i am looking to loop through the coingecko api for all of the exchanges listed on there, pull the tickers that are listed for each exchange [this is paginated to 100 rows], loop through all of the pages. There is no way of telling how many. Then store all rows out to a CSV.
Here is what I have came up with so far.
from pycoingecko import CoinGeckoAPI
cg = CoinGeckoAPI()
import pandas as pd
#grab a list of all the exchangeslisted on CG
ex_list = cg.get_exchanges_list()
#df_ex_list = pd.read_json(exchanges_list)
df = pd.json_normalize(ex_list)
#output to csv
df.to_csv('exchange_list.csv', encoding='utf-8', index=False)
id_list = df['id'].tolist()
def get_ex_tickers():
for x in id_list:
# get tickers
d = cg.get_exchanges_tickers_by_id(x, page_integer = 2)###the num of page integers is not know
#import into pandas df
df = pd.json_normalize(d, record_path=['tickers'], meta=['name'])
#define path + filename
path = 'ticker_lists/'
filename = path+ x +'_ticker_list' + '.csv'
#output to csv
df.to_csv(filename, encoding='utf-8', index=False)
get_ex_tickers()
import pandas as pd
import datetime
index = ["1","2","2"]
data = {"A":"a","B":"b","C":"c"}
columns = data.keys()
df1 = pd.DataFrame(data, index=index, columns=columns)
dateTime = str(datetime.datetime.now())[0:19]
fileName = (r"D:\user\test%s.csv"%dateTime)
df1.to_csv(fileName)
You cannot have : colon in your file name
Use:
dateTime = datetime.datetime.now().strftime("%Y-%m-%d %H_%M_%S")
fileName = (r"D:\user\test%s.csv"%dateTime)
I am trying to pass a column value as url parameter in loop and I am also trying to put result into json file and later convert into excel. I need to do this without creating any function.
import pandas as pd
import requests
import json
from pandas.io.json import json_normalize
df = pd.read_excel('C:/Users/one.xlsx',converters={'name':str})
df = df['name']
df.head()
dd=df.values
user=b"user"
passwd=b'pass'
auth_values = (user, passwd)
for i in dd:
ur='http://xyz.co&name='
url =ur + str(dd)
response = (requests.get(url, auth=auth_values).text)
response_json = json.loads(response)
response_json=json.dumps(response,ensure_ascii=True)
writeFile =open('C:/Users/file1.json', 'w')
writeFile.write(response_json)
writeFile.close()
print(url)
you can try this.
import pandas as pd
import requests
import json
from pandas.io.json import json_normalize
df = pd.read_excel('C:/Users/one.xlsx',converters={'name':str})
df = df['name']
df.head()
dd=df.values
user=b"user"
passwd=b'pass'
auth_values = (user, passwd)
with open('C:/Users/file1.json', 'w') as writeFile:
for i in dd:
ur='http://xyz.co&name='
url =ur + str(i)
response = requests.get(url, auth=auth_values).text
response_json = json.loads(response)
response_json=json.dumps(response,ensure_ascii=True)
writeFile.write(response_json)
print(url)
For export to excel:
df = pd.read_excel('C:/Users/one.xlsx',converters={'name':str})
df = df['name']
dd=df.values
user=b"user"
passwd=b'pass'
auth_values = (user, passwd)
df_base = None
for i in dd:
ur='http://xyz.co&name='
url =ur + str(i)
response = requests.get(url, auth=auth_values).text
df = pd.read_json(response)
if df_base is None:
df_base = df
else:
df_base.append(df)
print(url)
df_base.to_excel("C:/Users/output.xlsx")
I am scraping multiple tables from the web that are exactly like this one (the big batting gamelogs table) and I need the dataframe to ignore the inner header rows that start with the month of the season.
Here is my script so far:
from bs4 import BeautifulSoup
import pandas as pd
import csv
import urllib2
def stir_the_soup():
player_links = open('player_links.txt', 'r')
player_ID_nums = open('player_ID_nums.txt', 'r')
id_nums = [x.rstrip('\n') for x in player_ID_nums]
idx = 0
for url in player_links:
#open the url and create bs object
player_link = urllib2.urlopen(url)
bs = BeautifulSoup(player_link, 'html5lib')
#identify which table is needed
table_id = ""
if url[-12] == 'b':
table_id = "batting"
elif url[-12] == 'p':
table_id = "pitching"
#find the table and create dataframe
table = str(bs.find('table', {'id' : (table_id + '_gamelogs')}))
df = pd.read_html(table, header=0)
df2 = df[0]
df2 = df2[df2.PA != 'PA']
#for the name of the file and file path
file_path = '/Users/kramerbaseball/Desktop/MLB_Web_Scraping_Program/game_logs_non_concussed/'
name_of_file = str(id_nums[idx])
df2.to_csv(path_or_buf=(file_path + name_of_file + '.csv'), sep=',', encoding='utf-8')
idx += 1
if __name__ == "__main__":
stir_the_soup()
I tried taking the dataframe and ignoring the rows where PA == PA or HR == HR but it will not delete the rows. Any help is appreciated
Notice that in some inner headers columns values are constant. This will drop intermediate headers from your df:
df3 = df2[df2['Gtm']!='Date']
I'm trying to find out if there is an easier way to append a Date column and an additional info column to my existing csv file. I'm adding these columns because this information is not in the JSON string from the REST API call.
import requests
import json
import http.client
import datetime
import pandas as pd
from pandas.io.json import json_normalize
url = api.getinfo()
r = requests.get(url, headers=headers, verify=False)
if r.status_code != http.client.OK:
raise requests.HTTPError(r)
jsonstring = json.dumps(r.json()["data"])
load = json.loads(jsonstring)
df = json_normalize(load)
col = ["poolId", "totalPoolCapacity", "totalLocatedCapacity",
"availableVolumeCapacity", "usedCapacityRate"]
with open('hss.csv', 'a') as f:
df.to_csv(f, header=False, columns=col)
a = pd.read_csv('hss.csv')
a['date'] = [datetime.date.today()] * len(a)
a.to_csv('hss.csv')
b = pd.read_csv('hss.csv')
b['storage system'] = "ssystem22"
b.to_csv('hss.csv')
I end up getting extra columns Unnamed: 0,Unnamed: 0.1 in my csv file each time the script is run. Also each time I append it overwrites the old dates.
,Unnamed: 0,Unnamed: 0.1,poolId,totalPoolCapacity, totalLocatedCapacity,availableVolumeCapacity,usedCapacityRate,date,storage system
0,155472,223618,565064,51,,2017-04-12,ssystem22
1,943174,819098,262042,58,,2017-04-12,ssystem22
0,764600,966017,046668,71,,2017-04-12,ssystem22
1,764600,335680,487650,76,,2017-04-12,ssystem22
2,373700,459800,304446,67,,2017-04-12,ssystem22
I kept researching and found how to fix this. I should have been using the pd.Series function. Below is the corrected code:
import requests
import json
import http.client
import datetime
import pandas as pd
from pandas.io.json import json_normalize
url = api.getinfo()
r = requests.get(url, headers=headers, verify=False)
if r.status_code != http.client.OK:
raise requests.HTTPError(r)
jsonstring = json.dumps(r.json()["data"])
load = json.loads(jsonstring)
df = json_normalize(load)
df['storage system'] = pd.Series('ssystem22', index=df.index)
df['date'] = pd.Series(datetime.date.today().strftime('%m-%d-%Y'),
index=df.index)
col = ["poolId", "totalPoolCapacity", "totalLocatedCapacity",
"availableVolumeCapacity", "usedCapacityRate", "storage system",
"date"]
with open(csvfile, 'a') as f:
df.to_csv(f, header=False, columns=col)