Pandas explode index - python

I have a df like below
a = pd.DataFrame([{'col1': ['a,b,c'], 'col2': 'x'},{'col1': ['d,b'], 'col2': 'y'}])
When I do an explode using df.explode(‘col1’), I get below results
col1 col2
a x
b x
c x
d y
b y
However, I wanted something like below,
col1 col2 col1_index
a x 1
b x 2
c x 3
d y 1
b y 2
Can someone help me?

You could do the following:
result = a.explode('col1').reset_index().rename(columns={'index' : 'col1_index'})
result['col1_index'] = result.groupby('col1_index').cumcount()
print(result)
Output
col1_index col1 col2
0 0 a x
1 1 b x
2 2 c x
3 0 d y
4 1 b y

After you explode you can simply do:
a['col1_index'] = a.groupby('col2').cumcount()+1
col1 col2 col1_index
0 a x 1
1 b x 2
2 c x 3
3 d y 1
4 b y 2

Related

How to add interleaving rows as result of sort / groups?

I have the following sample input data:
import pandas as pd
df = pd.DataFrame({'col1': ['x', 'y', 'z'], 'col2': [1, 2, 3], 'col3': ['a', 'a', 'b']})
I would like to sort and group by col3 while interleaving the summaries on top of the corresponding group in col1 and get the following output:
col1 col2
0 a 3
1 x 1
2 y 2
3 b 3
4 z 3
I can of course do the part:
df.sort_values(by=['col3']).groupby(by=['col3']).sum()
col2
col3
a 3
b 3
but I am not sure how to interleave the group labels on top of col1.
Use custom function for top1 row for each group:
def f(x):
return pd.DataFrame({'col1': x.name, 'col2': x['col2'].sum()}, index=[0]).append(x)
df = (df.sort_values(by=['col3'])
.groupby(by=['col3'], group_keys=False)
.apply(f)
.drop('col3', 1)
.reset_index(drop=True))
print (df)
col1 col2
0 a 3
1 x 1
2 y 2
3 b 3
4 z 3
More performant solution is use GroupBy.ngroup for indices, aggregate sum amd last join values by concat with only stable sorting by mergesort:
df = df.sort_values(by=['col3'])
df1 = df.groupby(by=['col3'])['col2'].sum().rename_axis('col1').reset_index()
df2 = df.set_index(df.groupby(by=['col3']).ngroup())
df = pd.concat([df1, df2]).sort_index(kind='mergesort', ignore_index=True).drop('col3', 1)
print (df)
col1 col2
0 a 3
1 x 1
2 y 2
3 b 3
4 z 3
What about:
(df.melt(id_vars='col2')
.rename(columns={'value': 'col1'})
.groupby('col1').sum()
.reset_index()
)
output:
col1 col2
0 a 3
1 b 3
2 x 1
3 y 2
4 z 3
def function1(dd:pd.DataFrame):
df.loc[dd.index.min()-0.5,['col1','col2']]=[dd.name,dd.col2.sum()]
df.groupby('col3').apply(function1).pipe(lambda dd:df.sort_index(ignore_index=True)).drop('col3',axis=1)
output
col1 col2
0 a 3
1 x 1
2 y 2
3 b 3
4 z 3
or use pandasql library
def function1(dd:pd.DataFrame):
return dd.sql("select '{}' as col1,{} as col2 union select col1,col2 from self".format(dd.name,dd.col2.sum()))
df.groupby('col3').apply(function1).reset_index(drop=False)
col1 col2
0 a 3
1 x 1
2 y 2
3 b 3
4 z 3

Panda stacking columns to rows with respect to some other columns

Sorry my question is not really clear from the title but what I'm trying to do is exactly this
with pandas
from this:
col1 col2 col3 col 4
A D G X
B E H Y
C F I Z
to this
col col 4
A X
B Y
C Z
D X
E Y
F Z
G X
H Y
I Z
You can use df.melt() as follows:
df.melt(id_vars='col4', value_name='col').drop('variable', axis=1)
Output:
col4 col
0 X A
1 Y B
2 Z C
3 X D
4 Y E
5 Z F
6 X G
7 Y H
8 Z I
Try this:
df.melt(id_vars='col4', value_vars=['col1', 'col2', 'col3']).drop(columns='variable')
Output:
col value
0 X A
1 Y B
2 Z C
3 X D
4 Y E
5 Z F
6 X G
7 Y H
8 Z I
out_df = pd.DataFrame()
out_df['col'] = df['col1'].tolist() + df['col2'].tolist() + df['col3'].tolist()
out_df['col 4'] = df['col 4'].tolist() * 3

Pandas groupby concat ungrouped column into comma separated string

I have the following example df:
col1 col2 col3 doc_no
0 a x f 0
1 a x f 1
2 b x g 2
3 b y g 3
4 c x t 3
5 c y t 4
6 a x f 5
7 d x t 5
8 d x t 6
I want to group by the first 3 columns (col1, col2, col3), concatenate the fourth column (doc_no) into a line of strings based on the groupings of the first 3 columns, as well as also generate a sorted count column of the 3 column grouping (count). Example desired output below (column order doesn't matter):
col1 col2 col3 count doc_no
0 a x f 3 0, 1, 5
1 d x t 2 5, 6
2 b x g 1 2
3 b y g 1 3
4 c x t 1 3
5 c y t 1 4
How would I go about doing this? I used the below line to get just the grouping and the count:
grouped_df = df.groupby(['col1','col2','col3']).size().reset_index(name='count')\
.sort_values(['count'], ascending=False).reset_index()
But I'm not sure how to also get the concatenated doc_no column in the same code line.
Try groupby and agg like so:
(df.groupby(['col1', 'col2', 'col3'])['doc_no']
.agg(['count', ('doc_no', lambda x: ','.join(map(str, x)))])
.sort_values('count', ascending=False)
.reset_index())
col1 col2 col3 count doc_no
0 a x f 3 0,1,5
1 d x t 2 5,6
2 b x g 1 2
3 b y g 1 3
4 c x t 1 3
5 c y t 1 4
agg is simple to use because you can specify a list of reducers to run on a single column.
Let us do
df.doc_no=df.doc_no.astype(str)
s=df.groupby(['col1','col2','col3']).doc_no.agg(['count',','.join]).reset_index()
s
col1 col2 col3 count join
0 a x f 3 0,1,5
1 b x g 1 2
2 b y g 1 3
3 c x t 1 3
4 c y t 1 4
5 d x t 2 5,6
Another way
df2=df.groupby(['col1','col2','col3']).doc_no.agg(doc_no=('doc_no',list)).reset_index()
df2['doc_no']=df2['doc_no'].astype(str).str[1:-1]

Create and fill new columns using values in rows pandas

I have two dataframes:
Dataframe A:
Col1 Col2 Value
A X 1
A Y 2
B X 3
B Y 2
C X 5
C Y 4
Dataframe B:
Col1
A
B
C
What I need is to add to Dataframe B one column for each value in Col2 of Dataframe A (in this case, X and Y), and filling them with the values in column "Value" after having merged the two dataframes on Col1. Here is it:
Col1 X Y
A 1 2
B 3 2
C 5 4
Thank you very much for your help!
B['X'] = A.loc[A['Col2'] == 'X', 'Value'].reset_index(drop = True)
B['Y'] = A.loc[A['Col2'] == 'Y', 'Value'].reset_index(drop = True)
Col1 X Y
0 A 1 2
1 B 3 2
2 C 5 4
If you are going to have 100s of distinct values in Col2 then you call the above two lines in a loop, like this:
for t in A['Col2'].unique():
B[t] = A.loc[A['Col2'] == t, 'Col3'].reset_index(drop = True)
B[t] = A.loc[A['Col2'] == t, 'Col3'].reset_index(drop = True)
B
You get the same output:
Col1 X Y
0 A 1 2
1 B 3 2
2 C 5 4

Pandas: How do I repeat dataframe for each value in a series?

I have a dataframe (df) as such:
A B
1 a
2 b
3 c
And a series: S = pd.Series(['x','y','z']) I want to repeat the dataframe df for each value in the series. The expected result is to be like this:
result:
S A B
x 1 a
y 1 a
z 1 a
x 2 b
y 2 b
z 2 b
x 3 c
y 3 c
z 3 c
How do I achieve this kind of output? I'm thinking of merge or join but mergeing is giving me a memory error. I am dealing with a rather large dataframe and series. Thanks!
Using numpy, lets say you have series and df of diffenent lengths
s= pd.Series(['X', 'Y', 'Z', 'A']) #added a character to s to make it length 4
s_n = len(s)
df_n = len(df)
pd.DataFrame(np.repeat(df.values,s_n, axis = 0), columns = df.columns, index = np.tile(s,df_n)).rename_axis('S').reset_index()
S A B
0 X 1 a
1 Y 1 a
2 Z 1 a
3 A 1 a
4 X 2 b
5 Y 2 b
6 Z 2 b
7 A 2 b
8 X 3 c
9 Y 3 c
10 Z 3 c
11 A 3 c
UPDATE:
here is a bit changed #A-Za-z's solution which might be bit more memory saving, but it's slower:
x = pd.DataFrame(index=range(len(df) * len(S)))
for col in df.columns:
x[col] = np.repeat(df[col], len(s))
x['S'] = np.tile(S, len(df))
Old incorrect answer:
In [94]: pd.concat([df.assign(S=S)] * len(s))
Out[94]:
A B S
0 1 a x
1 2 b y
2 3 c z
0 1 a x
1 2 b y
2 3 c z
0 1 a x
1 2 b y
2 3 c z
Setup
df = pd.DataFrame({'A': {0: 1, 1: 2, 2: 3}, 'B': {0: 'a', 1: 'b', 2: 'c'}})
S = pd.Series(['x','y','z'], name='S')
Solution
#Convert the Series to a Dataframe with desired shape of the output filled with S values.
#Join df_S to df to get As and Bs
df_S = pd.DataFrame(index=np.repeat(S.index,3), columns=['S'], data= np.tile(S.values,3))
df_S.join(df)
Out[54]:
S A B
0 x 1 a
0 y 1 a
0 z 1 a
1 x 2 b
1 y 2 b
1 z 2 b
2 x 3 c
2 y 3 c
2 z 3 c

Categories