Lambda function for calculating sum of primes - python

While writing a python program for calculating the sum of primes between 2 to n (both inclusive), I am getting the error "The generator is not callable"
Can anyone help with the error or suggest what am I missing here?
n = int(input())
sum = 0
sum = sum(list(filter((lambda n: n%y != 0 for y in range(2, n)), range(2, n+1))))
print(sum)

1. first error: "TypeError: 'generator' object is not callable"
this error raise because you pass to filter build-in method a generator, you "cover" the lambda method with parentheses:
filter((lambda n: n%y != 0 for y in range(2,n)), range(2,n+1))
Solution: "uncover" the parentheses
filter(lambda n: n%y != 0 for y in range(2,n), range(2,n+1))
2. second error: "SyntaxError: Generator expression must to be
parenthesized":
lambda n: n%y != 0 for y in range(2,n)
the error is clear: n%y != 0 for y in range(2,n) is a generator and needs to be be parenthesized,
here you want to test if the number is a prime so you want to check if all the values from your generator are True
Solution: use the build-in method all
lambda n: all(n%y != 0 for y in range(2,n))
3. last error: "TypeError: 'int' object is not callable"
sum=0
this is happening because you are using sum build-in method name for your variable sum, so the sum is not anymore the built-in method but an integer
Solution: another name for your variable:
n_prime_sum = 0
here is your code with the fixes:
n = int(input())
n_prime_sum = 0
n_prime_sum = sum(list(filter(lambda n: all(n%y != 0 for y in range(2,n)), range(2,n+1))))
n_prime_sum
# n = 10
output:
17
also, you can define a function that generates all the prime btw 2 and n (both inclusive) then apply the sum build-in method on this function:
# original code by David Eppstein, UC Irvine, 28 Feb 2002
# with comments by Eli Bendersky, https://stackoverflow.com/a/568618
def gen_primes(n):
"""Much more efficient prime generation, the Sieve of Eratosthenes"""
D = {}
q = 2 # The running integer that's checked for primeness
while q <= n:
if q not in D:
# q is a new prime.
# Yield it and mark its first multiple that isn't
# already marked in previous iterations
#
yield q
D[q * q] = [q]
else:
# q is composite. D[q] is the list of primes that
# divide it. Since we've reached q, we no longer
# need it in the map, but we'll mark the next
# multiples of its witnesses to prepare for larger
# numbers
for p in D[q]:
D.setdefault(p + q, []).append(p)
del D[q]
q += 1
n = int(input())
n_prime_sum = sum(gen_primes(n))
print(n_prime_sum)
# n = 10
output:
17
most of the code for the function gen_prime comes from here

Well, in my imagination this approach being optimal would
only divide with (already) known primes (and not every number)
up to the square root of the given number
import math
primes=[2]
def isprime(n): # NB! this is fragile,
s=int(math.sqrt(n)) # relies on `primes` being
for p in primes: # already fully grown
if n%p==0: # up to the sqrt(n)
return False
if p>s:
return True
maxn=19
for i in range(3,maxn+1):
if isprime(i):
primes.append(i)
print(primes)
print(sum(primes))
Then comes the uglification make it lambda part
isprime=lambda n:all(n%p!=0 for p in primes)
works, but it misses the sqrt magic, then
isprime=lambda n:all(n%p!=0 for p in (p for p in primes if p<=int(math.sqrt(n))))
which calculates int(math.sqrt(n)) for all known primes, but that could be a one-time parameter instead, either for a filter() or for an innner lambda (this latter one is shown here):
isprime=lambda n:all(n%p!=0 for p in (lambda s:(p for p in primes if p<=s))(int(math.sqrt(n))))
I still do not like the fact that it compares all primes to s, stopping in the middle may be more efficient, getting a slice with index(next(...)) can do that:
isprime=lambda n:all(n%p!=0 for p in primes[:(lambda s:primes.index(next(p for p in primes if p>s)))(int(math.sqrt(n)))])
just it remains ugly that next() and index() traverse a part of the list twice.
Then comes the outer loop, I would use reduce() for that from functools, as the accumulator of the reduction could be the actual list of primes, and then it would not be a separate variable.
Step 0 would be making it in a minimalist way, still with the variable primes lying around, but using the terrible trick with tuples, (do,some,things,result)[3] will do the things, and evaluate to the result:
primes=[2]
isprime=lambda n:all(n%p!=0 for p in primes[:(lambda s:primes.index(next(p for p in primes if p>s)))(int(math.sqrt(n)))])
maxn=19
ps=functools.reduce(lambda primes,n:(primes.append(n) if isprime(n) else None,primes)[1],range(3,maxn+1),primes)
print(ps)
print(primes)
print(sum(primes)) # ps and primes are the same list actually
and then finalize the monster:
import math
import functools
plist=lambda maxn:functools.reduce(lambda primes,n:(primes.append(n) if (lambda n:all(n%p!=0 for p in primes[:(lambda s:primes.index(next(p for p in primes if p>s)))(int(math.sqrt(n)))]))(n) else None,primes)[1],range(3,maxn+1),[2])
primes=plist(19)
print(primes)
print(sum(primes))
Test: https://ideone.com/0y7dN9
Output:
[2, 3, 5, 7, 11, 13, 17, 19]
77
The takeaway message would be: lambdas can be useful, but actually you do not always have to use them.

A slightly cleaner version:
n = int(input())
nums = range(2, n + 1)
for i in range(2, n + 1):
nums = list(filter(lambda x: x == i or x % i, nums))
print(sum(nums))

You can also write it like this with list comprehension:
from math import sqrt, floor
sum(( p
for p in range(2, n+1)
if all( p%q != 0 for q in range(2, floor(sqrt(p))+1) ) ))
You don't need to check all the numbers, just the ones until the square root of the own number.
Example: You can find out that 10 = 2 * 5 is non a prime by checking 10 % 2 == 0 or 10 % 5 == 0. With the square root limit, you'd only check until 3, but that's fine since you'd already have seen the 2, and defined 10 as not prime.
If this application is for you to explore, you might want to check the sieve of Eratosthenes algorithm to find the prime numbers, which is considered one of the most efficient ways to find small primes.
However, if you just need to find the primes and sum them, you can always use a library like gmpy2. Check this answer to know more.

Your solution is almost correct. But you need to use all inside the lambda function, because you want all the n%y != 0 statements to be true:
sum(list(filter((lambda n: all(n%y != 0 for y in range(2,n))), range(2,n+1))))
As pointed out in the comments, you could improve the efficiency of your code by checking only the divisors which are not greater than the square root of the number:
import math
sum(list(filter((lambda n: all(n%y != 0 for y in range(2,int(math.sqrt(n))+1))), range(2,n+1))))
Explanation
n%y != 0 for y in range(2,n) is a generator, not a boolean value!
all(n%y != 0 for y in range(2,n)) is a boolean value corresponding to n%2 != 0 and n%3 != 0 and ... and n%(n-1) != 0

After reading all the answers and trying/testing myself, I have redesigned the answer, which you can modify as per your need:
# get the user input
n = int(input())
from functools import reduce
# create a list with all the primes within the input number range
n_prime = range(2, n + 1)
for i in range(2, n + 1):
n_prime = list(filter(lambda x: x == i or x % i, n_prime))
# print the list of primes obtained from above
print(n_prime)
# let's add all these numbers in the above list and print the summed value
sum_n_prime = reduce(lambda x, y : x + y, n_prime)
print(sum_n_prime)

Related

finding the smallest prime factors of a number using python [duplicate]

Two part question:
Trying to determine the largest prime factor of 600851475143, I found this program online that seems to work. The problem is, I'm having a hard time figuring out how it works exactly, though I understand the basics of what the program is doing. Also, I'd like if you could shed some light on any method you may know of finding prime factors, perhaps without testing every number, and how your method works.
Here's the code that I found online for prime factorization [NOTE: This code is incorrect. See Stefan's answer below for better code.]:
n = 600851475143
i = 2
while i * i < n:
while n % i == 0:
n = n / i
i = i + 1
print(n)
#takes about ~0.01secs
Why is that code so much faster than this code, which is just to test the speed and has no real purpose other than that?
i = 1
while i < 100:
i += 1
#takes about ~3secs
This question was the first link that popped up when I googled "python prime factorization".
As pointed out by #quangpn88, this algorithm is wrong (!) for perfect squares such as n = 4, 9, 16, ... However, #quangpn88's fix does not work either, since it will yield incorrect results if the largest prime factor occurs 3 or more times, e.g., n = 2*2*2 = 8 or n = 2*3*3*3 = 54.
I believe a correct, brute-force algorithm in Python is:
def largest_prime_factor(n):
i = 2
while i * i <= n:
if n % i:
i += 1
else:
n //= i
return n
Don't use this in performance code, but it's OK for quick tests with moderately large numbers:
In [1]: %timeit largest_prime_factor(600851475143)
1000 loops, best of 3: 388 µs per loop
If the complete prime factorization is sought, this is the brute-force algorithm:
def prime_factors(n):
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors
Ok. So you said you understand the basics, but you're not sure EXACTLY how it works. First of all, this is a great answer to the Project Euler question it stems from. I've done a lot of research into this problem and this is by far the simplest response.
For the purpose of explanation, I'll let n = 20. To run the real Project Euler problem, let n = 600851475143.
n = 20
i = 2
while i * i < n:
while n%i == 0:
n = n / i
i = i + 1
print (n)
This explanation uses two while loops. The biggest thing to remember about while loops is that they run until they are no longer true.
The outer loop states that while i * i isn't greater than n (because the largest prime factor will never be larger than the square root of n), add 1 to i after the inner loop runs.
The inner loop states that while i divides evenly into n, replace n with n divided by i. This loop runs continuously until it is no longer true. For n=20 and i=2, n is replaced by 10, then again by 5. Because 2 doesn't evenly divide into 5, the loop stops with n=5 and the outer loop finishes, producing i+1=3.
Finally, because 3 squared is greater than 5, the outer loop is no longer true and prints the result of n.
Thanks for posting this. I looked at the code forever before realizing how exactly it worked. Hopefully, this is what you're looking for in a response. If not, let me know and I can explain further.
It looks like people are doing the Project Euler thing where you code the solution yourself. For everyone else who wants to get work done, there's the primefac module which does very large numbers very quickly:
#!python
import primefac
import sys
n = int( sys.argv[1] )
factors = list( primefac.primefac(n) )
print '\n'.join(map(str, factors))
For prime number generation I always use the Sieve of Eratosthenes:
def primes(n):
if n<=2:
return []
sieve=[True]*(n+1)
for x in range(3,int(n**0.5)+1,2):
for y in range(3,(n//x)+1,2):
sieve[(x*y)]=False
return [2]+[i for i in range(3,n,2) if sieve[i]]
In [42]: %timeit primes(10**5)
10 loops, best of 3: 60.4 ms per loop
In [43]: %timeit primes(10**6)
1 loops, best of 3: 1.01 s per loop
You can use Miller-Rabin primality test to check whether a number is prime or not. You can find its Python implementations here.
Always use timeit module to time your code, the 2nd one takes just 15us:
def func():
n = 600851475143
i = 2
while i * i < n:
while n % i == 0:
n = n / i
i = i + 1
In [19]: %timeit func()
1000 loops, best of 3: 1.35 ms per loop
def func():
i=1
while i<100:i+=1
....:
In [21]: %timeit func()
10000 loops, best of 3: 15.3 us per loop
If you are looking for pre-written code that is well maintained, use the function sympy.ntheory.primefactors from SymPy.
It returns a sorted list of prime factors of n.
>>> from sympy.ntheory import primefactors
>>> primefactors(6008)
[2, 751]
Pass the list to max() to get the biggest prime factor: max(primefactors(6008))
In case you want the prime factors of n and also the multiplicities of each of them, use sympy.ntheory.factorint.
Given a positive integer n, factorint(n) returns a dict containing the
prime factors of n as keys and their respective multiplicities as
values.
>>> from sympy.ntheory import factorint
>>> factorint(6008) # 6008 = (2**3) * (751**1)
{2: 3, 751: 1}
The code is tested against Python 3.6.9 and SymPy 1.1.1.
"""
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
"""
from sympy import primefactors
print(primefactors(600851475143)[-1])
def find_prime_facs(n):
list_of_factors=[]
i=2
while n>1:
if n%i==0:
list_of_factors.append(i)
n=n/i
i=i-1
i+=1
return list_of_factors
Isn't largest prime factor of 27 is 3 ??
The above code might be fastest,but it fails on 27 right ?
27 = 3*3*3
The above code returns 1
As far as I know.....1 is neither prime nor composite
I think, this is the better code
def prime_factors(n):
factors=[]
d=2
while(d*d<=n):
while(n>1):
while n%d==0:
factors.append(d)
n=n/d
d+=1
return factors[-1]
Another way of doing this:
import sys
n = int(sys.argv[1])
result = []
for i in xrange(2,n):
while n % i == 0:
#print i,"|",n
n = n/i
result.append(i)
if n == 1:
break
if n > 1: result.append(n)
print result
sample output :
python test.py 68
[2, 2, 17]
The code is wrong with 100. It should check case i * i = n:
I think it should be:
while i * i <= n:
if i * i = n:
n = i
break
while n%i == 0:
n = n / i
i = i + 1
print (n)
My code:
# METHOD: PRIME FACTORS
def prime_factors(n):
'''PRIME FACTORS: generates a list of prime factors for the number given
RETURNS: number(being factored), list(prime factors), count(how many loops to find factors, for optimization)
'''
num = n #number at the end
count = 0 #optimization (to count iterations)
index = 0 #index (to test)
t = [2, 3, 5, 7] #list (to test)
f = [] #prime factors list
while t[index] ** 2 <= n:
count += 1 #increment (how many loops to find factors)
if len(t) == (index + 1):
t.append(t[-2] + 6) #extend test list (as much as needed) [2, 3, 5, 7, 11, 13...]
if n % t[index]: #if 0 does else (otherwise increments, or try next t[index])
index += 1 #increment index
else:
n = n // t[index] #drop max number we are testing... (this should drastically shorten the loops)
f.append(t[index]) #append factor to list
if n > 1:
f.append(n) #add last factor...
return num, f, f'count optimization: {count}'
Which I compared to the code with the most votes, which was very fast
def prime_factors2(n):
i = 2
factors = []
count = 0 #added to test optimization
while i * i <= n:
count += 1 #added to test optimization
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors, f'count: {count}' #print with (count added)
TESTING, (note, I added a COUNT in each loop to test the optimization)
# >>> prime_factors2(600851475143)
# ([71, 839, 1471, 6857], 'count: 1472')
# >>> prime_factors(600851475143)
# (600851475143, [71, 839, 1471, 6857], 'count optimization: 494')
I figure this code could be modified easily to get the (largest factor) or whatever else is needed. I'm open to any questions, my goal is to improve this much more as well for larger primes and factors.
In case you want to use numpy here's a way to create an array of all primes not greater than n:
[ i for i in np.arange(2,n+1) if 0 not in np.array([i] * (i-2) ) % np.arange(2,i)]
Check this out, it might help you a bit in your understanding.
#program to find the prime factors of a given number
import sympy as smp
try:
number = int(input('Enter a number : '))
except(ValueError) :
print('Please enter an integer !')
num = number
prime_factors = []
if smp.isprime(number) :
prime_factors.append(number)
else :
for i in range(2, int(number/2) + 1) :
"""while figuring out prime factors of a given number, n
keep in mind that a number can itself be prime or if not,
then all its prime factors will be less than or equal to its int(n/2 + 1)"""
if smp.isprime(i) and number % i == 0 :
while(number % i == 0) :
prime_factors.append(i)
number = number / i
print('prime factors of ' + str(num) + ' - ')
for i in prime_factors :
print(i, end = ' ')
This is my python code:
it has a fast check for primes and checks from highest to lowest the prime factors.
You have to stop if no new numbers came out. (Any ideas on this?)
import math
def is_prime_v3(n):
""" Return 'true' if n is a prime number, 'False' otherwise """
if n == 1:
return False
if n > 2 and n % 2 == 0:
return False
max_divisor = math.floor(math.sqrt(n))
for d in range(3, 1 + max_divisor, 2):
if n % d == 0:
return False
return True
number = <Number>
for i in range(1,math.floor(number/2)):
if is_prime_v3(i):
if number % i == 0:
print("Found: {} with factor {}".format(number / i, i))
The answer for the initial question arrives in a fraction of a second.
Below are two ways to generate prime factors of given number efficiently:
from math import sqrt
def prime_factors(num):
'''
This function collectes all prime factors of given number and prints them.
'''
prime_factors_list = []
while num % 2 == 0:
prime_factors_list.append(2)
num /= 2
for i in range(3, int(sqrt(num))+1, 2):
if num % i == 0:
prime_factors_list.append(i)
num /= i
if num > 2:
prime_factors_list.append(int(num))
print(sorted(prime_factors_list))
val = int(input('Enter number:'))
prime_factors(val)
def prime_factors_generator(num):
'''
This function creates a generator for prime factors of given number and generates the factors until user asks for them.
It handles StopIteration if generator exhausted.
'''
while num % 2 == 0:
yield 2
num /= 2
for i in range(3, int(sqrt(num))+1, 2):
if num % i == 0:
yield i
num /= i
if num > 2:
yield int(num)
val = int(input('Enter number:'))
prime_gen = prime_factors_generator(val)
while True:
try:
print(next(prime_gen))
except StopIteration:
print('Generator exhausted...')
break
else:
flag = input('Do you want next prime factor ? "y" or "n":')
if flag == 'y':
continue
elif flag == 'n':
break
else:
print('Please try again and enter a correct choice i.e. either y or n')
Since nobody has been trying to hack this with old nice reduce method, I'm going to take this occupation. This method isn't flexible for problems like this because it performs loop of repeated actions over array of arguments and there's no way how to interrupt this loop by default. The door open after we have implemented our own interupted reduce for interrupted loops like this:
from functools import reduce
def inner_func(func, cond, x, y):
res = func(x, y)
if not cond(res):
raise StopIteration(x, y)
return res
def ireducewhile(func, cond, iterable):
# generates intermediary results of args while reducing
iterable = iter(iterable)
x = next(iterable)
yield x
for y in iterable:
try:
x = inner_func(func, cond, x, y)
except StopIteration:
break
yield x
After that we are able to use some func that is the same as an input of standard Python reduce method. Let this func be defined in a following way:
def division(c):
num, start = c
for i in range(start, int(num**0.5)+1):
if num % i == 0:
return (num//i, i)
return None
Assuming we want to factor a number 600851475143, an expected output of this function after repeated use of this function should be this:
(600851475143, 2) -> (8462696833 -> 71), (10086647 -> 839), (6857, 1471) -> None
The first item of tuple is a number that division method takes and tries to divide by the smallest divisor starting from second item and finishing with square root of this number. If no divisor exists, None is returned.
Now we need to start with iterator defined like this:
def gener(prime):
# returns and infinite generator (600851475143, 2), 0, 0, 0...
yield (prime, 2)
while True:
yield 0
Finally, the result of looping is:
result = list(ireducewhile(lambda x,y: div(x), lambda x: x is not None, iterable=gen(600851475143)))
#result: [(600851475143, 2), (8462696833, 71), (10086647, 839), (6857, 1471)]
And outputting prime divisors can be captured by:
if len(result) == 1: output = result[0][0]
else: output = list(map(lambda x: x[1], result[1:]))+[result[-1][0]]
#output: [2, 71, 839, 1471]
Note:
In order to make it more efficient, you might like to use pregenerated primes that lies in specific range instead of all the values of this range.
You shouldn't loop till the square root of the number! It may be right some times, but not always!
Largest prime factor of 10 is 5, which is bigger than the sqrt(10) (3.16, aprox).
Largest prime factor of 33 is 11, which is bigger than the sqrt(33) (5.5,74, aprox).
You're confusing this with the propriety which states that, if a number has a prime factor bigger than its sqrt, it has to have at least another one other prime factor smaller than its sqrt. So, with you want to test if a number is prime, you only need to test till its sqrt.
def prime(n):
for i in range(2,n):
if n%i==0:
return False
return True
def primefactors():
m=int(input('enter the number:'))
for i in range(2,m):
if (prime(i)):
if m%i==0:
print(i)
return print('end of it')
primefactors()
Another way that skips even numbers after 2 is handled:
def prime_factors(n):
factors = []
d = 2
step = 1
while d*d <= n:
while n>1:
while n%d == 0:
factors.append(d)
n = n/d
d += step
step = 2
return factors

how can i check if number entered is prime and if not find its prime factors in python? [duplicate]

Two part question:
Trying to determine the largest prime factor of 600851475143, I found this program online that seems to work. The problem is, I'm having a hard time figuring out how it works exactly, though I understand the basics of what the program is doing. Also, I'd like if you could shed some light on any method you may know of finding prime factors, perhaps without testing every number, and how your method works.
Here's the code that I found online for prime factorization [NOTE: This code is incorrect. See Stefan's answer below for better code.]:
n = 600851475143
i = 2
while i * i < n:
while n % i == 0:
n = n / i
i = i + 1
print(n)
#takes about ~0.01secs
Why is that code so much faster than this code, which is just to test the speed and has no real purpose other than that?
i = 1
while i < 100:
i += 1
#takes about ~3secs
This question was the first link that popped up when I googled "python prime factorization".
As pointed out by #quangpn88, this algorithm is wrong (!) for perfect squares such as n = 4, 9, 16, ... However, #quangpn88's fix does not work either, since it will yield incorrect results if the largest prime factor occurs 3 or more times, e.g., n = 2*2*2 = 8 or n = 2*3*3*3 = 54.
I believe a correct, brute-force algorithm in Python is:
def largest_prime_factor(n):
i = 2
while i * i <= n:
if n % i:
i += 1
else:
n //= i
return n
Don't use this in performance code, but it's OK for quick tests with moderately large numbers:
In [1]: %timeit largest_prime_factor(600851475143)
1000 loops, best of 3: 388 µs per loop
If the complete prime factorization is sought, this is the brute-force algorithm:
def prime_factors(n):
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors
Ok. So you said you understand the basics, but you're not sure EXACTLY how it works. First of all, this is a great answer to the Project Euler question it stems from. I've done a lot of research into this problem and this is by far the simplest response.
For the purpose of explanation, I'll let n = 20. To run the real Project Euler problem, let n = 600851475143.
n = 20
i = 2
while i * i < n:
while n%i == 0:
n = n / i
i = i + 1
print (n)
This explanation uses two while loops. The biggest thing to remember about while loops is that they run until they are no longer true.
The outer loop states that while i * i isn't greater than n (because the largest prime factor will never be larger than the square root of n), add 1 to i after the inner loop runs.
The inner loop states that while i divides evenly into n, replace n with n divided by i. This loop runs continuously until it is no longer true. For n=20 and i=2, n is replaced by 10, then again by 5. Because 2 doesn't evenly divide into 5, the loop stops with n=5 and the outer loop finishes, producing i+1=3.
Finally, because 3 squared is greater than 5, the outer loop is no longer true and prints the result of n.
Thanks for posting this. I looked at the code forever before realizing how exactly it worked. Hopefully, this is what you're looking for in a response. If not, let me know and I can explain further.
It looks like people are doing the Project Euler thing where you code the solution yourself. For everyone else who wants to get work done, there's the primefac module which does very large numbers very quickly:
#!python
import primefac
import sys
n = int( sys.argv[1] )
factors = list( primefac.primefac(n) )
print '\n'.join(map(str, factors))
For prime number generation I always use the Sieve of Eratosthenes:
def primes(n):
if n<=2:
return []
sieve=[True]*(n+1)
for x in range(3,int(n**0.5)+1,2):
for y in range(3,(n//x)+1,2):
sieve[(x*y)]=False
return [2]+[i for i in range(3,n,2) if sieve[i]]
In [42]: %timeit primes(10**5)
10 loops, best of 3: 60.4 ms per loop
In [43]: %timeit primes(10**6)
1 loops, best of 3: 1.01 s per loop
You can use Miller-Rabin primality test to check whether a number is prime or not. You can find its Python implementations here.
Always use timeit module to time your code, the 2nd one takes just 15us:
def func():
n = 600851475143
i = 2
while i * i < n:
while n % i == 0:
n = n / i
i = i + 1
In [19]: %timeit func()
1000 loops, best of 3: 1.35 ms per loop
def func():
i=1
while i<100:i+=1
....:
In [21]: %timeit func()
10000 loops, best of 3: 15.3 us per loop
If you are looking for pre-written code that is well maintained, use the function sympy.ntheory.primefactors from SymPy.
It returns a sorted list of prime factors of n.
>>> from sympy.ntheory import primefactors
>>> primefactors(6008)
[2, 751]
Pass the list to max() to get the biggest prime factor: max(primefactors(6008))
In case you want the prime factors of n and also the multiplicities of each of them, use sympy.ntheory.factorint.
Given a positive integer n, factorint(n) returns a dict containing the
prime factors of n as keys and their respective multiplicities as
values.
>>> from sympy.ntheory import factorint
>>> factorint(6008) # 6008 = (2**3) * (751**1)
{2: 3, 751: 1}
The code is tested against Python 3.6.9 and SymPy 1.1.1.
"""
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
"""
from sympy import primefactors
print(primefactors(600851475143)[-1])
def find_prime_facs(n):
list_of_factors=[]
i=2
while n>1:
if n%i==0:
list_of_factors.append(i)
n=n/i
i=i-1
i+=1
return list_of_factors
Isn't largest prime factor of 27 is 3 ??
The above code might be fastest,but it fails on 27 right ?
27 = 3*3*3
The above code returns 1
As far as I know.....1 is neither prime nor composite
I think, this is the better code
def prime_factors(n):
factors=[]
d=2
while(d*d<=n):
while(n>1):
while n%d==0:
factors.append(d)
n=n/d
d+=1
return factors[-1]
Another way of doing this:
import sys
n = int(sys.argv[1])
result = []
for i in xrange(2,n):
while n % i == 0:
#print i,"|",n
n = n/i
result.append(i)
if n == 1:
break
if n > 1: result.append(n)
print result
sample output :
python test.py 68
[2, 2, 17]
The code is wrong with 100. It should check case i * i = n:
I think it should be:
while i * i <= n:
if i * i = n:
n = i
break
while n%i == 0:
n = n / i
i = i + 1
print (n)
My code:
# METHOD: PRIME FACTORS
def prime_factors(n):
'''PRIME FACTORS: generates a list of prime factors for the number given
RETURNS: number(being factored), list(prime factors), count(how many loops to find factors, for optimization)
'''
num = n #number at the end
count = 0 #optimization (to count iterations)
index = 0 #index (to test)
t = [2, 3, 5, 7] #list (to test)
f = [] #prime factors list
while t[index] ** 2 <= n:
count += 1 #increment (how many loops to find factors)
if len(t) == (index + 1):
t.append(t[-2] + 6) #extend test list (as much as needed) [2, 3, 5, 7, 11, 13...]
if n % t[index]: #if 0 does else (otherwise increments, or try next t[index])
index += 1 #increment index
else:
n = n // t[index] #drop max number we are testing... (this should drastically shorten the loops)
f.append(t[index]) #append factor to list
if n > 1:
f.append(n) #add last factor...
return num, f, f'count optimization: {count}'
Which I compared to the code with the most votes, which was very fast
def prime_factors2(n):
i = 2
factors = []
count = 0 #added to test optimization
while i * i <= n:
count += 1 #added to test optimization
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors, f'count: {count}' #print with (count added)
TESTING, (note, I added a COUNT in each loop to test the optimization)
# >>> prime_factors2(600851475143)
# ([71, 839, 1471, 6857], 'count: 1472')
# >>> prime_factors(600851475143)
# (600851475143, [71, 839, 1471, 6857], 'count optimization: 494')
I figure this code could be modified easily to get the (largest factor) or whatever else is needed. I'm open to any questions, my goal is to improve this much more as well for larger primes and factors.
In case you want to use numpy here's a way to create an array of all primes not greater than n:
[ i for i in np.arange(2,n+1) if 0 not in np.array([i] * (i-2) ) % np.arange(2,i)]
Check this out, it might help you a bit in your understanding.
#program to find the prime factors of a given number
import sympy as smp
try:
number = int(input('Enter a number : '))
except(ValueError) :
print('Please enter an integer !')
num = number
prime_factors = []
if smp.isprime(number) :
prime_factors.append(number)
else :
for i in range(2, int(number/2) + 1) :
"""while figuring out prime factors of a given number, n
keep in mind that a number can itself be prime or if not,
then all its prime factors will be less than or equal to its int(n/2 + 1)"""
if smp.isprime(i) and number % i == 0 :
while(number % i == 0) :
prime_factors.append(i)
number = number / i
print('prime factors of ' + str(num) + ' - ')
for i in prime_factors :
print(i, end = ' ')
This is my python code:
it has a fast check for primes and checks from highest to lowest the prime factors.
You have to stop if no new numbers came out. (Any ideas on this?)
import math
def is_prime_v3(n):
""" Return 'true' if n is a prime number, 'False' otherwise """
if n == 1:
return False
if n > 2 and n % 2 == 0:
return False
max_divisor = math.floor(math.sqrt(n))
for d in range(3, 1 + max_divisor, 2):
if n % d == 0:
return False
return True
number = <Number>
for i in range(1,math.floor(number/2)):
if is_prime_v3(i):
if number % i == 0:
print("Found: {} with factor {}".format(number / i, i))
The answer for the initial question arrives in a fraction of a second.
Below are two ways to generate prime factors of given number efficiently:
from math import sqrt
def prime_factors(num):
'''
This function collectes all prime factors of given number and prints them.
'''
prime_factors_list = []
while num % 2 == 0:
prime_factors_list.append(2)
num /= 2
for i in range(3, int(sqrt(num))+1, 2):
if num % i == 0:
prime_factors_list.append(i)
num /= i
if num > 2:
prime_factors_list.append(int(num))
print(sorted(prime_factors_list))
val = int(input('Enter number:'))
prime_factors(val)
def prime_factors_generator(num):
'''
This function creates a generator for prime factors of given number and generates the factors until user asks for them.
It handles StopIteration if generator exhausted.
'''
while num % 2 == 0:
yield 2
num /= 2
for i in range(3, int(sqrt(num))+1, 2):
if num % i == 0:
yield i
num /= i
if num > 2:
yield int(num)
val = int(input('Enter number:'))
prime_gen = prime_factors_generator(val)
while True:
try:
print(next(prime_gen))
except StopIteration:
print('Generator exhausted...')
break
else:
flag = input('Do you want next prime factor ? "y" or "n":')
if flag == 'y':
continue
elif flag == 'n':
break
else:
print('Please try again and enter a correct choice i.e. either y or n')
Since nobody has been trying to hack this with old nice reduce method, I'm going to take this occupation. This method isn't flexible for problems like this because it performs loop of repeated actions over array of arguments and there's no way how to interrupt this loop by default. The door open after we have implemented our own interupted reduce for interrupted loops like this:
from functools import reduce
def inner_func(func, cond, x, y):
res = func(x, y)
if not cond(res):
raise StopIteration(x, y)
return res
def ireducewhile(func, cond, iterable):
# generates intermediary results of args while reducing
iterable = iter(iterable)
x = next(iterable)
yield x
for y in iterable:
try:
x = inner_func(func, cond, x, y)
except StopIteration:
break
yield x
After that we are able to use some func that is the same as an input of standard Python reduce method. Let this func be defined in a following way:
def division(c):
num, start = c
for i in range(start, int(num**0.5)+1):
if num % i == 0:
return (num//i, i)
return None
Assuming we want to factor a number 600851475143, an expected output of this function after repeated use of this function should be this:
(600851475143, 2) -> (8462696833 -> 71), (10086647 -> 839), (6857, 1471) -> None
The first item of tuple is a number that division method takes and tries to divide by the smallest divisor starting from second item and finishing with square root of this number. If no divisor exists, None is returned.
Now we need to start with iterator defined like this:
def gener(prime):
# returns and infinite generator (600851475143, 2), 0, 0, 0...
yield (prime, 2)
while True:
yield 0
Finally, the result of looping is:
result = list(ireducewhile(lambda x,y: div(x), lambda x: x is not None, iterable=gen(600851475143)))
#result: [(600851475143, 2), (8462696833, 71), (10086647, 839), (6857, 1471)]
And outputting prime divisors can be captured by:
if len(result) == 1: output = result[0][0]
else: output = list(map(lambda x: x[1], result[1:]))+[result[-1][0]]
#output: [2, 71, 839, 1471]
Note:
In order to make it more efficient, you might like to use pregenerated primes that lies in specific range instead of all the values of this range.
You shouldn't loop till the square root of the number! It may be right some times, but not always!
Largest prime factor of 10 is 5, which is bigger than the sqrt(10) (3.16, aprox).
Largest prime factor of 33 is 11, which is bigger than the sqrt(33) (5.5,74, aprox).
You're confusing this with the propriety which states that, if a number has a prime factor bigger than its sqrt, it has to have at least another one other prime factor smaller than its sqrt. So, with you want to test if a number is prime, you only need to test till its sqrt.
def prime(n):
for i in range(2,n):
if n%i==0:
return False
return True
def primefactors():
m=int(input('enter the number:'))
for i in range(2,m):
if (prime(i)):
if m%i==0:
print(i)
return print('end of it')
primefactors()
Another way that skips even numbers after 2 is handled:
def prime_factors(n):
factors = []
d = 2
step = 1
while d*d <= n:
while n>1:
while n%d == 0:
factors.append(d)
n = n/d
d += step
step = 2
return factors

a function that returns number of sums of a certain number.py

I need to write a function that returns the number of ways of reaching a certain number by adding numbers of a list. For example:
print(p([3,5,8,9,11,12,20], 20))
should return:5
The code I wrote is:
def pow(lis):
power = [[]]
for lst in lis:
for po in power:
power = power + [list(po)+[lst]]
return power
def p(lst, n):
counter1 = 0
counter2 = 0
power_list = pow(lst)
print(power_list)
for p in power_list:
for j in p:
counter1 += j
if counter1 == n:
counter2 += 1
counter1 == 0
else:
counter1 == 0
return counter2
pow() is a function that returns all of the subsets of the list and p should return the number of ways to reach the number n. I keep getting an output of zero and I don't understand why. I would love to hear your input for this.
Thanks in advance.
There are two typos in your code: counter1 == 0 is a boolean, it does not reset anything.
This version should work:
def p(lst, n):
counter2 = 0
power_list = pow(lst)
for p in power_list:
counter1 = 0 #reset the counter for every new subset
for j in p:
counter1 += j
if counter1 == n:
counter2 += 1
return counter2
As tobias_k and Faibbus mentioned, you have a typo: counter1 == 0 instead of counter1 = 0, in two places. The counter1 == 0 produces a boolean object of True or False, but since you don't assign the result of that expression the result gets thrown away. It doesn't raise a SyntaxError, since an expression that isn't assigned is legal Python.
As John Coleman and B. M. mention it's not efficient to create the full powerset and then test each subset to see if it has the correct sum. This approach is ok if the input sequence is small, but it's very slow for even moderately sized sequences, and if you actually create a list containing the subsets rather than using a generator and testing the subsets as they're yielded you'll soon run out of RAM.
B. M.'s first solution is quite efficient since it doesn't produce subsets that are larger than the target sum. (I'm not sure what B. M. is doing with that dict-based solution...).
But we can enhance that approach by sorting the list of sums. That way we can break out of the inner for loop as soon as we detect a sum that's too high. True, we need to sort the sums list on each iteration of the outer for loop, but fortunately Python's TimSort is very efficient, and it's optimized to handle sorting a list that contains sorted sub-sequences, so it's ideal for this application.
def subset_sums(seq, goal):
sums = [0]
for x in seq:
subgoal = goal - x
temp = []
for y in sums:
if y > subgoal:
break
temp.append(y + x)
sums.extend(temp)
sums.sort()
return sum(1 for y in sums if y == goal)
# test
lst = [3, 5, 8, 9, 11, 12, 20]
total = 20
print(subset_sums(lst, total))
lst = range(1, 41)
total = 70
print(subset_sums(lst, total))
output
5
28188
With lst = range(1, 41) and total = 70, this code is around 3 times faster than the B.M. lists version.
A one pass solution with one counter, which minimize additions.
def one_pass_sum(L,target):
sums = [0]
cnt = 0
for x in L:
for y in sums[:]:
z = x+y
if z <= target :
sums.append(z)
if z == target : cnt += 1
return cnt
This way if n=len(L), you make less than 2^n additions against n/2 * 2^n by calculating all the sums.
EDIT :
A more efficient solution, that just counts ways. The idea is to see that if there is k ways to make z-x, there is k more way to do z when x arise.
def enhanced_sum_with_lists(L,target):
cnt=[1]+[0]*target # 1 way to make 0
for x in L:
for z in range(target,x-1,-1): # [target, ..., x+1, x]
cnt[z] += cnt[z-x]
return cnt[target]
But order is important : z must be considered descendant here, to have the good counts (Thanks to PM 2Ring).
This can be very fast (n*target additions) for big lists.
For example :
>>> enhanced_sum_with_lists(range(1,100),2500)
875274644371694133420180815
is obtained in 61 ms. It will take the age of the universe to compute it by the first method.
from itertools import chain, combinations
def powerset_generator(i):
for subset in chain.from_iterable(combinations(i, r) for r in range(len(i)+1)):
yield set(subset)
def count_sum(s, cnt):
return sum(1 for i in powerset_generator(s) if sum(k for k in i) == cnt)
print(count_sum(set([3,5,8,9,11,12,20]), 20))

How would I make a simple recursive function outputting the number of divisors a number has?

In an online class, I received this problem.
Write a function numDivisors( N ) that returns the number of integers from 1 to N (inclusive) that divide N evenly. For example, numDivisors(42) would return 8, since 1, 2, 3, 6, 7, 14, 21, and 42 are divisors of 42. (Python 2.7)
Although I have solved it with a loop, I'm wondering how I would go about this with recursion.
The basic functionality of this function with a loop would be:
def numDivisors( N ):
""" returns # of integers that divide evenly into N """
divisors = 1 # the factor 1
if N != 1:
divisors += 1 # the factor N
for i in range(2,int(N)): # loops through possible divisors
if N % i == 0: # factor found
divisors += 1
return divisors
How could I implement it recursively using the bare basics (declaration, conditionals, looping, etc. up to list comprehensions)?
Thanks!
If we have to be recursive:
>>> def ndiv(N, i=1):
... return 1 if N==i else ((N % i == 0) + ndiv(N, i+1))
...
Let's test it. As per the question:
For example, numDivisors(42) would return 8
>>> ndiv(42)
8
Thus, this produces the desired output.
If we can do away with recursion, here is how to do it just using list comprehension:
>>> def div(N):
... return sum(1 for i in range(1, N+1) if N % i == 0)
...
>>> div(42)
8
how about
def find_divisors(N,i=1):
if i >= N**0.5+1: return set([])
if N%i == 0: return set([i,N//i]).union(find_divisors(N,i+1))
return find_divisors(N,i+1)
recursion is a pretty lousy solution to this problem ... do you really need to find all the divisors? or are you looking for a special one?

Python prime number code running slow

I am trying to solve the problem mentioned here: https://www.spoj.pl/problems/PRIME1/
I am also giving the description below.
Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate all prime numbers between two given numbers!
Input
The input begins with the number t of test cases in a single line (t<=10). In each of the next t lines there are two numbers m and n (1 <= m <= n <= 1000000000, n-m<=100000) separated by a space.
Output
For every test case print all prime numbers p such that m <= p <= n, one number per line, test cases separated by an empty line.`
My code is as below. I am thinking remove method on list is very slow.
import sys
import math
num = int(sys.stdin.readline());
indices = []
maxrange = 2
while(num > 0):
a,b = sys.stdin.readline().split(" ");
a = int(a)
b = int(b)
if(a < 2):
a = 2
indices.append((a,b))
if(b > maxrange):
maxrange= b
num = num - 1
val = int(math.sqrt(maxrange)+1)
val2 = int(math.sqrt(val)+1)
checks = range(2,val2)
for i in range(2,val2):
for j in checks:
if(i!= j and j%i == 0):
checks.remove(j)
primes = range(2,val)
for i in checks:
for j in primes:
if(i != j and j%i == 0):
primes.remove(j)
primes2 = range(2,maxrange)
for i in primes:
for j in primes2:
if(j != i and j%i == 0):
primes2.remove(j)
for (a,b) in indices:
for p in primes2:
if(a<= p and b >= p):
print p
if(p > b):
break
print
I think python list remove is very slow. My code is correct but I am getting timelimit exceeded. can someone help me improve this code.
A primality testing function will perform best. There's pseudocode on the Miller-Rabin wikipedia page
Instead of removing the element that is not a prime, why not replace it with some sentinel value, perhaps -1 or None? Then when printing, just print the values that aren't sentinels.
Use a list of length (n-m), and then the index for number i is x[m+i].
remove() isn't slow in the grand scheme of things, it's just that the code calls it a LOT.
As dappawit suggests, rather than modifying the list, change the value in the list so you know that it isn't a valid number to use.
I also see that when you generate the set of prime numbers, you use range(2,maxrange) which is okay, but not efficient if the lower bound is much greater than 2. You'll be wasting computing time on generating primes that aren't even relevant to the problem space. If nothing else, keep track of minrange as well as maxrange.
A bug with your original code is that you use range(2,maxrange). That means maxrange is not in the list of numbers considered. Try 3 5 as input for a and b to see the bug.
range(2,maxrange+1) fixes the problem.
Another bug in the code is that you modify the original sequence:
From Python docs - for-statement
It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types, such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must iterate over a copy. The slice notation makes this particularly convenient:
My python skills are rudimentary, but this seems to work:
Old:
primes2 = range(2,maxrange)
for i in primes:
for j in primes2:
if(j != i and j%i == 0):
primes2.remove(j)
for (a,b) in indices:
for p in primes2:
if(a<= p and b >= p):
New:
primes2 = array.array('L', range(minrange,maxrange+1))
for i in primes:
for j in primes2:
if(j != i and j%i == 0):
primes2[j-minrange] = 0
for (a,b) in indices:
for p in primes2:
if (p != 0):
if(a<= p and b >= p):
You could also skip generating the set of prime numbers and just test the numbers directly, which would work if the sets of numbers you have to generate prime numbers are not overlapping (no work duplication).
enter link description here
Here's a deterministic variant of the Miller–Rabin primality test for small odd integers in Python:
from math import log
def isprime(n):
assert 1 < n < 4759123141 and n % 2 != 0, n
# (n-1) == 2**s * d
s = 0
d = n-1
while d & 1 == 0:
s += 1
d >>= 1
assert d % 2 != 0 and (n-1) == d*2**s
for a in [2, 7, 61]:
if not 2 <= a <= min(n-1, int(2*log(n)**2)):
break
if (pow(a, d, n) != 1 and
all(pow(a, d*2**r, n) != (n-1) for r in xrange(s))):
return False
return True
The code intent is to be an executable pseudo-code.

Categories