Tensorflow - building LSTM model - need for tf.keras.layers.Dense() - python

Python 3.7 tensorflow
I am experimenting Time series forecasting w Tensorflow
I understand the second line creates a LSTM RNN i.e. a Recurrent Neural Network of type Long Short Term Memory.
Why do we need to add a Dense(1) layer in the end?
single_step_model = tf.keras.models.Sequential()
single_step_model.add(tf.keras.layers.LSTM(32, input_shape=x_train_single.shape[-2:]))
single_step_model.add(tf.keras.layers.Dense(1))
Tutorial for Dense() says
Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the element-wise activation function passed as the activation argument, kernel is a weights matrix created by the layer, and bias is a bias vector created by the layer (only applicable if use_bias is True).
would you like to rephrase or elaborate on need for Dense() here ?

The following line
single_step_model.add(tf.keras.layers.LSTM(32, input_shape=x_train_single.shape[-2:]))
creates an LSTM layer which transforms each input step of size #features into a latent representation of size 32. You want to predict a single value so you need to convert this latent representation of size 32 into a single value. Hence, you add the following line
single_step_model.add(tf.keras.layers.Dense(1))
which adds a Dense Layer (Fully-Connected Neural Network) with one neuron in the output which, obviously, produces a single value. Look at it as a way to transform an intermediate result of higher dimensionality into the final result.

Well in the tutorial you are following Time series forecasting, they are trying to forecast temperature (6 hrs ahead). For which they are using an LSTM followed by a Dense layer.
single_step_model = tf.keras.models.Sequential()
single_step_model.add(tf.keras.layers.LSTM(32, input_shape=x_train_single.shape[-2:]))
single_step_model.add(tf.keras.layers.Dense(1))
Dense layer is nothing but a regular fully-connected NN layer. In this case you are bringing down the output dimensionality to 1, which should represent some proportionality (need not be linear) to the temperature you are trying to predict. There are other layers you could use as well. Check out, Keras Layers.
If you are confused about the input and output shape of LSTM, check out
I/O Shape.

Related

How to make array have same number of samples?

I am a beginner using CNN and Keras and I am trying to make a program to predict whether someone could develop diabetes using data in a CSV file. I think I am getting confused with how to reshape the array as I am receiving the error:
ValueError: Data cardinality is ambiguous:
x sizes: 8
y sizes: 768
Make sure all arrays contain the same number of samples
Here is the code:
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
# read in the csv file using pandas
data = pd.read_csv("diabetes.csv")
# extract the input and output columns from the dataframe
X = data.drop(columns=['Outcome'])
y = data['Outcome']
# reshape the input data into the shape expected by a CNN
X = X.values.reshape(8, 768, 1)
# create a Sequential model in Keras
model = Sequential()
# add a 2D convolutional layer with 32 filters and a kernel size of 3x3
model.add(Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=(8, 768, 1)))
# add a flatten layer to flatten the output from the convolutional layer
model.add(Flatten())
# add a fully-connected layer with 64 units and a ReLU activation
model.add(Dense(64, activation="relu"))
# add a fully-connected layer with 10 units and a softmax activation
model.add(Dense(10, activation="softmax"))
# compile the model using categorical crossentropy loss and an Adam optimizer
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
# fit the model using the input and output data
model.fit(X, y)
# print prediction
print(model.predict(10, 139, 80, 0, 0, 27.1, 1.441, 57))
Tldr, you probably don't want a CNN in this case.
First off, I’m assuming your data looks something like the following, if that’s not the case the rest of the post may be way off target:
enter image description here
So there are 768 rows or patients, 8 inputs for each row, and 1 output (known as the label).
Convolutional layers are used when there is an input signal that you wish to analyze. In 2d, this would be something like a grid of pixels, or in 1d it might be time series data. Your data is neither – each row of the data represents a single 8-dimensional data point (i.e. a single patient) at a single point in time, so you very likely don’t want to use a convolutional layer at all.
For more information, you can read up on the differences between convnets and fully connected neural networks here: https://ai.stackexchange.com/questions/5546/what-is-the-difference-between-a-convolutional-neural-network-and-a-regular-neur?rq=1
“CNN, in specific, has one or more layers of convolution units. A convolution unit receives its input from multiple units from the previous layer which together create a proximity. Therefore, the input units (that form a small neighborhood) share their weights.
The convolution units (as well as pooling units) are especially beneficial as:
• They reduce the number of units in the network (since they are many-to-one mappings). This means, there are fewer parameters to learn which reduces the chance of overfitting as the model would be less complex than a fully connected network.
• They consider the context/shared information in the small neighborhoods. This feature is very important in many applications such as image, video, text, and speech processing/mining as the neighboring inputs (eg pixels, frames, words, etc) usually carry related information."
A very naïve, very basic NN for a problem like this would just use Dense, i.e. fully connected layers.
In Keras, you can do the following:
model = Sequential()
model.add(Dense(64, activation="relu", input_shape=(8,)))
model.add(Dense(1, activation="sigmoid"))
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
Note that the last layer is a single neuron, since you have only one output. If you were classifying images as one of say 10 categories (dog, cat, bird, etc), then you would use 10 output nodes in the last layer, softmax them, and use categorical cross entropy. Here, with a single condition, you only need a single output node and note that the loss function should probably be binary crossentropy – i.e. you’re trying to detect the presence or absence of the condition.
Hope this helps.

how to Create Multi Head Convolutional layers merging as Temporal dimension in keras

I want to implement a time-series prediction model which has a window of non-image matrixes as input , each matrix to be processed by a Conv2d layer at the first layer and then the output of this conv layers merged as time dimension to be passed to a recurrent layer like LSTM,
one way is to use Time-Distribution technique but TimeDistributed layer apply the same layer to several inputs. And it produce one output per input to get the result in time, the Time-Distribution technique will share the same weights among all convolution heads which is not what I want, for example If you injects 5 Matrixes, the weights are not tweaked 5 times, but only once, and distributed to every blocks defined in the current Time Distributed layer. how can I avoid this and have independent Convolutional heads with outputs merging as time dimension for the next layer?
I have tried to implement it as following
Matrix_Dimention=20;
Input_Window=4;
Input_Matrixes=[]
ConvLayers=[]
for i in range(0 , Input_Window):
Inp_Matrix=layers.Input(shape=(Matrix_Dimention,Matrix_Dimention,1));
Input_Matrixes.append(Inp_Matrix);
conv=layers.Conv2D(64, 5, activation='relu', input_shape=(Matrix_Dimention,Matrix_Dimention,1))(Inp_Matrix)
ConvLayers.append(conv);
#Temporal Concatenation
Spatial_Layers_Concate = layers.Concatenate(ConvLayers); # this causes error : Inputs to a layer should be tensors
#Temporal Component
LSTM_Layer=layers.LSTM(activation='relu',return_sequences=False)(Spatial_Layers_Concate )
Model = keras.Model(Input_Matrixes, LSTM_Layer)
Model.compile(optimizer='adam', loss=keras.losses.MeanSquaredError)
it would be great if you provide your answer by correcting my implementation or provide your own if there is a better way to form this idea , tnx.

LSTM architecture in Keras implementation?

I am new to Keras and going through the LSTM and its implementation details in Keras documentation. It was going easy but suddenly I came through this SO post and the comment. It has confused me on what is the actual LSTM architecture:
Here is the code:
model = Sequential()
model.add(LSTM(32, input_shape=(10, 64)))
model.add(Dense(2))
As per my understanding, 10 denote the no. of time-steps and each one of them is fed to their respective LSTM cell; 64 denote the no. of features for each time-step.
But, the comment in the above post and the actual answer has confused me about the meaning of 32.
Also, how is the output from LSTM is getting connected to the Dense layer.
A hand-drawn diagrammatic explanation would be quite helpful in visualizing the architecture.
EDIT:
As far as this another SO post is concerned, then it means 32 represents the length of the output vector that is produced by each of the LSTM cells if return_sequences=True.
If that's true then how do we connect each of 32-dimensional output produced by each of the 10 LSTM cells to the next dense layer?
Also, kindly tell if the first SO post answer is ambiguous or not?
how do we connect each of 32-dimensional output produced by each of
the 10 LSTM cells to the next dense layer?
It depends on how you want to do it. Suppose you have:
model.add(LSTM(32, input_shape=(10, 64), return_sequences=True))
Then, the output of that layer has shape (10, 32). At this point, you can either use a Flatten layer to get a single vector with 320 components, or use a TimeDistributed to work on each of the 10 vectors independently:
model.add(TimeDistributed(Dense(15))
The output shape of this layer is (10, 15), and the same weights are applied to the output of every LSTM unit.
it's easy to figure out the no. of LSTM cells required for the input(specified in timespan)
How to figure out the no. of LSTM units required in the output?
You either get the output of the last LSTM cell (last timestep) or the output of every LSTM cell, depending on the value of return_sequences. As for the dimensionality of the output vector, that's just a choice you have to make, just like the size of a dense layer, or number of filters in a conv layer.
how each of the 32-dim vector from the 10 LSTM cells get connected to TimeDistributed layer?
Following the previous example, you would have a (10, 32) tensor, i.e. a size-32 vector for each of the 10 LSTM cells. What TimeDistributed(Dense(15)) does, is to create a (15, 32) weight matrix and a bias vector of size 15, and do:
for h_t in lstm_outputs:
dense_outputs.append(
activation(dense_weights.dot(h_t) + dense_bias)
)
Hence, dense_outputs has size (10, 15), and the same weights were applied to every LSTM output, independently.
Note that everything still works when you don't know how many timesteps you need, e.g. for machine translation. In this case, you use None for the timestep; everything that I wrote still applies, with the only difference that the number of timesteps is not fixed anymore. Keras will repeat LSTM, TimeDistributed, etc. for as many times as necessary (which depend on the input).

How to get featuremap of convolutional layer in keras

I have a model that I loaded using Keras. I need to be able to find individual feature maps (print values of each feature map). I was able to print weights. Following is my code:
for layer in model.layers:
g=layer.get_config()
h=layer.get_weights()
print g
print h
The model consists of one convlayer which has total 384 neurons. First 128 have filter size 3, next 4 and last 128 have filter size 5. Then, there are relu and maxpool layers and then it is fed into softmax layer. I want to be able to find outputs (values not shapes) of convlayer, relu and maxpool. I have seen codes online but I'm unable to comprehend on how to map them to my situation.
If you are looking for a way to find the activation (i.e. feature map or output) of a layer given one or more input samples, you can simply define a backend function that takes the input array(s) and gives the activation(s) as its output. Here is an example for illustration (i.e. you may need to adapt it to your needs and your model architecture):
from keras import backend as K
# define a function to get the activation of all layers
outputs = [layer.output for layer in model.layers]
active_func = K.function([model.input], [outputs])
# you can use it like this
activations = active_func([my_input_array])

tensorflow basic word2vec example: Shouldn't we be using weights [nce_weight Transpose] for the representation and not embedding matrix?

I am referreing to this sample code
in the code snippet below:
embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the NCE loss
nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size],stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
Now NCE_Loss function is nothing but a single hidden layer neural network with softmax at the optput layer [knowing is takes only a few negative sample]
This part of the graph will only update the weights of the network, it is not doing anything to the "embeddings" matrix/ tensor.
so ideally once the network is trained we must again pass it once through the embeddings_matrix first and then multiply by the transpose of the "nce_weights" [considering it as the same weight auto-encoder, at input & output layers] to reach to the hidden layer representation of each word, which we are are calling word2vec (?)
But if look at the later part of the code, the value of the embeddings matrix is being used a word representation. This
Even the tensorflow doc for NCE loss, mentions input (to which we are passing embed, which uses embeddings) as just the 1st layer input activation values.
inputs: A Tensor of shape [batch_size, dim]. The forward activations of the input network.
A normal back propagation stops at the first layer of the network,
does this implementation of NCE loss, goes beyond and propagates the loss to the input values (and hence to the embedding) ?
This seems an extra step?
Refer this for why I am calling it an extra step, he has a same explanation.
Want I have figured out reading and going through tensorflow is that
though the entire thing is single hidden layer neural network, a auto-encoder indeed. But the weights are not tied, which I assumed.
The encoder is made of the weight matrix embeddings and the decoder is made of the nce_weights. And now embed is nothing but the hidden layer output, given by multiplying input with embeddings.
So with this, embeddings and nce_weights both will be updated in the graph. And we can choose any of the two weight matrix, embeddings is more preferred here.
Edit1:
Actually for both tf.nn.nce_loss and tf.nn.sampled_softmax_loss, the parameters, weights and bias are for the input Weights(tranpose) X + bias, to objective function, which can be logistic regression/ softmax function [refer].
But the back-propagation/ gradient descent happens till the very base of the graph you are building and does not stop at the weights and bias of the function only. Hence the input parameter in both tf.nn.nce_loss and tf.nn.sampled_softmax_loss are also updated which in-turn is build of embeddings matrix.

Categories