Determining validity if sum divisible by 10 - python

Outline:
Find out if id is acceptable. Acceptable parameters is the sum of the
digits for each part of the id. If each sum is evenly divisible by 10
then the function returns the string "Acceptable", otherwise it
returns the string "Unacceptable".
Example:
isValid('123-12-134') → 'Unacceptable'
isValid('550-55-055') → 'Acceptable'
isValid('123-55-055') → 'Unacceptable'
I've tried converting the entire string into an int, but get some differing results in determining divisible by 10.
My attempted code is:
def isValid(id) :
id=id.replace('-','0')
id=int(id)
if id % 10==0:
return "Valid"
else:
return "Invalid"
Thanks in advance!

You might as well return boolean variables and just compare the output to determine what to print:
def summation(item):
return sum([int(i) for i in item])
def isValid(id_) :
id_part = id_.split('-')
result = [summation(item) % 10 == 0 for item in id_part]
return all(result)
Essentially this loops through all the characters in the split string and determines their sum - 3 sums per provided id.
Then we convert the summed list to a boolean list using your condition of x%10 == 0.
Finally we look at all() the elements of this boolean list to determine if it all True or contains a False.
If all are True then the return of isValid(id_) is True else it is False.
Usage:
ids = ['123-12-134', '550-55-055', '123-55-055']
for id_ in ids:
validity = isValid(id_)
print("Acceptable") if validity else print("Unacceptable")
Output:
Unacceptable
Acceptable
Unacceptable

you mean like this?
sentence = "123-123-123"
a = sum(int(x) for x in sentence if x.isdigit())
Hope this code can help you.
Found on this answer

you mean like this?
sentence = "123-123-123"
a = sum(int(x) for x in sentence if x.isdigit())
return a % 10 == 0
Hope this code can help you.
Found on this answer

We want to short-circuit the 'Unacceptable'.
def isValid(ID):
s = 0
for x in ID:
if x.isdigit():
s += int(x)
else:
if s % 10 == 0:
s = 0
else:
return 'Unacceptable'
return 'Acceptable' if s%10 == 0 else 'Unacceptable'

The solution requires splitting the string into parts using hyphens as separators, which are tested to ensure that the sum of each part's characters is a multiple of 10. The test fails if any of the parts are not a multiple of ten, so each part must be greater than or equal to ten. If any part fails, the string fails, so, there is no need to continue testing if a failed part is found. Acceptable must be returned if the string passes, or Unacceptable if it fails.
This single function solution is easy to read:
def teststring(test):
for part in test.split('-'):
part_failed = int(part)<10
if not part_failed:
sum_chars = 0
for char in part:
sum_chars += int(char)
part_failed = ((sum_chars % 10) != 0)
if part_failed: break
return 'Acceptable' if not part_failed else 'Unacceptable'
This solution uses list comprehension in two functions:
def testpart_comprehended(part):
return ((int(part)>=10) and ((sum(int(char) for char in part) % 10) == 0))
def acceptable_comprehended(test):
return 'Acceptable' if all(testpart_comprehended(part) for part in test.split("-")) else 'Unacceptable'
This solution uses list comprehension in one function:
def all_comprehended(test):
return 'Acceptable' if all(((int(part)>=10) and ((sum(int(char) for char in part) % 10) == 0)) for part in test.split("-")) else 'Unacceptable'

These answers are all too understandable. Please use
isValid = lambda x: (any(sum(map(int, s)) % 10 for s in x.split('-'))
* 'un' + 'acceptable').title()
Unacceptable
for example
>>> isValid('123-123')
'Unacceptable'
>>> isValid('123-127')
'Unacceptable'
>>> isValid('127-127')
'Acceptable'

Related

Python classes and definitions

Here is my python code:
class Solution():
def isPalindrome(self):
return str(self.x) == str(self.x)[::-1]
s1 = Solution()
s1.x = 121
s1.isPalindrome()
It checks to see if the input is a palindrome. I want to create a new object that has the x value 121 and when I execute the isPalindrom function, I want it to return either a true or false boolean answer.
Currently when I run this program, nothing gets outputted. I am a bit lost as to where to go from here, would appreciate help.
Just print out the return value of isPalindrome(), because if you have a line with only a return value (this case being a boolean), the compiler won't know what to do with it.
class Solution():
def isPalindrome(self):
return str(self.x) == str(self.x)[::-1]
s1 = Solution()
s1.x = 121
print(s1.isPalindrome())
You're not telling the program to print anything. Try using print to make it reveal the answer.
Along with printing results we can also make class more pythonic.
class Solution:
def __init__(self):
self.input = None
def is_palindrome(self):
if isinstance(self.input, str):
return self.input == self.input[::-1]
print("Error: Expects str input")
return False # or leave blank to return None
s1 = Solution()
print(s1.is_palindrome())
s1.input = "121"
print(s1.is_palindrome())
output
Error: Expects str input
False
True
The main idea here is divide number. let's take number 122. First of all you need store it in a variable, in this case r_num. While loop is used and the last digit of the number is obtained by using the modulus operator %. The last digit 2 is then stored at the one’s place, second last at the ten’s place and so on. The last digit is then removed by truly dividing the number with 10, here we use //. And lastly the reverse of the number is then compared with the integer value stored in the temporary variable tmp if both are equal, the number is a palindrome, otherwise it is not a palindrome.
def ispalindrom(x):
r_num = 0
tmp = x
while tmp > 0:
r_num = (r_num * 10) + tmp % 10
tmp = tmp // 10
if x == r_num:
return True
return False

Recursive function in python does not call itself out

The problem is formulated as follows:
Write a recursive function that, given a string, checks if the string
is formed by two halves equal to each other (i.e. s = s1 + s2, with s1
= s2), imposing the constraint that the equality operator == can only be applied to strings of length ≤1. If the length of the string is
odd, return an error.
I wrote this code in Python 2.7 that is correct (it gives me the right answer every time) but does not enter that recursive loop at all. So can I omit that call here?
def recursiveHalfString(s):
##param s: string
##return bool
if (len(s))%2==0: #verify if the rest of the division by 2 = 0 (even number)
if len(s)<=1: # case in which I can use the == operator
if s[0]==s[1]:
return True
else:
return False
if len(s)>1:
if s[0:len(s)/2] != s[len(s)/2:len(s)]: # here I used != instead of ==
if s!=0:
return False
else:
return recursiveHalfString(s[0:(len(s)/2)-1]+s[(len(s)/2)+1:len(s)]) # broken call
return True
else:
return "Error: odd string"
The expected results are True if the string is like "abbaabba"
or False when it's like anything else not similat to the pattern ("wordword")
This is a much simplified recursive version that actually uses the single char comparison to reduce the problem size:
def rhs(s):
half, rest = divmod(len(s), 2)
if rest: # odd length
raise ValueError # return 'error'
if half == 0: # simplest base case: empty string
return True
return s[0] == s[half] and rhs(s[1:half] + s[half+1:])
It has to be said though that, algorithmically, this problem does not lend itself well to a recursive approach, given the constraints.
Here is another recursive solution. A good rule of thumb when taking a recursive approach is to first think about your base case.
def recursiveHalfString(s):
# base case, if string is empty
if s == '':
return True
if (len(s))%2==0:
if s[0] != s[(len(s)/2)]:
return False
else:
left = s[1:len(s)/2] # the left half of the string without first char
right = s[(len(s)/2)+1: len(s)] # the right half without first char
return recursiveHalfString(left + right)
else:
return "Error: odd string"
print(recursiveHalfString('abbaabba')) # True
print(recursiveHalfString('fail')) # False
print(recursiveHalfString('oddstring')) # Error: odd string
This function will split the string into two halves, compare the first characters and recursively call itself with the two halves concatenated together without the leading characters.
However like stated in another answer, recursion is not necessarily an efficient solution in this case. This approach creates a lot of new strings and is in no way an optimal way to do this. It is for demonstration purposes only.
Another recursive solution that doesn't involve creating a bunch of new strings might look like:
def recursiveHalfString(s, offset=0):
half, odd = divmod(len(s), 2)
assert(not odd)
if not s or offset > half:
return True
if s[offset] != s[half + offset]:
return False
return recursiveHalfString(s, offset + 1)
However, as #schwobaseggl suggested, a recursive approach here is a bit clunkier than a simple iterative approach:
def recursiveHalfString(s, offset=0):
half, odd = divmod(len(s), 2)
assert(not odd)
for offset in range(half):
if s[offset] != s[half + offset]:
return False
return True

How do I write a recursive function that multiplies each character in a string by 2?

I'm trying to complete a recursive function which given a number, returns a string where the returned value has duplicate of each digit
Example: if 507, returns 550077
if the number is only 0 then just return 0
also if it is a negative number, return the negative sign only once
Example: -507 returns -550077
I haven't yet implemented anything to recognize a negative number, I was just trying to get my function to work first
so far I have:
def double(x):
if x == 0:
return x
else:
x = str(x)
return x[0]*2 + double(x[1: ])
print(double(527))
however this returns IndexError: string index out of range
I had it working by printing the result instead of returning the result, but the problem I am trying to solve strictly wants the result returned, not printed. What am I doing wrong?
This works recursively, fixes the x==0 termination error, checks whether a character is a digit before doubling, and returns the final answer as an int (instead of a str).
def double(x):
x = str(x)
if len(x) == 0:
return ''
else:
first_char = x[0]
# only double if it's an integer
if first_char in map(str, range(10)):
first_char *= 2
return int(first_char + str(double(x[1: ])))
print(double(-527))
>>> -552277
Something like this might work.
def double(x):
if x == 0:
return x
else:
x = str(x)
l=[]
for a in x:
if a == '-':
l.append(a)
else:
l.append(a*2)
return ''.join(l)

Getting the middle character in a odd length string

def get_middle_character(odd_string):
variable = len(odd_string)
x = str((variable/2))
middle_character = odd_string.find(x)
middle_character2 = odd_string[middle_character]
return middle_character2
def main():
print('Enter a odd length string: ')
odd_string = input()
print('The middle character is', get_middle_character(odd_string))
main()
I need to figure out how to print the middle character in a given odd length string. But when I run this code, I only get the last character. What is the problem?
You need to think more carefully about what your code is actually doing. Let's do this with an example:
def get_middle_character(odd_string):
Let's say that we call get_middle_character('hello'), so odd_string is 'hello':
variable = len(odd_string) # variable = 5
Everything is OK so far.
x = str((variable/2)) # x = '2'
This is the first thing that is obviously odd - why do you want the string '2'? That's the index of the middle character, don't you just want an integer? Also you only need one pair of parentheses there, the other set is redundant.
middle_character = odd_string.find(x) # middle_character = -1
Obviously you can't str.find the substring '2' in odd_string, because it was never there. str.find returns -1 if it cannot find the substring; you should use str.index instead, which gives you a nice clear ValueError when it can't find the substring.
Note that even if you were searching for the middle character, rather than the stringified index of the middle character, you would get into trouble as str.find gives the first index at which the substring appears, which may not be the one you're after (consider 'lolly'.find('l')...).
middle_character2 = odd_string[middle_character] # middle_character2 = 'o'
As Python allows negative indexing from the end of a sequence, -1 is the index of the last character.
return middle_character2 # return 'o'
You could actually have simplified to return odd_string[middle_character], and removed the superfluous assignment; you'd have still had the wrong answer, but from neater code (and without middle_character2, which is a terrible name).
Hopefully you can now see where you went wrong, and it's trivially obvious what you should do to fix it. Next time use e.g. Python Tutor to debug your code before asking a question here.
You need to simply access character based on index of string and string slicing. For example:
>>> s = '1234567'
>>> middle_index = len(s)/2
>>> first_half, middle, second_half = s[:middle_index], s[middle_index], s[middle_index+1:]
>>> first_half, middle, second_half
('123', '4', '567')
Explanation:
str[:n]: returns string from 0th index to n-1th index
str[n]: returns value at nth index
str[n:]: returns value from nth index till end of list
Should be like below:
def get_middle_character(odd_string):
variable = len(odd_string)/2
middle_character = odd_string[variable +1]
return middle_character
i know its too late but i post my solution
I hope it will be useful ;)
def get_middle_char(string):
if len(string) % 2 == 0:
return None
elif len(string) <= 1:
return None
str_len = int(len(string)/2))
return string[strlen]
reversedString = ''
print('What is your name')
str = input()
idx = len(str)
print(idx)
str_to_iterate = str
for char in str_to_iterate[::-1]:
print(char)
evenodd = len(str) % 2
if evenodd == 0:
print('even')
else:
print('odd')
l = str
if len(l) % 2 == 0:
x = len(l) // 2
y = len(l) // 2 - 1
print(l[x], l[y])
else:
n = len(l) // 2
print(l[n])

How can I return false if more than one number while ignoring "0"'s?

This is a function in a greater a program that solves a sudoku puzzle. At this point, I would like the function to return false if there is more then 1 occurrence of a number unless the number is zero. What do am I missing to achieve this?
L is a list of numbers
l =[1,0,0,2,3,0,0,8,0]
def alldifferent1D(l):
for i in range(len(l)):
if l.count(l[i])>1 and l[i] != 0: #does this do it?
return False
return True
Assuming the list is length 9, you can ignore the inefficiency of using count here (Using a helper datastructure - Counter etc probably takes longer than running .count() a few times). You can write the expression to say they are all different more naturally as:
def alldifferent1D(L):
return all(L.count(x) <= 1 for x in L if x != 0)
This also saves calling count() for all the 0's
>>> from collections import counter
>>> def all_different(xs):
... return len(set(Counter(filter(None, xs)).values()) - set([1])) == 0
Tests:
>>> all_different([])
True
>>> all_different([0,0,0])
True
>>> all_different([0,0,1,2,3])
True
>>> all_different([1])
True
>>> all_different([1,2])
True
>>> all_different([0,2,0,1,2,3])
False
>>> all_different([2,2])
False
>>> all_different([1,2,3,2,2,3])
False
So we can break this down into two problems:
Getting rid of the zeros, since we don't care about them.
Checking if there are any duplicate numbers.
Striping the zeros is easy enough:
filter(lambda a: a != 0, x)
And we can check for differences in a set (which has only one of each element) and a list
if len(x) == len(set(x)):
return True
return False
Making these into functions we have:
def remove_zeros(x):
return filter(lambda a: a != 0, x)
def duplicates(x):
if len(x) == len(set(x)):
return True
return False
def alldifferent1D(x):
return duplicates(remove_zeros(x))
One way to avoid searching for every entry in every position is to:
flags = (len(l)+1)*[False];
for cell in l:
if cell>0:
if flags[cell]:
return False
flags[cell] = True
return True
The flags list has a True at index k if the value k has been seen before in the list.
I'm sure you could speed this up with list comprehension and an all() or any() test, but this worked well enough for me.
PS: The first intro didn't survive my edit, but this is from a Sudoku solver I wrote years ago. (Python 2.4 or 2.5 iirc)

Categories