Resampling (boostrap) a data set of continious data for regression problem - python

For a regression problem, I have a training data set with :
- 3 variables with a gaussian distribution
- 20 variables with a uniform distribution.
All my variables are continious, between [0;1].
The problem is the test data, used to score my regression model has an uniform distribution for all the variables.
Actually, I have bad results at tail-end distribution, so I want to oversample my training set, in order to duplicate the rarest rows.
So my idea is to bootstrap (using sampling with replacement) on my training set in order to have a set of data with the same distribution as the test set.
In order to do that, my idea (don't know if it's a good one !) is to add 3 columns with intervals for my 3 variables and use this columns to stratify the resampling.
Example :
First, generating the data
from scipy.stats import truncnorm
def get_truncated_normal(mean=0.5, sd=0.15, min_value=0, max_value=1):
return truncnorm(
(min_value - mean) / sd, (max_value - mean) / sd, loc=mean, scale=sd)
generator = get_truncated_normal()
import numpy as np
from sklearn.preprocessing import MinMaxScaler
S1 = generator.rvs(1000)
S2 = generator.rvs(1000)
S3 = generator.rvs(1000)
u = np.random.uniform(0, 1, 1000)
Then check the distribution :
import seaborn as sns
sns.distplot(u);
sns.distplot(S2);
It's OK, so I'll add categories columns
import pandas as pd
df = pd.DataFrame({'S1':S1,'S2':S2,'S3':S3,'Unif':u})
BINS_NUMBER = 10
df['S1_range'] = pd.cut(df.S1,
bins=BINS_NUMBER,
precision=6,
right=True,
include_lowest=True)
df['S2_range'] = pd.cut(df.S2,
bins=BINS_NUMBER,
precision=6,
right=True,
include_lowest=True)
df['S3_range'] = pd.cut(df.S3,
bins=BINS_NUMBER,
precision=6,
right=True,
include_lowest=True)
a check
df.groupby('S1_range').size()
S1_range
(0.022025899999999998, 0.116709] 3
(0.116709, 0.210454] 15
(0.210454, 0.304199] 64
(0.304199, 0.397944] 152
(0.397944, 0.491689] 254
(0.491689, 0.585434] 217
(0.585434, 0.679179] 173
(0.679179, 0.772924] 86
(0.772924, 0.866669] 30
(0.866669, 0.960414] 6
dtype: int64
It's good for me.
So now I'll try to resample but it's not working as intended
from sklearn.utils import resample
df_resampled = resample(df,replace=True,n_samples=1000, stratify=df['S1_range'])
df_resampled.groupby('S1_range').size()
S1_range
(0.022025899999999998, 0.116709] 3
(0.116709, 0.210454] 15
(0.210454, 0.304199] 64
(0.304199, 0.397944] 152
(0.397944, 0.491689] 254
(0.491689, 0.585434] 217
(0.585434, 0.679179] 173
(0.679179, 0.772924] 86
(0.772924, 0.866669] 30
(0.866669, 0.960414] 6
dtype: int64
So it's not working, I get the same distribution in output as in input...
Can you help me ?
Perhaps it's not the good way to do this ?
Thanks !!

Rather than writing code from scratch to resample your continuous data, you should take advantage a library for resampling regression data.
Whereas the popular libraries (imbalanced-learn, etc), focus on classification (categorical) variables, there is a recent Python library (called resreg - RESampling for REGression) that allows you to resample your continuous data (resreg GitHub page)
Also, rather than bootstraping, you may want to generate synthetic data points at the tail ends of your normally distributed variables, as doing this will likely lead to much better results (see this paper). Similar to SMOTE for classification, which interpolates between features, you can use SMOTER (SMOTE for regression) in the resreg package to generate synthetic values in regression/continuous data.
Here is an example of how you would use resreg to achieve resampling with a few lines of code:
import numpy as np
import resreg
cl = np.percentile(y,10) # Oversample values less than the 10th percentile
ch = np.percentile(y,90) # Oversample values less than the 10th percentile
# Assign relevance scores to indicate which samples in your dataset are
# to be resampled. Values below cl and above ch are assigned a relevance
# value above 0.5, other values are assigned a relevance value above 0.5
relevance = resreg.sigmoid_relevance(X, y, cl=cl, ch=ch)
# Resample the relevant values (i.e relevance >= 0.5) by interpolating
# between nearest k-neighbors (k=5). By setting over='balance', the
# relevant values are oversampled so that the number of relevant and
# irrelevant values are equal
X_res, y_res = resreg.smoter(X, y, relevance=relevance, relevance_threshold=0.5, k=5, over='balance', random_state=0)

My solution:
def create_sampled_data_set(n_samples_by_bin=1000,
n_bins=10,
replace=True,
save_csv=True):
"""In order to have the same distribution for S1..S3 between training
set and test set, this function will generate a new
training set resampled
Return: (X_train, y_train)
"""
def stratified_sample_df_(df, col, n_samples, replace=True):
if replace:
n = n_samples
else:
n = min(n_samples, df[col].value_counts().min())
df_ = df.groupby(col).apply(lambda x: x.sample(n, replace=replace))
df_.index = df_.index.droplevel(0)
return df_
X_train, y_train = load_data_for_train()
# merge the dataframe for the sampling. Target will be removed after
X_train = pd.merge(
X_train, y_train[['Target']], left_index=True, right_index=True)
del y_train
# build a categorical feature, from S1..S3 distribution
disc = KBinsDiscretizer(n_bins=n_bins, encode='ordinal', strategy='kmeans')
disc.fit(X_train[['S1', 'S2', 'S3']])
y_bin = disc.transform(X_train[['S1', 'S2', 'S3']])
del disc
vint = np.vectorize(np.int)
y_bin = vint(y_bin)
y_concat = []
for i in range(len(y_bin)):
a = y_bin[i, 0].astype('str')
b = y_bin[i, 1].astype('str')
c = y_bin[i, 2].astype('str')
y_concat.append(a + ';' + b + ';' + c)
del y_bin
X_train['S_Class'] = y_concat
del y_concat
X_train_resampled = stratified_sample_df_(
X_train, 'S_Class', n_samples_by_bin)
del X_train
y_train_resampled = X_train_resampled[['Target']].copy()
y_train_resampled.rename(
columns={y_train_resampled.columns[0]: 'Target'}, inplace=True)
X_train_resampled = X_train_resampled.drop(['S_Class', 'Target'], axis=1)
# save in file for further usage
if save_csv:
X_train_resampled.to_csv(
"./data/training_input_resampled.csv", sep=",")
y_train_resampled.to_csv(
"./data/training_output_resampled.csv", sep=",")
return(X_train_resampled,
y_train_resampled)

Related

Squared Error Relevance Area (SERA) implementation in Python as custom evaluation metric

I'm facing an imbalanced regression problem and I've already tried several ways to solve this problem. Eventually I came a cross this new metric called SERA (Squared Error Relevance Area) as a custom scoring function for imbalanced regression as mentioned in this paper. https://link.springer.com/article/10.1007/s10994-020-05900-9
In order to calculate SERA you have to compute the relevance function phi, which is varied from 0 to 1 in small steps. For each value of relevance (phi) (e.g. 0.45) a subset of the training dataset is selected where the relevance is greater or equal to that value (e.g. 0.45). And for that selected training subset sum of squared errors is calculated i.e. sum(y_true - y_pred)**2 which is known as squared error relevance (SER). Then a plot us created for SER vs phi and area under the curve is calculated i.e. SERA.
Here is my implementation, inspired by this other question here in StackOverflow:
import pandas as pd
from scipy.integrate import simps
from sklearn.metrics import make_scorer
def calc_sera(y_true, y_pred,x_relevance=None):
# creating a list from 0 to 1 with 0.001 interval
start_range = 0
end_range = 1
interval_size = 0.001
list_1 = [round(val * interval_size, 3) for val in range(1, 1000)]
list_1.append(start_range)
list_1.append(end_range)
epsilon = sorted(list_1, key=lambda x: float(x))
df = pd.concat([y_true,y_pred,x_relevance],axis=1,keys= ['true', 'pred', 'phi'])
# Initiating lists to store relevance(phi) and squared-error relevance (ser)
relevance = []
ser = []
# Converting the dataframe to a numpy array
rel_arr = x_relevance
# selecting a phi value
for phi in epsilon:
relevance.append(phi)
error_squared_sum = 0
error_squared_sum = sum((df[df.phi>=phi]['true'] - df[df.phi>=phi]['pred'])**2)
ser.append(error_squared_sum)
# squared-error relevance area (sera)
# numerical integration using simps(y, x)
sera = simps(ser, relevance)
return sera
sera = make_scorer(calc_sera, x_relevance=X['relevance'], greater_is_better=False)
I implemented a simple GridSearch using this score as an evaluation metric to select the best model:
model = CatBoostRegressor(random_state=0)
cv = KFold(n_splits = 5, shuffle = True, random_state = 42)
parameters = {'depth': [6,8,10],'learning_rate' : [0.01, 0.05, 0.1],'iterations': [100, 200, 500,1000]}
clf = GridSearchCV(estimator=model,
param_grid=parameters,
scoring=sera,
verbose=0,cv=cv)
clf.fit(X=X.drop(columns=['relevance']),
y=y,
sample_weight=X['relevance'])
print("Best parameters:", clf.best_params_)
print("Lowest SERA: ", clf.best_score_)
I also added the relevance function as weights to the model so it could apply this weights in the learning task. However, what I am getting as output is this:
Best parameters: {'depth': 6, 'iterations': 100, 'learning_rate': 0.01}
Lowest SERA: nan
Any clue on why SERA value is returning nan? Should I implement this another way?
Whenever you get unexpected NaN scores in a grid search, you should set the parameter error_score="raise" to get an error traceback, and debug from there.
In this case I think I see the problem though: sera is defined with x_relevance=X['relevance'], which includes all the rows of X. But in the search, you're cross-validating: each testing set has fewer rows, and those are what sera will be called on. I can think of a couple of options; I haven't tested either, so let me know if something doesn't work.
Use pandas index
In your pd.concat, just set join="inner". If y_true is a slice of the original pandas series (I think this is how GridSearchCV will pass it...), then the concatenation will join on those row indices, so keeping the whole of X['relevance'] is fine: it will just drop the irrelevant rows. y_pred may well be a numpy array, so you might need to set its index appropriately first?
Keep relevance in X
Then your scorer can reference the relevance column directly from the sliced X. For this, you will want to drop that column from the fitting data, which could be difficult to do for the training but not the testing set; however, CatBoost has an ignored_features parameter that I think ought to work.

Statsmodels ARIMA: how to get confidence/prediction interval?

How to generate "lower" and "upper" predictions, not just "yhat"?
import statsmodels
from statsmodels.tsa.arima.model import ARIMA
assert statsmodels.__version__ == '0.12.0'
arima = ARIMA(df['value'], order=order)
model = arima.fit()
Now I can generate "yhat" predictions
yhat = model.forecast(123)
and get confidence intervals for model parameters (but not for predictions):
model.conf_int()
but how to generate yhat_lower and yhat_upper predictions?
In general, the forecast and predict methods only produce point predictions, while the get_forecast and get_prediction methods produce full results including prediction intervals.
In your example, you can do:
forecast = model.get_forecast(123)
yhat = forecast.predicted_mean
yhat_conf_int = forecast.conf_int(alpha=0.05)
If your data is a Pandas Series, then yhat_conf_int will be a DataFrame with two columns, lower <name> and upper <name>, where <name> is the name of the Pandas Series.
If your data is a numpy array (or Python list), then yhat_conf_int will be an (n_forecasts, 2) array, where the first column is the lower part of the interval and the second column is the upper part.
To generate prediction intervals as opposed to confidence intervals (which you have neatly made the distinction between, and is also presented in Hyndman's blog post on the difference between prediction intervals and confidence intervals), then you can follow the guidance available in this answer.
You could also try to compute bootstrapped prediction intervals, which is laid out in this answer.
Below, is my attempt at implementing this (I'll update it when I get the chance to check it in more detail):
def bootstrap_prediction_interval(y_train: Union[list, pd.Series],
y_fit: Union[list, pd.Series],
y_pred_value: float,
alpha: float = 0.05,
nbootstrap: int = None,
seed: int = None):
"""
Bootstraps a prediction interval around an ARIMA model's predictions.
Method presented clearly here:
- https://stats.stackexchange.com/a/254321
Also found through here, though less clearly:
- https://otexts.com/fpp3/prediction-intervals.html
Can consider this to be a time-series version of the following generalisation:
- https://saattrupdan.github.io/2020-03-01-bootstrap-prediction/
:param y_train: List or Series of training univariate time-series data.
:param y_fit: List or Series of model fitted univariate time-series data.
:param y_pred_value: Float of the model predicted univariate time-series you want to compute P.I. for.
:param alpha: float = 0.05, the prediction uncertainty.
:param nbootstrap: integer = 1000, the number of bootstrap sampling of the residual forecast error.
Rules of thumb provided here:
- https://stats.stackexchange.com/questions/86040/rule-of-thumb-for-number-of-bootstrap-samples
:param seed: Integer to specify if you want deterministic sampling.
:return: A list [`lower`, `pred`, `upper`] with `pred` being the prediction
of the model and `lower` and `upper` constituting the lower- and upper
bounds for the prediction interval around `pred`, respectively.
"""
# get number of samples
n = len(y_train)
# compute the forecast errors/resid
fe = y_train - y_fit
# get percentile bounds
percentile_lower = (alpha * 100) / 2
percentile_higher = 100 - percentile_lower
if nbootstrap is None:
nbootstrap = np.sqrt(n).astype(int)
if seed is None:
rng = np.random.default_rng()
else:
rng = np.random.default_rng(seed)
# bootstrap sample from errors
error_bootstrap = []
for _ in range(nbootstrap):
idx = rng.integers(low=n)
error_bootstrap.append(fe[idx])
# get lower and higher percentiles of sampled forecast errors
fe_lower = np.percentile(a=error_bootstrap, q=percentile_lower)
fe_higher = np.percentile(a=error_bootstrap, q=percentile_higher)
# compute P.I.
pi = [y_pred_value + fe_lower, y_pred_value, y_pred_value + fe_higher]
return pi
using ARIMA you need to include seasonality and exogenous variables in the model yourself. While using SARIMA (Seasonal ARIMA) or SARIMAX (also for exogenous factors) implementation give C.I. to summary_frame:
import statsmodels.api as sm
import matplotlib.pyplot as plt
import pandas as pd
dta = sm.datasets.sunspots.load_pandas().data[['SUNACTIVITY']]
dta.index = pd.Index(pd.date_range("1700", end="2009", freq="A"))
print(dta)
print("init data:\n")
dta.plot(figsize=(12,4));
plt.show()
##print("SARIMAX(dta, order=(2,0,0), trend='c'):\n")
result = sm.tsa.SARIMAX(dta, order=(2,0,0), trend='c').fit(disp=False)
print(">>> result.params:\n", result.params, "\n")
##print("SARIMA_model.plot_diagnostics:\n")
result.plot_diagnostics(figsize=(15,12))
plt.show()
# summary stats of residuals
print(">>> residuals.describe:\n", result.resid.describe(), "\n")
# Out-of-sample forecasts are produced using the forecast or get_forecast methods from the results object
# The get_forecast method is more general, and also allows constructing confidence intervals.
fcast_res1 = result.get_forecast()
# specify that we want a confidence level of 90%
print(">>> forecast summary at alpha=0.01:\n", fcast_res1.summary_frame(alpha=0.10), "\n")
# plot forecast
fig, ax = plt.subplots(figsize=(15, 5))
# Construct the forecasts
fcast = result.get_forecast('2010Q4').summary_frame()
print(fcast)
fcast['mean'].plot(ax=ax, style='k--')
ax.fill_between(fcast.index, fcast['mean_ci_lower'], fcast['mean_ci_upper'], color='k', alpha=0.1);
fig.tight_layout()
plt.show()
docs: "The forecast above may not look very impressive, as it is almost a straight line. This is because this is a very simple, univariate forecasting model. Nonetheless, keep in mind that these simple forecasting models can be extremely competitive"
p.s. here " you can use it in a non-seasonal way by setting the seasonal terms to zero."

How to save predicted regression values inside a for loop?

I'm trying to use statsmodels to run separate logistic regressions for each "group" in a pandas dataframe and save the predicted probabilities for each observations (row). Each "group" represents about 2500 respondents or observations; I would like to get the predicted probability for each respondent - similar to how with SPSS you can "save" predicted probabilities when running a logistic regression.
I've read what others have attempted, but nothing seems to work. I'm using SPSS to check that the looping operation in Python is working correctly - the predicted probabilities should be the same (SPSS has a split function which makes this really easy).
import pandas as pd
import numpy as np
from statsmodels.formula.api import logit
df = pd.read_csv('test_data.csv')
for cat in df['Brand'].unique():
df_slice = df[df.Brand == cat]
est = logit('binary ~ var_1', df_slice)
est_result = est.fit()
pred = est_result.predict(df)
print(est_result.summary())
df['pred'] = pred
The model summaries are correct (est_result.summary()) and match SPSS exactly. However, the saved predicted values do not match at all. I cannot seem to understand how to get it to work correctly.
Any advice is appreciated.
I solved it in a really un-pythonic kind of way. I hope someone can improve this code. The probabilities now match exactly what SPSS produces when you split the file by group, and run individual regressions by group.
result =[]
for cat in df['Brand'].unique():
df_slice = df[df.Brand == cat]
est = logit('binary ~ var_1', df_slice)
est_result = est.fit()
pred = est_result.predict(df_slice)
results.append(pred)
# print(est_result.summary())
n = len(df['Brand'].unique())
r = pd.DataFrame(results) #put the results into a dataframe
rt = r.T #tranpose the dataframe
r_small = rt[rt.columns[-n:]] #remove all but the last n columns, n = number of categories
r_new = r_small.bfill(axis=1).iloc[:, 0] #merge the n columns and remove the NaNs
r_new #show us
df['predicted'] = r_new # combine the r_new array with the original dataframe
df #show us.

How to find the features names of the coefficients using scikit linear regression?

I use scikit linear regression and if I change the order of the features, the coef are still printed in the same order, hence I would like to know the mapping of the feature with the coeff.
#training the model
model_1_features = ['sqft_living', 'bathrooms', 'bedrooms', 'lat', 'long']
model_2_features = model_1_features + ['bed_bath_rooms']
model_3_features = model_2_features + ['bedrooms_squared', 'log_sqft_living', 'lat_plus_long']
model_1 = linear_model.LinearRegression()
model_1.fit(train_data[model_1_features], train_data['price'])
model_2 = linear_model.LinearRegression()
model_2.fit(train_data[model_2_features], train_data['price'])
model_3 = linear_model.LinearRegression()
model_3.fit(train_data[model_3_features], train_data['price'])
# extracting the coef
print model_1.coef_
print model_2.coef_
print model_3.coef_
The trick is that right after you have trained your model, you know the order of the coefficients:
model_1 = linear_model.LinearRegression()
model_1.fit(train_data[model_1_features], train_data['price'])
print(list(zip(model_1.coef_, model_1_features)))
This will print the coefficients and the correct feature. (Tested with pandas DataFrame)
If you want to reuse the coefficients later you can also put them in a dictionary:
coef_dict = {}
for coef, feat in zip(model_1.coef_,model_1_features):
coef_dict[feat] = coef
(You can test it for yourself by training two models with the same features but, as you said, shuffled order of features.)
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
coef_table = pd.DataFrame(list(X_train.columns)).copy()
coef_table.insert(len(coef_table.columns),"Coefs",regressor.coef_.transpose())
#Robin posted a great answer, but for me I had to make one tweak on it to work the way I wanted, and it was to refer to the dimension of the 'coef_' np.array that I wanted, namely modifying to this: model_1.coef_[0,:], as below:
coef_dict = {}
for coef, feat in zip(model_1.coef_[0,:],model_1_features):
coef_dict[feat] = coef
Then the dict was created as I pictured it, with {'feature_name' : coefficient_value} pairs.
Here is what I use for pretty printing of coefficients in Jupyter. I'm not sure I follow why order is an issue - as far as I know the order of the coefficients should match the order of the input data that you gave it.
Note that the first line assumes you have a Pandas data frame called df in which you originally stored the data prior to turning it into a numpy array for regression:
fieldList = np.array(list(df)).reshape(-1,1)
coeffs = np.reshape(np.round(clf.coef_,5),(-1,1))
coeffs=np.concatenate((fieldList,coeffs),axis=1)
print(pd.DataFrame(coeffs,columns=['Field','Coeff']))
Borrowing from Robin, but simplifying the syntax:
coef_dict = dict(zip(model_1_features, model_1.coef_))
Important note about zip: zip assumes its inputs are of equal length, making it especially important to confirm that the lengths of the features and coefficients match (which in more complicated models might not be the case). If one input is longer than the other, the longer input will have the values in its extra index positions cut off. Notice the missing 7 in the following example:
In [1]: [i for i in zip([1, 2, 3], [4, 5, 6, 7])]
Out[1]: [(1, 4), (2, 5), (3, 6)]
pd.DataFrame(data=regression.coef_, index=X_train.columns)
All of these answers were great but what personally worked for me was this, as the feature names I needed were the columns of my train_date dataframe:
pd.DataFrame(data=model_1.coef_,columns=train_data.columns)
Right after training the model, the coefficient values are stored in the variable model.coef_[0]. We can iterate over the column names and store the column name and their coefficient value in a dictionary.
model.fit(X_train,y)
# assuming all the columns except last one is used in training
columns = data.iloc[:,-1].columns
coef_dict = {}
for i in range(0,len(columns)):
coef_dict[columns[i]] = model.coef_[0][i]
Hope this helps!
As of scikit-learn version 1.0, the LinearRegression estimator has a feature_names_in_ attribute. From the docs:
feature_names_in_ : ndarray of shape (n_features_in_,)
Names of features seen during fit. Defined only when X has feature names that are all strings.
New in version 1.0.
Assuming you're fitting on a pandas.DataFrame (train_data), your estimators (model_1, model_2, and model_3) will have the attribute. You can line up your coefficients using any of the methods listed in previous answers, but I'm in favor of this one:
coef_series = pd.Series(
data=model_1.coef_,
index=model_1.feature_names_in_
)
A minimally reproducible example
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
# for repeatability
np.random.seed(0)
# random data
Xy = pd.DataFrame(
data=np.random.random((10, 3)),
columns=["x0", "x1", "y"]
)
# separate X and y
X = Xy.drop(columns="y")
y = Xy.y
# initialize estimator
lr = LinearRegression()
# fit to pandas.DataFrame
lr.fit(X, y)
# get coeficients and their respective feature names
coef_series = pd.Series(
data=lr.coef_,
index=lr.feature_names_in_
)
print(coef_series)
x0 0.230524
x1 -0.275611
dtype: float64

Scikit Learn - Identifying target from loading a CSV

I'm loading a csv, using Numpy, as a dataset to create a decision tree model in Python. using the below extract places columns 0-7 in X and the last column as the target in Y.
#load and set data
data = np.loadtxt("data/tmp.csv", delimiter=",")
X = data[:,0:7] #identify columns as data sets
Y = data[:,8] #identfy last column as target
#create model
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
What i'd like to know is if its possible to have the classifier in any column. for example if its in the fourth column would the following code still fit the model correctly or would it produce errors when it comes to predicting?
#load and set data
data = np.loadtxt("data/tmp.csv", delimiter=",")
X = data[:,0:8] #identify columns as data sets
Y = data[:,3] #identfy fourth column as target
#create model
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
If you have >4 columns, and the 4th one is the target and the others are features, here's one way (out of many) to load them:
# load data
X = np.hstack([data[:, :3], data[:, 5:]]) # features
Y = data[:,4] # target
# process X & Y
(with belated thanks to #omerbp for reminding me hstack takes a tuple/list, not naked arguments!)
First of all, As suggested by #mescalinum in a comment to the question, think of this situation:
.... 4th_feature ... label
.... 1 ... 1
.... 0 ... 0
.... 1 ... 1
............................
In this example, the classifier (any classifier, not DecisionTreeClassifier particularly) will learn that the 4th feature can best predict the label, since the 4th feature is the label. Unfortunately, this issue happen a lot (by accident I mean).
Secondly, if you want the 4th feature to be input label, you can just swap the columns:
arr[:,[frm, to]] = arr[:,[to, frm]]
#Ahemed Fasih's answer can also do the trick, however its around 10 time slower:
import timeit
setup_code = """
import numpy as np
i, j = 400000, 200
my_array = np.arange(i*j).reshape(i, j)
"""
swap_cols = """
def swap_cols(arr, frm, to):
arr[:,[frm, to]] = arr[:,[to, frm]]
"""
stack ="np.hstack([my_array[:, :3], my_array[:, 5:]])"
swap ="swap_cols(my_array, 4, 8)"
print "hstack - total time:", min(timeit.repeat(stmt=stack,setup=setup_code,number=20,repeat=3))
#hstack - total time: 3.29988478635
print "swap - total time:", min(timeit.repeat(stmt=swap,setup=setup_code+swap_cols,number=20,repeat=3))
#swap - total time: 0.372791106328

Categories