, (3, 5, 6))
>>> b = a.argpartition(-2, axis=1)[:, -2:]
>>> i, j, k = a.shape
>>> i, j, k = np.ogrid[:i, :j, :k]
>>> b = b[i, a[i, b, k].argsort(axis=1), k]
>>> a
array([[[8, 4, 1, 2, 4, 8],
[0, 1, 3, 4, 2, 7],
[4, 2, 7, 8, 1, 4],
[1, 6, 2, 0, 3, 7],
[1, 0, 0, 2, 8, 1]],
[[1, 6, 3, 3, 0, 6],
[7, 2, 0, 3, 8, 5],
[5, 0, 1, 1, 7, 4],
[2, 2, 4, 2, 6, 2],
[5, 5, 7, 6, 8, 1]],
[[4, 4, 4, 6, 2, 5],
[2, 7, 8, 2, 6, 0],
[5, 6, 7, 5, 1, 6],
[6, 5, 3, 2, 2, 3],
[5, 1, 8, 1, 6, 8]]])
>>> a[i, b, k]
array([[[4, 4, 3, 4, 4, 7],
[8, 6, 7, 8, 8, 8]],
[[5, 5, 4, 3, 8, 5],
[7, 6, 7, 6, 8, 6]],
[[5, 6, 8, 5, 6, 6],
[6, 7, 8, 6, 6, 8]]])
A general function could look like
def argtopk(A, k, axis=0):
tk = A.argpartition(-k, axis=axis)[(*axis*(slice(None),), slice(-k, None))]
I = np.ogrid[(*map(slice, A.shape),)]
I[axis] = tk
I[axis] = A[I].argsort(axis=axis)
return tk[I]

Numpy: stack duplicates of matrix in new dimension [duplicate]

This question already has answers here:
How to copy a 2D array into a 3rd dimension, N times?
(7 answers)
Closed 4 years ago.
I have a 3x3 numpy array and I want to create a 3x3xC matrix where the new dimension consists of exact copies of the original 3x3 array. I am sure this is asked somewhere but I couldn't find the best way. I worked out how to do this for a simple 1 dimensional array x:
new_x = np.tile(np.array(x, (C, 1))
which repeats the array, then do:
np.transpose(np.expand_dims(new_x, axis=2),(2,1,0))
which expands the dimension and switches the axis so that the array is repeated in the 3rd dimension (although this works I'm not sure if this is the best way to do it either) - what is the most efficient way to do this for a general n x n numpy array?
For a readonly version, broadcast_to can be used:
In [370]: x = np.arange(9).reshape(3,3)
In [371]: x
Out[371]:
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
In [372]: x = np.broadcast_to(x[..., None],(3,3,10))
In [373]: x
Out[373]:
array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]],
[[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]],
[[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8]]])
Or with repeat:
In [378]: x=np.repeat(x[...,None],10,2)
In [379]: x
Out[379]:
array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]],
[[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]],
[[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8]]])
This is a larger array, whose elements can be changed individually.

Numpy create index/slicing programmatically from array

I can use numpy.mgrid as follows:
a = numpy.mgrid[x0:x1, y0:y1] # 2 dimensional
b = numpy.mgrid[x0:x1, y0:y1, z0:z1] # 3 dimensional
Now, I'd like to create the expression in brackets programmatically, because I do not know whether I have 1, 2, 3 or more dimensions. I'm looking for something like:
shape = np.array([[x0, x1], [y0, y1], ... maybe more dimensions ...])
idx = (s[0]:s[1] for s in shape)
a = numpy.mgrid[idx]
That gives at least a syntax error in the second line. How can I properly generate those indices/slices programmatically? (The mgrid here is rather an example/use case, the question is really about indexing in general.)
Use the slice object. For example:
shape = np.array([[0, 10], [0, 10]])
idx = tuple(slice(s[0],s[1], 1) for s in shape)
#yields the following
#(slice(0, 10, 1), slice(0, 10, 1))
np.mgrid[idx]
yields
array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8, 8],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]],
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]])
Alternatively, you could use the Numpy shorthand np.s_, e.g. np.s_[0:10:1], instead of slice(1, 10, 1), but they are equivalent objects.

How to get all submatrices of given size in numpy?

For example, x = np.random.randint(low=0, high=10, shape=(6,6)) gives me a 6x6 numpy array:
array([[3, 1, 0, 1, 5, 4],
[2, 9, 9, 4, 8, 8],
[2, 3, 4, 3, 2, 9],
[5, 8, 4, 5, 7, 6],
[3, 0, 8, 1, 8, 0],
[6, 7, 1, 9, 0, 5]])
How can I get a list of, say, all 2x3 submatrices? What about non-overlapping ones?
I could code this in myself, but I'm sure this is a common enough operation that it already exists in numpy, I just can't find it.
Listed in this post is a generic approach to get a list of submatrices with given shape. Based on the order of submatrices being row (C-style) or column major (fortran-way), you would have two choices. Here's the implementation with np.reshape , np.transpose and np.array_split -
def split_submatrix(x,submat_shape,order='C'):
p,q = submat_shape # Store submatrix shape
m,n = x.shape
if np.any(np.mod(x.shape,np.array(submat_shape))!=0):
raise Exception('Input array shape is not divisible by submatrix shape!')
if order == 'C':
x4D = x.reshape(-1,p,n/q,q).transpose(0,2,1,3).reshape(-1,p,q)
return np.array_split(x4D,x.size/(p*q),axis=0)
elif order == 'F':
x2D = x.reshape(-1,n/q,q).transpose(1,0,2).reshape(-1,q)
return np.array_split(x2D,x.size/(p*q),axis=0)
else:
print "Invalid output order."
return x
Sample run with a modified sample input -
In [201]: x
Out[201]:
array([[5, 2, 5, 6, 5, 6, 1, 5],
[1, 1, 8, 4, 4, 5, 2, 5],
[4, 1, 6, 5, 6, 4, 6, 1],
[5, 3, 7, 0, 5, 8, 6, 5],
[7, 7, 0, 6, 5, 2, 5, 4],
[3, 4, 2, 5, 0, 7, 5, 0]])
In [202]: split_submatrix(x,(3,4))
Out[202]:
[array([[[5, 2, 5, 6],
[1, 1, 8, 4],
[4, 1, 6, 5]]]), array([[[5, 6, 1, 5],
[4, 5, 2, 5],
[6, 4, 6, 1]]]), array([[[5, 3, 7, 0],
[7, 7, 0, 6],
[3, 4, 2, 5]]]), array([[[5, 8, 6, 5],
[5, 2, 5, 4],
[0, 7, 5, 0]]])]
In [203]: split_submatrix(x,(3,4),order='F')
Out[203]:
[array([[5, 2, 5, 6],
[1, 1, 8, 4],
[4, 1, 6, 5]]), array([[5, 3, 7, 0],
[7, 7, 0, 6],
[3, 4, 2, 5]]), array([[5, 6, 1, 5],
[4, 5, 2, 5],
[6, 4, 6, 1]]), array([[5, 8, 6, 5],
[5, 2, 5, 4],
[0, 7, 5, 0]])]

Categories