def get_price_history_data(ticker):
pricelist = []
try:
pricedata = False
tradingdays = 252
Historical_Prices = pdr.get_data_yahoo(symbols=ticker, start=(datetime.today()-timedelta(tradingdays)), end=(datetime.today()))#-timedelta(years4-1)))
price_df = pd.DataFrame(Historical_Prices)
pricelist = price_df['Adj Close']
pricedata = True
except:
print(ticker,' failed to get price data')
return(pricelist, pricedata)
tickers = ['FB','V']
for ticker in tickers:
[pricelist, pricedata] = get_price_data(ticker)
I have a list of a few thousand tickers that i run through this for loop. It outputs a single column df and a boolean. Overall it works just fine and does what I need it to. However, it inconsistently freezes indefinitely with no error message and stops running forcing me to close the program and re-run from the beginning.
I am looking for a way for me to skip the iteration of the for loop if a certain amount of time has passed. I have looked into the time.sleep() and the continue function but cant figure out how to apply it to this specific application. If it freezes, it freezes on the "pdr.get_data_yahoo() section". Help would be apprec
I'm guessing that get_data_yahoo() probably freezes because it's making some kind of request to a server that never gets answered. It doesn't have a timeout option so the most obvious option is to start it in another thread/process and terminate it if it takes too long. You can use concurrent.futures for that. Once you're happy about how the code below works, you can replace sleeps_for_a_while with get_price_history_data and (3, 1, 4, 0) with tickers.
from concurrent.futures import ThreadPoolExecutor, TimeoutError
from time import sleep
TIMEOUT = 2 # seconds
def sleeps_for_a_while(sleep_for):
print('starting {}s sleep'.format(sleep_for))
sleep(sleep_for)
print('finished {}s sleep'.format(sleep_for))
# return a value to break out of the while loop
return sleep_for * 100
if __name__ == '__main__':
# this only works with functions that return values
results = []
for sleep_secs in (3, 1, 4, 0):
with ThreadPoolExecutor(max_workers=1) as executor:
# a future represents something that will be done
future = executor.submit(sleeps_for_a_while, sleep_secs)
try:
# result() raises an error if it times out
results.append(future.result(TIMEOUT))
except TimeoutError as e:
print('Function timed out')
results.append(None)
print('Got results:', results)
Related
I use python multiprocessing to compute some sort of scores on DNA sequences from a large file.
For that I write and use the script below.
I use a Linux machine with 48 cpu in python 3.8 environment.
Th code work fine, and terminate the work correctly and print the processing time at the end.
Problem: when I use the htop command, I find that all 48 processes are still alive.
I don't know why, and I don't know what to add to my script to avoid this.
import csv
import sys
import concurrent.futures
from itertools import combinations
import psutil
import time
nb_cpu = psutil.cpu_count(logical=False)
def fun_job(seq_1, seq_2): # seq_i : (id, string)
start = time.time()
score_dist = compute_score_dist(seq_1[1], seq_2[1])
end = time.time()
return seq_1[0], seq_2[0], score_dist, end - start # id seq1, id seq2, score, time
def help_fun_job(nested_pair):
return fun_job(nested_pair[0], nested_pair[1])
def compute_using_multi_processing(list_comb_ids, dict_ids_seqs):
start = time.perf_counter()
with concurrent.futures.ProcessPoolExecutor(max_workers=nb_cpu) as executor:
results = executor.map(help_fun_job,
[((pair_ids[0], dict_ids_seqs[pair_ids[0]]), (pair_ids[1], dict_ids_seqs[pair_ids[1]]))
for pair_ids in list_comb_ids])
save_results_to_csv(results)
finish = time.perf_counter()
proccessing_time = str(datetime.timedelta(seconds=round(finish - start, 2)))
print(f' Processing time Finished in {proccessing_time} hh:mm:ss')
def main():
print("nb_cpu in this machine : ", nb_cpu)
file_path = sys.argv[1]
dict_ids_seqs = get_dict_ids_seqs(file_path)
list_ids = list(dict_ids_seqs) # This will convert the dict_keys to a list
list_combined_ids = list(combinations(list_ids, 2))
compute_using_multi_processing(list_combined_ids, dict_ids_seqs)
if __name__ == '__main__':
main()
Thank you for your help.
Edit : add the complete code for fun_job (after #Booboo answer)
from Bio import Align
def fun_job(seq_1, seq_2): # seq_i : (id, string)
start = time.time()
aligner = Align.PairwiseAligner()
aligner.mode = 'global'
score_dist = aligner.score(seq_1[1],seq_2[1])
end = time.time()
return seq_1[0], seq_2[0], score_dist, end - start # id seq1, id seq2, score, time
When the with ... as executor: block exits, there is an implicit call to executor.shutdown(wait=True). This will wait for all pending futures to to be done executing "and the resources associated with the executor have been freed", which presumably includes terminating the processes in the pool (if possible?). Why your program terminates (or does it?) or at least you say all the futures have completed executing, while the processes have not terminated is a bit of a mystery. But you haven't provided the code for fun_job, so who can say why this is so?
One thing you might try is to switch to using the multiprocessing.pool.Pool class from the multiprocessing module. It supports a terminate method, which is implicitly called when its context manager with block exits, that explicitly attempts to terminate all processes in the pool:
#import concurrent.futures
import multiprocessing
... # etc.
def compute_using_multi_processing(list_comb_ids, dict_ids_seqs):
start = time.perf_counter()
with multiprocessing.Pool(processes=nb_cpu) as executor:
results = executor.map(help_fun_job,
[((pair_ids[0], dict_ids_seqs[pair_ids[0]]), (pair_ids[1], dict_ids_seqs[pair_ids[1]]))
for pair_ids in list_comb_ids])
save_results_to_csv(results)
finish = time.perf_counter()
proccessing_time = str(datetime.timedelta(seconds=round(finish - start, 2)))
print(f' Processing time Finished in {proccessing_time} hh:mm:ss')
I have been working on a small PoC where I am trying to do a I/O Bound application to execute functions without being blocked. Currently I have created something like this:
import time
import concurrent.futures
found_products = []
site_catalog = [
"https://www.graffitishop.net/Sneakers",
"https://www.graffitishop.net/T-shirts",
"https://www.graffitishop.net/Sweatshirts",
"https://www.graffitishop.net/Shirts"
]
def threading_feeds():
# Create own thread for each URL as we want to run concurrent
with concurrent.futures.ThreadPoolExecutor() as executor:
executor.map(monitor_feed, site_catalog)
def monitor_feed(link: str) -> None:
old_payload = product_data(...)
while True:
new_payload = product_data(...)
if old_payload != new_payload:
for links in new_payload:
if links not in found_products:
logger.info(f'Detected new link -> {found_link} | From -> {link}')
# Execute filtering function without blocking, how?
filtering(link=found_link)
else:
logger.info("Nothing new")
time.sleep(60)
continue
def filtering(found_link):
# More code will be added in the future to handle logical code parts
...
# Test
time.sleep(60)
Problem: Currently the issue is that whenever we enter the row filtering(link=found_link) there will be a call to filtering(...) which sleeps for 60 seconds (This is only a mock data, in the future I will have a logical code part instead), what it does then is that the monitor_feed stops the execution and waits until the filtering() is finished.
My Question: I wonder how can I be able to execute the filtering(...) and still continue to loop through the monitor_feed without being blocked when we call filtering(...)?
This is your code with small modifications - mostly problem was with wrong names of variable (because then are very similar)
To make sure I use names executor1, executor2 and executor2 has to be create before while True because it has to exist all time when threads are used.
If you have def filtering(filtered_link) then you have to use the same name filtered_link in submit(..., filtered_link=...)
import concurrent.futures
import time
found_products = []
site_catalog = [
"https://www.graffitishop.net/Sneakers",
"https://www.graffitishop.net/T-shirts",
"https://www.graffitishop.net/Sweatshirts",
"https://www.graffitishop.net/Shirts"
]
def threading_feeds():
print('[threading_feeds] running')
# Create own thread for each URL as we want to run concurrent
with concurrent.futures.ThreadPoolExecutor() as executor1:
executor1.map(monitor_feed, site_catalog)
def monitor_feed(link: str) -> None:
print('[monitor_feed] start')
old_payload = ['old'] # product_data(...)
# executor has to exist all time
with concurrent.futures.ThreadPoolExecutor() as executor2:
while True:
print('[monitor_feed] run loop')
new_payload = ['new1', 'new2', 'new3'] # product_data(...)
if old_payload != new_payload:
for product_link in new_payload:
if product_link not in found_products:
print(f'Detected new link -> {product_link} | From -> {link}')
executor2.submit(filtering, filtered_link=product_link)
#executor2.submit(filtering, product_link)
print("Continue")
time.sleep(2)
def filtering(filtered_link):
# More code will be added in the future to handle logical code parts
#...
# Test
print(f'[filtering]: start: {filtered_link}')
time.sleep(60)
print(f'[filtering]: end: {filtered_link}')
# --- start --
threading_feeds()
I store QuertyText within a pandas dataframe. Once I've loaded all the queries into I want to conduct an analysis again each query. Currently, I have ~50k to evaluate. So, doing it one by one, will take a long time.
So, I wanted to implement concurrent.futures. How do I take the individual QueryText stored within fullAnalysis as pass it to concurrent.futures and return the output as a variable?
Here is my entire code:
import pandas as pd
import time
import gensim
import sys
import warnings
from concurrent.futures import ThreadPoolExecutor
from concurrent.futures import as_completed
fullAnalysis = pd.DataFrame()
def fetch_data(jFile = 'ProcessingDetails.json'):
print("Fetching data...please wait")
#read JSON file for latest dictionary file name
baselineDictionaryFileName = 'Dictionary/Dictionary_05-03-2020.json'
#copy data to pandas dataframe
labelled_data = pd.read_json(baselineDictionaryFileName)
#Add two more columns to get the most similar text and score
labelled_data['SimilarText'] = ''
labelled_data['SimilarityScore'] = float()
print("Data fetched from " + baselineDictionaryFileName + " and there are " + str(labelled_data.shape[0]) + " rows to be evalauted")
return labelled_data
def calculateScore(inputFunc):
warnings.filterwarnings("ignore", category=DeprecationWarning)
model = gensim.models.Word2Vec.load('w2v_model_bigdata')
inp = inputFunc
print(inp)
out = dict()
strEvaluation = inp.split("most_similar ",1)[1]
#while inp != 'quit':
split_inp = inp.split()
try:
if split_inp[0] == 'help':
pass
elif split_inp[0] == 'similarity' and len(split_inp) >= 3:
pass
elif split_inp[0] == 'most_similar' and len(split_inp) >= 2:
for pair in model.most_similar(positive=[split_inp[1]]):
out.update({pair[0]: pair[1]})
except KeyError as ke:
#print(str(ke) + "\n")
inp = input()
return out
def main():
with ThreadPoolExecutor(max_workers=5) as executor:
for i in range(len(fullAnalysis)):
text = fullAnalysis['QueryText'][i]
arg = 'most_similar'+ ' ' + text
#for item in executor.map(calculateScore, arg):
output = executor.map(calculateScore, arg)
return output
if __name__ == "__main__":
fullAnalysis = fetch_data()
results = main()
print(f'results: {results}')
The Python Global Interpreter Lock or GIL allows only one thread to hold control of the Python interpreter. Since your function calculateScore might be cpu-bound and requires the interpreter to execute its byte code, you may be gaining little by using threading. If, on the other hand, it were doing mostly I/O operations, it would be giving up the GIL for most of its running time allowing other threads to run. But that does not seem to be the case here. You probably should be using the ProcessPoolExecutor from concurrent.futures (try it both ways and see):
def main():
with ProcessPoolExecutor(max_workers=None) as executor:
the_futures = {}
for i in range(len(fullAnalysis)):
text = fullAnalysis['QueryText'][i]
arg = 'most_similar'+ ' ' + text
future = executor.submit(calculateScore, arg)
the_futures[future] = i # map future to request
for future in as_completed(the_futures): # results as they become available not necessarily the order of submission
i = the_futures[future] # the original index
result = future.result() # the result
If you omit the max_workers parameter (or specify a value of None) from the ProcessPoolExecutor constructor, the default will be the number of processors you have on your machine (not a bad default). There is no point in specifying a value larger than the number of processors you have.
If you do not need to tie the future back to the original request, then the_futures can just be a list to which But simplest yest in not even to bother to use the as_completed method:
def main():
with ProcessPoolExecutor(max_workers=5) as executor:
the_futures = []
for i in range(len(fullAnalysis)):
text = fullAnalysis['QueryText'][i]
arg = 'most_similar'+ ' ' + text
future = executor.submit(calculateScore, arg)
the_futures.append(future)
# wait for the completion of all the results and return them all:
results = [f.result() for f in the_futures()] # results in creation order
return results
It should be mentioned that code that launches the ProcessPoolExecutor functions should be in a block governed by a if __name__ = '__main__':. If it isn't you will get into a recursive loop with each subprocess launching the ProcessPoolExecutor. But that seems to be the case here. Perhaps you meant to use the ProcessPoolExecutor all along?
Also:
I don't know what the line ...
model = gensim.models.Word2Vec.load('w2v_model_bigdata')
... in function calculateStore does. It may be the one i/o-bound statement. But this appears to be something that does not vary from call to call. If that is the case and model is not being modified in the function, shouldn't this statement be moved out of the function and computed just once? Then this function would clearly run faster (and be clearly cpu-bound).
Also:
The exception block ...
except KeyError as ke:
#print(str(ke) + "\n")
inp = input()
... is puzzling. You are inputting a value that will never be used right before returning. If this is to pause execution, there is no error message being output.
With Booboo assistance, I was able to update code to include ProcessPoolExecutor. Here is my updated code. Overall, processing has been speed up by more than 60%.
I did run into a processing issue and found this topic BrokenPoolProcess that addresses the issue.
output = {}
thePool = {}
def main(labelled_data, dictionaryRevised):
args = sys.argv[1:]
with ProcessPoolExecutor(max_workers=None) as executor:
for i in range(len(labelled_data)):
text = labelled_data['QueryText'][i]
arg = 'most_similar'+ ' '+ text
output = winprocess.submit(
executor, calculateScore, arg
)
thePool[output] = i #original index for future to request
for output in as_completed(thePool): # results as they become available not necessarily the order of submission
i = thePool[output] # the original index
text = labelled_data['QueryText'][i]
result = output.result() # the result
maximumKey = max(result.items(), key=operator.itemgetter(1))[0]
maximumValue = result.get(maximumKey)
labelled_data['SimilarText'][i] = maximumKey
labelled_data['SimilarityScore'][i] = maximumValue
return labelled_data, dictionaryRevised
if __name__ == "__main__":
start = time.perf_counter()
print("Starting to evaluate Query Text for labelling...")
output_Labelled_Data, output_dictionary_revised = preProcessor()
output,dictionary = main(output_Labelled_Data, output_dictionary_revised)
finish = time.perf_counter()
print(f'Finished in {round(finish-start, 2)} second(s)')
I need to get all the elements on a page and iterate through them to search each element.
currently I am using, driver.find_elements_by_xpath('//*[#*]')
However, there can be a delay in completing the line of code above on larger pages. Is there a way to retrieve the results in increments of 100 elements? Or at least add a timeout?
Terminating driver.find_elements_by_xpath('//*[#*]') inside a multithread is the only why I currently think I can solve this.
I need to find all elements on a page that contain certain strings. For example. elem.get_attribute('outerHTML').find('type="submit"') != -1 … and so on and so forth … I also need their proximity to each other to compare index positions
Thanks!
import Globalz ###### globals import is an empty .py file
import threading
import time
import ctypes
def find_xpath():
for i in range(5):
print(i)
time.sleep(1)
Globalz.curr_value = 'DONE!'
### this is where the xpath retrieval goes (ABOVE loop is for example purposes only)
def stopwatch(info):
curr_time = 0
failed = False
Globalz.curr_value = ''
thread1 = threading.Thread(target=info['function'])
thread1.start()
while thread1.is_alive() is True:
if curr_time >= info['timeout']: failed = True; ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(thread1.ident), ctypes.py_object(SystemExit))
curr_time += 1; time.sleep(1)
if failed is True: return info['failed_returns']
if failed is False: return Globalz.curr_value
betty = stopwatch({'function': find_xpath, 'timeout': 10, 'failed_returns': 'failed'})
print(betty)
If anyone is interested here is a solution. I've created a wrapper called stopwatch()
I'm working on a Raspberry Pi (3 B+) making a data collection device and I'm
trying to spawn a process to record the data coming in and write it to a file. I have a function for the writing that works fine when I call it directly.
When I call it using the multiprocess approach however, nothing seems to happen. I can see in task monitors in Linux that the process does in fact get spawned but no file gets written, and when I try to pass a flag to it to shut down it doesn't work, meaning I end up terminating the process and nothing seems to have happened.
I've been over this every which way and can't see what I'm doing wrong; does anyone else? In case it's relevant, these are functions inside a parent class, and one of the functions is meant to spawn another as a thread.
Code I'm using:
from datetime import datetime, timedelta
import csv
from drivers.IMU_SEN0 import IMU_SEN0
import multiprocessing, os
class IMU_data_logger:
_output_filename = ''
_csv_headers = []
_accelerometer_headers = ['Accelerometer X','Accelerometer Y','Accelerometer Z']
_gyroscope_headers = ['Gyroscope X','Gyroscope Y','Gyroscope Z']
_magnetometer_headers = ['Bearing']
_log_accelerometer = False
_log_gyroscope= False
_log_magnetometer = False
IMU = None
_writer=[]
_run_underway = False
_process=[]
_stop_value = 0
def __init__(self,output_filename='/home/pi/blah.csv',log_accelerometer = True,log_gyroscope= True,log_magnetometer = True):
"""data logging device
NOTE! Multiple instances of this class should not use the same IMU devices simultaneously!"""
self._output_filename = output_filename
self._log_accelerometer = log_accelerometer
self._log_gyroscope = log_gyroscope
self._log_magnetometer = log_magnetometer
def __del__(self):
# TODO Update this
if self._run_underway: # If there's still a run underway, end it first
self.end_recording()
def _set_up(self):
self.IMU = IMU_SEN0(self._log_accelerometer,self._log_gyroscope,self._log_magnetometer)
self._set_up_headers()
def _set_up_headers(self):
"""Set up the headers of the CSV file based on the header substrings at top and the input flags on what will be measured"""
self._csv_headers = []
if self._log_accelerometer is not None:
self._csv_headers+= self._accelerometer_headers
if self._log_gyroscope is not None:
self._csv_headers+= self._gyroscope_headers
if self._log_magnetometer is not None:
self._csv_headers+= self._magnetometer_headers
def _record_data(self,frequency,stop_value):
self._set_up() #Run setup in thread
"""Record data function, which takes a recording frequency, in herz, as an input"""
previous_read_time=datetime.now()-timedelta(1,0,0)
self._run_underway = True # Note that a run is now going
Period = 1/frequency # Period, in seconds, of a recording based on the input frequency
print("Writing output data to",self._output_filename)
with open(self._output_filename,'w',newline='') as outcsv:
self._writer = csv.writer(outcsv)
self._writer.writerow(self._csv_headers) # Write headers to file
while stop_value.value==0: # While a run continues
if datetime.now()-previous_read_time>=timedelta(0,1,0): # If we've waited a period, collect the data; otherwise keep looping
print("run underway value",self._run_underway)
if datetime.now()-previous_read_time>=timedelta(0,Period,0): # If we've waited a period, collect the data; otherwise keep looping
previous_read_time = datetime.now() # Update previous readtime
next_row = []
if self._log_accelerometer:
# Get values in m/s^2
axes = self.IMU.read_accelerometer_values()
next_row += [axes['x'],axes['y'],axes['z']]
if self._log_gyroscope:
# Read gyro values
gyro = self.IMU.read_gyroscope_values()
next_row += [gyro['x'],gyro['y'],gyro['z']]
if self._log_magnetometer:
# Read magnetometer value
b= self.IMU.read_magnetometer_bearing()
next_row += b
self._writer.writerow(next_row)
# Close the csv when done
outcsv.close()
def start_recording(self,frequency_in_hz):
# Create recording process
self._stop_value = multiprocessing.Value('i',0)
self._process = multiprocessing.Process(target=self._record_data,args=(frequency_in_hz,self._stop_value))
# Start recording process
self._process.start()
print(datetime.now().strftime("%H:%M:%S.%f"),"Data logging process spawned")
print("Logging Accelerometer:",self._log_accelerometer)
print("Logging Gyroscope:",self._log_gyroscope)
print("Logging Magnetometer:",self._log_magnetometer)
print("ID of data logging process: {}".format(self._process.pid))
def end_recording(self,terminate_wait = 2):
"""Function to end the recording multithread that's been spawned.
Args: terminate_wait: This is the time, in seconds, to wait after attempting to shut down the process before terminating it."""
# Get process id
id = self._process.pid
# Set stop event for process
self._stop_value.value = 1
self._process.join(terminate_wait) # Wait two seconds for the process to terminate
if self._process.is_alive(): # If it's still alive after waiting
self._process.terminate()
print(datetime.now().strftime("%H:%M:%S.%f"),"Process",id,"needed to be terminated.")
else:
print(datetime.now().strftime("%H:%M:%S.%f"),"Process",id,"successfully ended itself.")
====================================================================
ANSWER: For anyone following up here, it turns out the problem was my use of the VS Code debugger which apparently doesn't work with multiprocessing and was somehow preventing the success of the spawned process. Many thanks to Tomasz Swider below for helping me work through issues and, eventually, find my idiocy. The help was very deeply appreciated!!
I can see few thing wrong in your code:
First thing
stop_value == 0 will not work as the multiprocess.Value('i', 0) != 0, change that line to
while stop_value.value == 0
Second, you never update previous_read_time so it will write the readings as fast as it can, you will run out of disk quick
Third, try use time.sleep() the thing you are doing is called busy looping and it is bad, it is wasting CPU cycles needlessly.
Four, terminating with self._stop_value = 1 probably will not work there must be other way to set that value maybe self._stop_value.value = 1.
Well here is a pice of example code based on the code that you have provided that is working just fine:
import csv
import multiprocessing
import time
from datetime import datetime, timedelta
from random import randint
class IMU(object):
#staticmethod
def read_accelerometer_values():
return dict(x=randint(0, 100), y=randint(0, 100), z=randint(0, 10))
class Foo(object):
def __init__(self, output_filename):
self._output_filename = output_filename
self._csv_headers = ['xxxx','y','z']
self._log_accelerometer = True
self.IMU = IMU()
def _record_data(self, frequency, stop_value):
#self._set_up() # Run setup functions for the data collection device and store it in the self.IMU variable
"""Record data function, which takes a recording frequency, in herz, as an input"""
previous_read_time = datetime.now() - timedelta(1, 0, 0)
self._run_underway = True # Note that a run is now going
Period = 1 / frequency # Period, in seconds, of a recording based on the input frequency
print("Writing output data to", self._output_filename)
with open(self._output_filename, 'w', newline='') as outcsv:
self._writer = csv.writer(outcsv)
self._writer.writerow(self._csv_headers) # Write headers to file
while stop_value.value == 0: # While a run continues
if datetime.now() - previous_read_time >= timedelta(0, 1,
0): # If we've waited a period, collect the data; otherwise keep looping
print("run underway value", self._run_underway)
if datetime.now() - previous_read_time >= timedelta(0, Period,
0): # If we've waited a period, collect the data; otherwise keep looping
next_row = []
if self._log_accelerometer:
# Get values in m/s^2
axes = self.IMU.read_accelerometer_values()
next_row += [axes['x'], axes['y'], axes['z']]
previous_read_time = datetime.now()
self._writer.writerow(next_row)
# Close the csv when done
outcsv.close()
def start_recording(self, frequency_in_hz):
# Create recording process
self._stop_value = multiprocessing.Value('i', 0)
self._process = multiprocessing.Process(target=self._record_data, args=(frequency_in_hz, self._stop_value))
# Start recording process
self._process.start()
print(datetime.now().strftime("%H:%M:%S.%f"), "Data logging process spawned")
print("ID of data logging process: {}".format(self._process.pid))
def end_recording(self, terminate_wait=2):
"""Function to end the recording multithread that's been spawned.
Args: terminate_wait: This is the time, in seconds, to wait after attempting to shut down the process before terminating it."""
# Get process id
id = self._process.pid
# Set stop event for process
self._stop_value.value = 1
self._process.join(terminate_wait) # Wait two seconds for the process to terminate
if self._process.is_alive(): # If it's still alive after waiting
self._process.terminate()
print(datetime.now().strftime("%H:%M:%S.%f"), "Process", id, "needed to be terminated.")
else:
print(datetime.now().strftime("%H:%M:%S.%f"), "Process", id, "successfully ended itself.")
if __name__ == '__main__':
foo = Foo('/tmp/foometer.csv')
foo.start_recording(20)
time.sleep(5)
print('Ending recording')
foo.end_recording()