I'm trying to make a simple haar cascade program to detect a face.
faceCascade = cv2.CascadeClassifier('D:\\Python\\Python37\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalcatface.xml')
body_cascade = cv2.CascadeClassifier('haarcascade_upperbody.xml')
video_capture = cv2.VideoCapture(0)
img_counter = 0
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.5,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE
)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow('FaceDetection', frame)
k = input()
# ESC Pressed
if k % 256 == 27:
break
video_capture.release()
cv2.destroyAllWindows()
But every time I launch it, my webcam window just froze and crash :(
My PC is powerful enough for sure, why could it happen?
I have made few changes to your code. For human face use haarcascade_frontalface_default.xml and for the cat face use haarcascade_frontalcatface.xml. Try the code below and it will work like a charm :)
import cv2
#faceCascade = cv2.CascadeClassifier('D:\\Python\\Python37\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalcatface.xml')
faceCascade = cv2.CascadeClassifier('D:\\Python\\Python37\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalface_default.xml')
body_cascade = cv2.CascadeClassifier('haarcascade_upperbody.xml')
video_capture = cv2.VideoCapture(0)
img_counter = 0
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.5,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE
)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow('FaceDetection', frame)
#k = input()
k = cv2.waitKey(1) & 0xFF
if k == 27:
break
# ESC Pressed
# if k % 256 == 27:
# break
video_capture.release()
cv2.destroyAllWindows()
Related
Hey, I want to share a global NumpyArray(cameraImg) between my main
programm and the process which runs parallel. But it doesn't work. It says
"TypeError: only size-1 arrays can be converted to Python scalars"
The main Programm displa_camera() runs in a While Loop, and gets the Image of the Webcam. The img is saved in global cameraImg and used in recognize_faces() to identifiy the face depcit in the Image. It saves the name, which is added to the Image, above the Persons head. Hope you can help me, thx
import time, os, cv2 as cv2, face_recognition
from multiprocessing import Process, Array, Value
global name
name=""
window_name = 'facerecognition'
def display_camera():
cap = cv2.VideoCapture(0)
cap.set(3, 640) # set Width
cap.set(4, 480) # set Height
cascade = cv2.CascadeClassifier('cascade.xml')
global cameraImg, name
while True:
ret, img = cap.read()
cameraImg=Array('d',img)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = cascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(20, 20)
)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (36, 255, 12), 1)
cv2.putText(img, name, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
roi_gray = gray[y:y + h, x:x + w]
roi_color = img[y:y + h, x:x + w]
cv2.imshow('video', img)
k = cv2.waitKey(30) & 0xff
if k == 27: # press 'ESC' to quit
break
cap.release()
cv2.destroyAllWindows()
def recognize_Faces():
global cameraImg, name
folder_dir = "../images/"
image_List=[]
for images in os.listdir(folder_dir):
# check if the image ends with png or jpg or jpeg
if (images.endswith(".png") or images.endswith(".jpg") \
or images.endswith(".jpeg")):
# display
image_List.append(images)
while True:
try:
newFaces=False
for path in image_List :
rgb_img = cv2.cvtColor(cameraImg, cv2.COLOR_BGR2RGB)
img_encoding = face_recognition.face_encodings(rgb_img)
img2 = cv2.imread("../images/"+path)
rgb_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
img_encoding2 = face_recognition.face_encodings(rgb_img2)[0]
result = face_recognition.compare_faces(img_encoding, img_encoding2)
print("Result: ", result)
if(result[0]):
newFaces=True
name= os.path.basename("../images/"+path).split('.')[0]
except Exception as e:
print(e)
if(newFaces==False):
name=""
k = cv2.waitKey(30) & 0xff
if k == 27: # press 'ESC' to quit
break
time.sleep(3)
if __name__ == '__main__':
secondaryThread = Process(target=recognize_Faces)
secondaryThread.start()
display_camera()
So I am trying to make a code where when face is detected from webcam it shows a green square around face. That part is done. What I want to make next is that when face is no longer detected by program that it break the loop and exit program. I tried ways through "if" or "else" or find something online but I was not going anywhere. Is there some way to do it? Here is my code:
import cv2
import os
import time
cascPath = os.path.dirname(
cv2.__file__) + "/data/haarcascade_frontalface_alt2.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
video_capture = cv2.VideoCapture(0)
while True:
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(60, 60),
flags=cv2.CASCADE_SCALE_IMAGE)
for (x,y,w,h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h),(0,255,0), 2)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
How about adding this? Count the number of times no face is detected; break if passes a threshold:
iter_with_no_faces=0 #put this outside the main loop
### put the follwing after updating `faces`
if len(faces) ==0:
iter_with_no_faces+=1
## add break condition as this:
if iter_with_no_faces >100:
break
you can iter_with_no_faces in the faces loop: iter_with_no_faces=0
In sum, this might work with slight modification:
import cv2
import os
import time
cascPath = os.path.dirname(
cv2.__file__) + "/data/haarcascade_frontalface_alt2.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
video_capture = cv2.VideoCapture(0)
iter_with_no_faces=0 #put this outside the main loop
while True:
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(60, 60),
flags=cv2.CASCADE_SCALE_IMAGE)
for (x,y,w,h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h),(0,255,0), 2)
if len(faces) ==0:
iter_with_no_faces+=1
else:
iter_with_no_faces=0 # I assume you want to continue program when a face detected for a duration. you can omit else statement
if iter_with_no_faces >100: #set this threshold to larger or smaller number
break
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
import cv2
def main():
cascPath = './haarcascade_frontalface_alt2.xml' # path to the xml file - change to your path
faceCascade = cv2.CascadeClassifier(cascPath)
video_capture = cv2.VideoCapture(0)
for i in range(10 ** 10):
ret, frame = video_capture.read()
if ret:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(60, 60),
flags=cv2.CASCADE_SCALE_IMAGE)
if len(faces) > 0:
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow('Video', frame)
k = cv2.waitKey(1)
if k == ord('q'):
break
else:
print('No face detected on iter {}'.format(i))
# add here break or whatever you want to do if no face detected
video_capture.release()
cv2.destroyAllWindows()
return
if __name__ == '__main__':
main()
so, I'm trying to code face detection but its not working. this is my code:
import cv2
import sys
cascPath = sys.argv[0]
faceCascade = cv2.CascadeClassifier(cascPath)
video_capture = cv2.VideoCapture(0)
while True:
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
I'm very new to coding so I don't know if I'm missing something obvious
Change your code as follows:
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + cascPath)
This worked for me.
Why this code do not run parallel ? Until this process is completed next functions do not start.
If i try run after this thread other functions ( webview.start() ) the window do not show until opencv not stoped
def videoLoop(video_capture, face_cascade, anterior):
while True:
if not video_capture.isOpened():
print('Unable to load camera.')
sleep(5)
pass
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
if anterior != len(faces):
todo()
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
def faceDetect():
cascPath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
log.basicConfig(filename='faces.log',level=log.INFO)
video_capture = cv2.VideoCapture(0)
anterior = 0
if not video_capture.isOpened():
print("err")
else:
thread1 = Thread(target=videoLoop(video_capture, faceCascade, anterior), daemon=True)
thread1.start()
thread1.join()
I used the following code to detect a face using Haar cascade classifiers provided by OpenCv Python. But the faces are not detected and the square around the face is not drawn. How to solve this?
import cv2
index=raw_input("Enter the index No. : ")
cascPath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
cap = cv2.VideoCapture(0)
cont=0
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=10,
minSize=(30, 30),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
for (x, y, w, h) in faces:
#cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# Display the resulting frame
cv2.imshow('frame',frame)
inpt=cv2.waitKey(1)
if inpt & 0xFF == ord('q'):
break
elif inpt & 0xFF == ord('s') :
#name='G:\XCODRA\Integrated_v_01\EigenFaceRecognizer\img2'+index+"."+(str(cont))+".png"
name='IC_image\\'+index+"."+(str(cont))+".png"
resized = cv2.resize(gray,None,fx=200, fy=200, interpolation = cv2.INTER_AREA)
img=cv2.equalizeHist(resized)
cv2.imwrite(name,img)
print cont
cont+=1
Use the full path for the classifier.